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§1. Introduction
Let p be a given prime=5 and BP the Brown-Peterson spectrum at p; and
consider the Hopf algebroid (cf. [2], [12])
(A, F) = (BP*, BP*BP) = (Z(p)[vl, Uz,“'], BP*[tl, tz,“']),

and the I'-comodules A4 and A/(p). Then, for the sphere spectrum S localized
at p and the Moore spectrum M mod p, we have the Adams-Novikov spectral
sequence (cf. [3], [12]):

(1.1) E, = Ext¥ (4, A) (resp. Ext¥ (4, A/(p)))= n,S (resp.n, M).

This is investigated by several authors to study the structure of the stable homotopy
ring ©,S of spheres ([3], [6], [7]).

Now, for the I'-comodules N} and M{=uv7!;N{ such that N9=4/(p) and
Ni+1 is the cokernel of the localization map NJ— M/, we have the chromatic
spectral sequence (cf. [3]):

(1.2) E, = Extf (4, M¥)= Ext}¥ (4, A/(p)).

In this paper, we are concerned with Ext¥ (4, M}) for *=2 by continuing
the studies in [3] and [11] for *=0, 1 to obtain the following

THEOREM A. The F,[v,]-module Ext¥ (A, M}) is given by Theorem 4.4.

Here, we note the following: Consider the spectrum N which is the cofiber
of the localization map M—a~'M for the Adams map a« € [M, M],. Then, by
Ravenel’s localization functor L, (see [10]), we have the spectrum L,N with
BP AL,N=N Av;'BP and the Adams-Novikov spectral sequence:

(1.3) E, = Ext¥ (4, M}))=— n,(L,N).
Thus, Theorem A implies immediately the following

COROLLARY. The spectral sequence (1.3) collapses, and n.(L,N) is an
F [a]-module isomorphic to Extf (A, M}) in Theorem 4.4 by sending a to v,.
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As an application, we are concerned with the -elements (see (2.1.7))

(1.4) By for (j,ne B ={(j, DIISj<p, t21, (j, ) #(p, D},
B for s 2 1 satisfying B,, = B,,/1, and B,,2/,, for u =2

in the p-component 7, S of the stable homotopy ring of spheres, given by Toda
[13] and Oka [4-6]. On the products of these elements in =, S, [7] says that

(1.5) PBsB:p;;=0 unless a) j+1=ptt and p|s+1, b) j=ptt (=2);
and we prove in this paper the following
THEOREM B. () BBy (resp. BsBiprp2) (521, 622) is non-trivial in n,S if
pAts(s—1), or s=rp+1 and phktr+t)(r+t+1) (resp. pfir(r+1)).
(i)  BopiBrpsi (GG, 5), (j, )€ B) is 0 if i+j<p and s+t=3, and is not 0 if
pls+t, p*ft(s+t+p) and p+3=i+j<2p.

Here, we note that (i) for ptts(s—1) is proved in [7]. Furthermore, f.8,,/,
in the E,-term of (1.1) is 0 in case a), or if p|s in case b) of (1.5), and its pre-image
in n,M is not 0 if p|s—1 in case b) (see [7] and [11]).

The triviality in Theorem B is in Theorem 2.2, which is an immediate conse-
quence of the known results in [14] and [7].

Theorem 4.4 is proved by using the change of rings theorem [2];

Ext} (4, M}) = Ext} (B, M{® ,B)
fOI‘ (B, Z) = (Z(p)[vl, Uy, UEl], B[tl, t2,"']®AB).

In § 3, we study the cobar complex Q¥B and prove the key lemma (Proposition 3.7)
which assures the existence of the nice elements G, € Q2B. Then, we can determine
Ext¥ (B, Ml® 4B) in Theorem 4.4 by using the results for * <1 obtained in [3]
and [11] and by using the exact sequence associated to the short exact sequence
0— M9 1/vs, Mt v, M1550,

The non-triviality in Theorem B is proved in Theorem 5.5 by expressing the
B-elements in Q%A and by studying the images of their products under H*A+z—
H3N}~=H2*N3—»H*M3—-H3M}.

The author would like to thank Professor M. Sugawara for his constant
encouragement and helpful suggestions.

