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Z-transforms and noetherian pairs
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Let A be a noetherian ring, and let Z be a subset of Spec (4) which is stable
under specialization. Assume that every element of Z is a regular prime ideal.
Let M be an A-module such that every A-regular element is M-regular. The
Z-transform T(Z, M) of M is a subset of M® , Q(A) defined as follows:

TZ,M)={xeM ®,0(4) | V(M:4x) c Z},

where Q(A) is the total quotient ring of 4, M: ,x={a€ A|axe M}, and V(M :,x)
is the set of prime ideals of A containing M:,x. Since A:,(x+y) and A4:,xy
contain (A4:4x)(A4:,y) for every x and y in Q(A4), T(Z, A) is a subring of Q(A)
which contains 4. It is easy to see that T(Z, M) is a T(Z, A)-module. Note that
T(Z, M)=T(X, #%,(M)) where X =Spec(4) and M is a quasi-coherent Oy-
module associated to M (cf. [2], Chap. IV, (5.9)).

In this paper, we shall give necessary and sufficient conditions on 4 so that
(4, T(Z, A)) is a noetherian pair. For noetherian rings R and S with RS S, we
say that (R, S) is a noetherian pair if every ring T, RET<S, is noetherian. If
Z is the set of all regular maximal ideals of A, then T(Z, A) is the global transform
A? of A introduced by Matijevic in [3]. He proved that (4, 4%) is a noetherian
pair if A is reduced.

Let B=A/I where I is an ideal of A. Assume that Ass, (B)<Ass,(4). Let
Z'={p/l|peZ and p=1I}. Then it is clear that every element of Z’ is a regular
prime ideal of B and T(Z, B)=T(Z’, B). Moreover we have a natural ring
homomorphism ¢: T(Z, A)—T(Z, B) whose kernel is T(Z, )=T(Z, A) n IQ(A).
It should be remarked that ¢(x)z=xz for every xe T(Z, A) and ze T(Z, B). In
the case that Z is the set of all regular maximal ideals of A, T(Z, B) is not the
global transform of B in general. However if every maximal ideal of A4 is regular,
then T(Z, B)=B’.

Our main result is the following

THEOREM. Let A be a noetherian ring, and let Z be a subset of Spec(A4)
which is stable under specialization. Assume that every element of Z is a
regular prime ideal. Then the following conditions on A are equivalent.

(1) (A4, T(Z, A)) is a noetherian pair.

Q) (@) T(Z, Alp) is a finite A/p-module for every p € Ass, (A) such that
A, is not reduced, and
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(b) (A/p, T(Z, Alp)) is a noetherian pair for every p € Ass, (A4).

If A, are not reduced for all associated prime ideal p of A, then the above
conditions are equivalent to the following:

(3) T(Z, A) is finite over A.

If (A/p) (=the derived normal domain of A|p) is finite over A[p for every
p € Spec (A), then the conditions (1) and (2) are also equivalent to the following:

(4) (@) Ifpisan associated prime ideal of A such that A is not reduced,
then (A/p)’ has no maximal ideals m of height one such that mn(4/p)eZ
N Spec (A/p), and

(b) (A/p, T(Z, Alp)) is a noetherian pair for every p € Ass, (4).

If Z is the set of all regular maximal ideals of A, then (A/p, T(Z, A/p)) is a
noetherian pair for every peAss,(4), because A/p=T(Z, Alp)=(A/p)’ and
(4/p, (A/p)?) is a noetherian pair.

COROLLARY. Let A be a noetherian ring such that every maximal ideal of
A is regular. Then (A, A?) is a noetherian pair if and only if (A/p)? is a finite
Afp-module for every p € Ass 4 (A) such that A, is not reduced.

In [1], D. D. Anderson proved that, for a noetherian ring A, if A,, is reduced
for every regular maximal ideal m of A, then (A, 49) is a noetherian pair. The
above theorem gives us another proof of his result. In fact, let Z be the set of
all regular maximal ideals of 4. If p is an associated prime ideal of 4 such
that A4, is not reduced, then V(p)NZ=¢; hence T(Z, A/p)=A[p. This shows
that the condition (2) in Theorem is satisfied. Therefore (4, A?) is a noetherian
pair.

To prove the theorem, we need several lemmas. The first one is a variance of
[2], Chap. IV, (5.11.1.1).

LEMMA 1. Let A be a noetherian ring, and let {py,..., p,} be the set of
minimal prime ideals p of A such that A, is not reduced. Then we have the fol-
lowing statements.

