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Existence of non-tangential limits of solutions
of non-linear Laplace equation

Yoshihiro Mi1zuTtA
(Received December 17, 1979)

Our aim in this note is to study the boundary behavior of (weak) solutions
of the non-linear Laplace equation

_w_ 0 p-2_Ou Y\ _
) 3 (lgradu| ax,>"° on 2,

where Q is a domain in the n-dimensional Euclidean space R".

We say that £ e 0Q satisfies the interior cone condition if there is an open
truncated cone I' in Q with vertex at £. Let F be the set of all £ € dQ satisfying
the interior cone condition. We can show that F is an F,-set®).

A function u on @ is said to have a non-tangential limit at & e F if for any
open truncated cone I' = Q with vertex at &,

lim wu(x)
x—+¢,xel’
exists and is finite whenever I'" is a cone with vertex at ¢ whose closure [ is
included in I' U {£}.
In this note let 1 <p<oo and let p(x) denote the distance of x from R*—Q.

THEOREM. Let 1<p=n and let u be a function satisfying the following
properties:
i) u is continuous on Q;
ii) wu is p-precise*® on any relatively compact open subset of Q;
iii) u satisfies (1) in the weak sense (cf. [4]);

iv) Sn lgrad u(x)|Pp(x)*dx <0  for &< p.

Then there exists a set E=0Q such that B,_,, (E)=0 and u has a non-tangential
limit at each point of F—E.

Here B,_,,,, denotes the Bessel capacity of index (1—a/p, p) (see [1]). In
case p=2, our theorem is shown in [3; Theorem 2'].

x) This fact was pointed out by Professor Makoto Sakai.
xx) For the definition of p-precise functions, see Ziemer [5].
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PrOOF. Set

B ={eeon;( 1¢ - yierllgrad o))y = cof,

B(¢,1)NQ
where, in general, B(&, r) denotes the open ball with center at ¢ and radius r.
Let (e F—E' and let I', I'', I'" be cones with vertexes at ¢ and I''—{¢}<TI"
cl"—{&}=I'<Q. Then, since there exists ¢ >0 such that c|y—¢&|Sp(y)<|y—¢|
for all yerI”,

f,.1e = yirlgrad unldy < oo.

Hence as in the proof of [3; Lemma 4] we can find a line £ such that £nI"#@
and lim, ., u(x) exists and is finite. Denote the limit by a.

On the other hand, we can find ¢/, 0<c¢’'<1, such that B(x, ¢'|x—¢|)<=I"”
whenever xeI''. For xel”’, we set r=|x—¢&|, ['(r)={yel”; |y—¢<+c)r},
and denote by |I'(r)| the n-dimensional measure of I'(r). By [4; Theorems 1 and
2], we have

1
u(x) - |r(")| gl‘(r)u(y)dy!

< Cueryie | u(z) - ,r;_,),gmu(yuy "az}"”

B(x,c’r)

< Cyrn(1+1/p) Br(r){gr(r) (S;|z—y| |grad u(y + t(z—y))ldt)dy}pdz]”p.

By the change of variables and Holder’s inequality, we have
1/2
[ {11z - slgraduty + sz=ypiat}ay
r() WJo
1/2
= Pa—o {1z = yllerad uGidy}ar
0 I'(r)

1/
< Cyritn—nip {S ()Igrad u(y)l"dY} "
r(r

and by using Minkowski’s inequality, we obtain

B’") {g,(,, 61/2 |2y lgrad u(y +1(z~y))ld1) dy}pdz]w

<cC ! d vdz) alld
= 4rgl'(r){gl/2<g['(r) lgrad u(y +1(z=y))| z) t} Y
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1/
< C5r‘+"<g |grad u(z)Isz> 7
r(r)

Hence

u) = it o 4| S Cofrrr § grad uyyteay

1/p
<G frre{ leradunirp(nay} .

Here C,~C, are positive constants independent of xeI”. Thus, denoting by
x* e ¢ the point with |x* —¢|=r, we have established

u() — u(x)| < 26, oo jgrad uiep(yyedy}

Define a function f by

lgrad u(y)lp(y)*?, if yeQ,
fy =

s otherwise.

Then f e L?(R") by our assumption iv). If we set

E" = {é €0Q; lim‘sup t"‘“"‘g f(yyrdy > 0} ,
ti0 »t)

B(¢
then B;_,;, ,(E")=0 on account of [2; Theorem 1] (see also [3; Lemma 6]). If
e F—(E’ U E"), then

lim |u(x) — u(x*)| =0,
x=¢&,xel’

which implies that lim,_ . u(x) =limu_ ¢ oy u(x*)=a. Our theorem is now
proved with E=E’ U E".

REMARK 1. The same conclusion as in the theorem holds for any u satis-
fying 1), ii), iv) and

i) e —alsClrrf ) - aray}”

for all numbers a and r with B(x, r)cI”, where C is a positive constant indepen-
dent of a, r and x.

Therefore, in view of [4; Theorems 1 and 2], we may replace the equation
(1) by a more general equation of the form

1y div A(x, grad u) = 0,
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where A(x,#) is an R"-valued (measurable) function on Qx R" such that
|A(x, m)|=aln|P~! (a>0: const.) and (A(x, 1), n)=|n|? for all xe Q and n e R".

REMARK 2. In case p>n, for any function u on Q satisfying i), ii) and iv)
in the theorem, the same conclusion as in the theorem holds.
In fact, with the same notation as in the proof, we can show

) = sl wddvl s el (rad ulepeay}

which gives

46 — uGe| < 2 fre=er{  (grad unirpyray} .
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