§2. Triviality of some products of the S-elements

In this paper, we assume that p is a prime>5.
Let S be the sphere spectrum localized at p, and recall ([13], [4]) the Moore
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spectrum M mod p and the spectra X(r) (r=1), defined by the cofiber sequences
Q1) S-2,s ., M_",38

and T4 M -, M B, X(r) Fr, Eratt M (g=2p—2)
for the map p of degree p and the Adams map a: 3> 2M— M, and the maps
(2.1.2) B: Te*Ya X(1) — X(1),
R(r): £**Pa X(r) — X(r) and B: X(r+1) — X(r)
for 0<r < p (X(0)==, the point spectrum), which are related by
(2.1.3) R(1) = p?, i, = Bi,,,,
n,B = an,,, and BR(r) = R(r—1)B (1=r<p).
Then, the S-elements in the homotopy ring [M, M], are defined by
(2.1.4) B = mypsiy and B,y = mR(r)i, for s21and 1 Sr<p,
(cf. [7]), which satisfy the following by (2.1.3) and a'#,=0:
Q1.5 Bispriy = Bispyr Bispiry = % 7 Busprp-1 ¥ Bispmy = 0-
Furthermore, we know the following ([14], [7]):
(2.1.6) In [M, M],, a0 = 2ada — da? for § = in, and
Bpiry = Bitpipy® ™" for some B, nif t 22and 1 S r<p.

(2.1.7) In n,S, we have the -elements f,=nB,i (s=1) and B, =7 i
(s=21and 1=r<p, or s=2 and r=p), satisfying

Bsp;1 = B, and BB, p-1 =0 for s,t=1.
THEOREM 2.2. Fors,t=1and 1Sr,us<pwiths22ifr=pandt22ifu=p,
BopjBepu =0 in mS if r+u=<p and s+t23.

PrOOF. Assume that r+u<p and s+¢t=3. Then, we may assume s=2
since 7, S is commutative. (2.1.6) implies a"d=nada"1—(n—1)éa" in [M, M],
for n=1, and so BB,y is equal to

— 7B (5ppy 200" T Bt + (1 4+ 1)1 5/ )0%P ™ Bepyuyi -

This is 0 if p—1—r2u and —rp,,_f,, if p—r=u by (2.1.5), and the latter is
also 0 by (2.1.7). q.e.d.
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§3. Key lemma on the cobar complex Q%B
Let BP be the Brown-Peterson ring spectrum at p. Then

(3.1.1) W*BP=BP*=Z(I,)[UI, Uz,"'] and BP*BP=BP*[t1, tz,"'] Wlth
degv,=degt,=2(p"—1) (cf. [8], [1]), and

(3.1.2) (4, I=(BP,, BP,BP) is the Hopf algebroid (whose left unit 7, is
considered to be the inclusion A<TI’), with right unit nz (denoted simply by 75
in this paper): A—I and diagonal 4: I'-I'® ,I" satisfying (cf. [11; (2.3.4-5)])

(3.1.3) nvy = vy + pty, Nvy = v, + v18] + pt; — (p+1)vft; mod (p?),
At, =yt At, =Yt, + t; ® £ + v, T,
Aty = Yty + g + v,TP mod (p, vy),
where Yyx=x®1+1®x (xeI') and T, ge I'® ,I" are given by
(G.14) T={@E)-48}p, g=1, @85 + 1, O 11
(u™ denotes uP" in this paper).

For any Hopf algebroid (4, I') and a I'-comodule M, we consider the
homology

(3.2.1) (cf. [2]). Extf (A4, M) of the cobar complex Q¥M with QQM =M, QM =
M® I'® - ® I (ncopies of I') and differential d,: QM —Qpt1M given by

dn(m®x) = ”Mm ® X
+ 2L, (-Dm®@x;®-@4x%, @@ x, — (1)) m@®x®1 (n=0)
formeM, x;el’ and x=x,®-:-®x,,, where 1,,: M—>M® ,I is the coaction.

(3.2.2) Especially, for the I'-comodule A with n,=%: A>A® =TI, dyu=
nu—u (ue A=Q%A); d,x=yx—A4x (xe '=Q}A).

Hereafter let (4, I') be (BP,, BP,BP) in (3.1.2). Recall (see [3; §3])

(3.3.1) the I'-comodules N{ and M} (i, j=0) with coactions n induced from 7
for A, which are defined inductively by N?=A/(vg, -, v;—1) (vo=p), M{=v7};N]
and the short exact sequence 0—N{——> Mj—N{*+1-0, such that

(3.3.2) 0— Mizt Mo pi 2, MI 0 s exact.

(3.3.3) Here, by definition, we denote any element of M/ by a linear combination
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of fractions x/y of monomials
x = [, vi» (finite product) € v;}};4 (5,20 for n#i+j, s;, ;€ Z)

and y=TTi<n<is+; V5 (r,>0), and x/ye NJ in case xe 4, i.e., 5;+;=0. We note
that x/y #0 in M/ if and only if 5,=0 for n<i and s,<r, for iSn<i+j.