(1) There is a chain of nilpotent ideals M,>--->My=0 of A with the
following properties:

(@) For each j (0< j<n) there exists a p; (1<Zi<r) such that pM; ., =M;
and M;,/|M; is isomorphic to an ideal of A[p; as A-modules.

(b) Ass,(A)=Ass,(A/M)) for j=0,..., n.

(c) (A/M,), is reduced for every minimal prime ideal p of A.

(2) For each p;(1=Zi<r), there is a non-zero nilpotent ideal N; of A such
that Ass,(A)=Ass,(A/N;), p;N;=0 and N, is isomorphic to an ideal of Afp; as
A-modules.

Proor. (1): Let (0)=gq;N--Ngq, be an irredundant primary decomposi-
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tion of (0) in A. We may assume that \/Ef—'—‘Pz for i=1,...,r. We put p;=./q;
for j=r+1,...,m. We may also assume that Min (4)={p,,..., p,} for some n
with r<n<m. We put Q=q,,;N---Nq, For each p;(1=5i<r), there is a
chain of nilpotent ideals p;A,,=J;p>-->J,,=0 of A4,, such that pJ,;€J;;,,
and J;;/J; ;4 1=0(A/p;). Let I;; be the inverse image of J;; by the map 4—4,..
Then I;; is a p;-primary ideal of 4, q;<I;;<p; and q;=1,,. Moreover I;;>1;;,,
pidi;<1; ;44 and I;;/I; ;4 is isomorphic to an ideal of A/p; as A-modules. We
now put My=q; NN  NI;;Np;e N NP, NQ(ISisr, 15 j<e). In this
way we have a chain of nilpotent ideals p, N -« Np,NQ=M(D DM, =M,,
o.--DM,, =0. It is now easy to see that the above chain of ideals satisfies the
properties (a), (b) and (c).

(2): For each p; (1Sisr), Ny=q; NN G-y Ny Nqeq NN Gy is a
required nilpotent ideal.

LemMMA 2. With the same A and Z as in Theorem, let p be a minimal
prime ideal of A. If N is a non-zero nilpotent ideal of A such that pN=0 and
N is isomorphic to an ideal of Alp as A-modules, then T(Z, N) is isomorphic
to an ideal of T(Z, A[p) as T(Z, Ay-modules.

Proor. Let f: N—A/p be an injective homomorphism of A-modules such
that f(N) is an ideal of A/p. It is clear that T(Z, N) is isomorphic to T(Z, f(N))
as T(Z, A)-modules and T(Z, f(N)) is an ideal of T(Z, A/p).

The following lemma is essentially proved in the proof of [2], Chap. IV,
(5.11.2).

LEMMA 3. Let A be a noetherian domain such that A’ is finite over A.
Let Z be a proper subset of Spec (A) which is stable under specialization. Then
the following conditions on A are equivalent.

(1) T(Z, A) is finite over A.

(2) If B is a prime ideal of A’ such that Bn A€ Z, then ht (P)=2.

Proor. (2)=(1): Let U=Spec(4)—Z, and let V be the set of height one
prime ideals of A". Since QN A& Z for every Qe V, we have T(Z, A)=N,y A4,
SNpv Ap=4".

(1)=>(2): Since A’ is finite over A4, there is a non-zero element ¢ of 4 such
that tA'cA. 1t is easy to see that tT(Z, A)=T(Z, A). Therefore T(Z, A') is
finite over A4, and hence A'=T(Z, A’). Let Z'={QeSpec(4)|QnAeZ}.
Then it is also easy to see that T(Z, A)=T(Z’, A’). Suppose that there exists a
prime ideal p of A’ such that ht(p)=1 and peZ’. Then there exist s (#0) and
a in A’ such that p=sA4':,.a. In particular a/s¢&A’. On the other hand,
alse T(Z', A)=A' because peZ’ and (a/s)p=A’. This is a contradiction.
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LemMA 4. Let A, B and C be domains with the same field of fractions
such that (A, B) is a noetherian pair and C is finite over B. Then (4, C) is a
noetherian pair.

ProoOF. Let R be a ring such that A R<=C, and let ¢ be a non-zero element
of B such that tC<B. Since Q(4)=Q(B), we may assume that ¢ is an element
of A. Then tR<BnN R, and Bn R is noetherian; hence R is a finite B N R-module.
Therefore R is noetherian.

LemMA 5. Let (A, B) be a noetherian pair. Then every nilpotent ideal
of B is a finite A-module.

Proor. Let J be a nilpotent ideal of B. Since A[J] is noetherian, J=
¢ A Ixi=> 8 Ax;+J > 64 Ax;. Therefore J is a finite A-module, be-
cause J is a nilpotent ideal.