To study Ext¥ (4, M{) (i+j=2), we use the change of rings theorem. Put
(3.4.1) B = Z(p) [Ul, 1)2, Uil] and E = B ®AF ®AB = B[tl’ tz,"‘]@AB,
where v, (n=3) act trivially on B. Then, [2; §3] says the following:

(3.4.2) (B, 2)=(E(2)4, E(2)4E(2)) is the Hopf algebroid so that the natural
map (4, I')—>(B, ) sending v, (n=3) to 0 is a map of Hopf algebroids, i.e., the
structure maps of (B, Z) satisfy (3.1.3) and n(v;)nv,=1in Z.

(3.4.3) For a I'-comodule M, we have the induced X-comodule M® ,B
and the natural map induces Ext¥ (4, M)—Ext} (B, M® ,B), which is isomorphic
if M is v,-local (i.e. v, acts bijectively on M); and we identify as

(3.44) H*M = Ext*(4, M) = Ext} (B, M® ,B) for M = M (i+j=2).

Now, we prepare some results on the cobar complex Q% B, by considering the
elements T,ge I'® [ in(3.14)and V,tel, {,6e€ X and g,e Z® X given by

3.5.1) V= {v5t? — v@15 + v5 — (v,t5— 051, +v,)P}/pv,
= — 8 ¥ mod (p, v,), T = t}1*? — ¢,;
{=v3't; — 03717 ;0 =2t — v,{"; go = v37g, g1 = v3'g5.
Here |/ is the division, and { € v3'I" in [11; (2.5.3)] is the above { in X.
(3.5.2) [11; (3.2.1-5)] The following relations hold in X for n=1:
052, — 0,282 — 0,15 = v}V — vEti*P mod (p, v?),
= — v}y 1f mod (p, v}), V{1, = 0,1 + v2h,; mod (p, v3) ,
(M = -V mod (p, v$" V), v$2 T = v5 T® mod (p, v,) .

(3.5.3) [11; (3.3.1-2), (3.4.2-8)] There are elements &,, &, amd W, Z,
(se Z) in X, with v, W,=Z = —v,v¥?Vmod (p, v5~1), such that the differential
d;: QI B=X->Q3iB=YQ®jpX satisfies

di&, =20371P®V — v,057 g, and d, &, = 3 V®0 — v,v37g, mod (p, v}),
d, W, = v~ W,;mod (p, v5*2) where W, = v¥g% — (s— D)v2vP1g,4/2,

diZ, =0 WP PP R0 — (s+1)v5* 205 ~1g,/2 mod (p, v5+3).
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(3.5.4) [3; Prop. 3.18 ¢)] d,((™)=0mod (p, v{») in Q2B for n=0.

For d,: Q3B=XQ®zX->B=2XQ®zX® X, we see the following by (3.2.1-2),
(3.1.34) and definition:

(3.5.5) dygo = — v,03°T® ¥ mod (p, v}),
dyg, = — 0,07t} ® g, mod (p, v3).

(3.5.6) [9; Th. 3.2] HM3is 0 if i=5, and is the F,[v,, v3']-vector space
with basis represented by the following cycles in Qi{MIS® ,B)=QiB/(p, v,)
fori<4:

1(A=0); hg =ty, hy =v3't} and { (i=1);
g.and h, ® { for e=0,1 (i=2);
0,=9.®{fore=0,1and p=1t, ®g, (i=3); p®{ (i=4),
where p? is homologous to p.
We note that the above elements are all homogeneous, and
(3:5.7) vl = It,l = €'(m) = (p"—D/(p—1), IT| = p,
lgl —1=1VI+1=p*+p, Itl=p+1=]v, [{|=]pl =0,
lol =1 =lvsl, [h] = lgel = 10] = (=1, [&2l = p* — 1,
[Cal=—p>—p, Wl + 1 =W+ p=IZ] =s(p*+p).

(3.5.8) Here, |x|=m means that x is a homogeneous element of degree mq for
q=2p-—2.

LemMa 3.6. If G e Q2B and positive integers n and a satisfy
(3.6.1) |Gl = — (p+1)e'(n)+a and d,G = viv;¢ ™p mod (p, v}*),
then there is F € Q%B with |F|=|G|—a—1 and
(3.6.2) dy(G—v{**F) = v{v; ¢ W {p+v,(¢ +kb,)} mod (p, v1*%)
for some ke Z. Here,

(3.6.3) ¢ =03 (t,—1)®g,;€Q3B, and |p|=—1.