We now prove the theorem: Let (0)=q;N:--Nq, be an irredundant pri-
mary decomposition of (0) in A. Assume that Min (4)={\/qy,...,/q,}. We
put I=q,n--ngq,and J=T(Z, A)nIQ(A4). It is easy to see that J is the kernel
of the homomorphism T(Z, A)-T(Z, A/I). We first show that (1) is equivalent
to the following:

(2") J is a finite A-module and T(Z, A[p) is finite over Alp for every
minimal prime ideal p of A such that A, is not reduced. Moreover (Afp,
T(Z, A[p)) is a noetherian pair for every p € Ass 4 (A).

(D)=(2"): By Lemma 5, J is a finite A-module. Let p be an associated
prime ideal of 4. Then A/p is isomorphic to an ideal of A as A-modules; hence
T(Z, A/p) is isomorphic to an ideal of T(Z, A) as T(Z, A)-modules. Therefore
T(Z, A/p) is a finite T(Z, A)-module. This shows that the ring homomorphism
¢: T(Z, A)»T(Z, Alp) is finite, because ¢(x)z=xz for every xe T(Z, A) and
zeT(Z, A/p). On the other hand, since (4, T(Z, A)) is a noetherian pair, so is
(A/p, Im (¢)). Therefore, by Lemma 4, (4/p, T(Z, A/p)) is a noetherian pair.
Let now p be a minimal prime ideal of A4 such that A, is not reduced. By Lemma
1, there is a non-zero nilpotent ideal K of A4 such that pK =0, Ass, (4)=Ass, (4/K)
and K is isomorphic to an ideal of A/p. We put K'=T(Z, A)n KQ(A) (=T(Z,
K)). Then, by Lemma 5, K’ is a finite A-module and, by Lemma 2, we may con-
sider that K’ is an ideal of T(Z, A/p). Since tT(Z, A/p)<K’ for every te K’
and T(Z, Alp)=tT(Z, Alp) if t#0, T(Z, Alp) is a finite A-module.

(2)=>(1): Itisclear that A/IST(Z, A)/J<T(Z, A/I). Let R be a ring such
that A R<=T(Z, A). Since JNR is a finite A-module, it is a finitely generated
nilpotent ideal of R. Thus R is noetherian if and only if so is R/(J n R) by the
theorem of Cohen. Therefore it is sufficient to show that (4/I, T(Z, A/I)) is a
noetherian pair; hence we may assume that Min (4)=Ass, (4). Let {py,..., p,}
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=Min(4). Then the canonical embedding A4,.q—A/p; X - X A/p, induces an
embedding T(Z, A,.q)=T(Z, Alp,)x---xT(Z, Alp,). Since each (A/p;, T(Z,
A[py) is a noetherian pair, by Eakin-Nagata’s theorem, (A4;.q4, T(Z, 4;.q)) is also
a noetherian pair. There exists a chain of nilpotent ideals M,>:-->M;=0 of
A which satisfies the properties (a), (b) and (c) of Lemma 1 (1). We use induc-
tion on n in order to show that (4, T(Z, A)) is a noetherian pair. If n=0, then
A=A, This case is proved already. We then assume that n=1 and (4/M,,
T(Z, A/M,)) is a noetherian pair. Let N=T(Z, A)nM,0(4) (=T(Z, M,)).
Let p be a minimal prime ideal of A such that 4, is not reduced, pM,;=0 and
M, is isomorphic to an ideal of 4/p as A-modules. By Lemma 2, N is isomorphic
to an ideal of T(Z, A/p) as T(Z, A)-modules. Therefore N is a finite A-module.
Let now R be a ring such that ASR<T(Z, A). Since (A/M,, T(Z, A/M,)) is
a noetherian pair and A/M;=R/(NnR)=T(Z, A/M,), R/(N n R) is noetherian.
On the other hand, NN R is a nilpotent ideal of R and is a finite A-module.
Therefore every prime ideal of R is finitely generated; hence, by the theorem of
Cohen, R is noetherian. This shows that (4, T(Z, A)) is a noetherian pair.

(2)«>(2’): Note that Ass, (I)=Ass,(A)—Min(4) and J=T(Z, I). Then
by [2], Chap. IV (5.11.1), J is a finite A-module if and only if T(Z, A/p) is a finite
A/p-module for every p € Ass, (I). Therefore the assertion is clear.

If A, is not reduced for every p € Ass 4 (4), then the equivalence between (2)
and (3) follows from [2], Chap. IV (5.11.1).

If (4/p)’ is finite over A/p for every p e Spec (4), then the equivalence bet-
ween (2) and (4) follows easily from Lemma 3.
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