PrOOF. By assumption, there is o € Q3B (Ja|=|G| —a—1) with

d,G = vivgp + vitea and so

dy(vi*a) = — dy(vivsp) mod (p, v1*7) (e=—e€'(n)).
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On the other hand, (3.2.1-2), (3.1.34) and (3.5.5) imply that
dy(v5p) = v1057 (H @ — 1, ®H]) @ g5 = — v,d3(v5p) mod (p, v}).

Thus vitedia=d,(vitea) = —d,(vivsp) =vitad,(v§d) mod (p, v3+¢), which means
that a—v5¢ is a cycle in the range of the projection Q3B—3B/(p, vy)=

QI(MI® ,B). Therefore, by (3.5.6) for H3M9 and |« —v5p|=(p+ De—1=|v50,|,
we have

o — v5p = kvgb, + d,F mod (p, v,) for some ke Z and F e Q3B.
These show the lemma. q.e.d.
By this lemma, we can prove the following key lemma, where
(3.64) ¢=1=agy ¢,=min{n,2} and q,=p" +p" 1 —1 (n21).
PROPOSITION 3.7. There are G, € Q2B for n=0 such that
GD) 1Gol =1, G| = = (p+De(n—1)~1 (n21),
Go = go and G, = v;¢ " Vg, mod (p, v,) (n21),
d,G, = gpiv; ¢ ™p mod (p, vi**") (n20).

PrROOF. Put Go=go+0v,077* P5@1t{®’—v,9,4t,. Then (3.7.1) holds for
n=0 by (3.2.1-2), (3.1.3-4) and (3.5.1-7).

For n=1, consider ¢'=2t,—v,{® €2 and y=-Z_,®0¢" —v,d ¢, € Q%B.
Then

o' = omod (p, v}*?) and y = viv;Pg, mod (p, v3) by (2.5.2-3),
dio’ =0 and d,y = — ¥ 103272 ® 0 ® 0 = — v2v;7d,y’ mod (p, v}*P)
for y' =v5"3v;7t{2 ®02/2 by (3.5.3-4). Therefore, we have the element
G, = vhy/v} + ¥ = g, mod (p, v,) in Q%B with |G,| = — 1

and d,(v3G,)=doVi®y+v5@d,y +d,(v}y") = V5P @vivzPg, =v5 2071, ®g, (by
(3.5.2))=vi* 203 p mod (p, v3*?), which implies d,G,=v%v;!p mod(p, vi*?)
(¢’(1)=1) as desired, since v, : Q¥B/(p)— 2% B/(p) is monomorphic.

Now, assume inductively that G, (n=>1) satisfies (3.7.1). Then, for a=a,,
e=—é'(n) and f=(p+1)e, |G,|=f+a and we can apply Lemma 3.6 to obtain

(3.7.2 dy(G,—v{*F) = gvivs{p+v,(¢ +kb,)} mod (p, vi*?)
for some ke Z and F € Q%B with |F|=f—1. We consider the element

Y = {We,—(G,—vi"*F)P}fe, + kofp* ' W, ® [P (ey=—e€'(n—1)=(e+1)/p)
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by (3.5.3). Then (3.7.1-2), (3.5.3-4) and (3.5.7) show that |y|=f+1,
y = vjvsg,/2mod (p, v}) and dyy = — v{?v8%(p+v,¢)” mod (p, v1**)
(a’=ap+p—1=a,,,), since —(e;—1)/e,=1mod p. Consider the elements
Y =v3*e g} — 3v,t; ® W,, E with |E| =0 and d,E = p — p? mod (p, v,),
Gur1 = 2y/v} + 201 7P72(y' — 20}*Pv5'E) = v3g, mod (p, v,)
(¢ =ep—1=—e'(n+1)), where E exists by (3.5.6). Then
dyy' = v§P*Pdo(v37P) ® g5 + 03¢ da(g5) + 3v,t, ® d; W, mod (p, v{?)
= v,05P(p+019)? + v1+Pv5' (3p—2p?) mod (p, v3*P)

by (3.52-4) and dy(v}?)=v,0;7t — 8057t — 180327 (v, + v, 5)t{? mod (p, v3P).
These imply d,G,.;=2v%v{ p mod (p, v%*“) in (3.7.1), and |G,,,|=f—1 is
clear. Thus, the proposition is proved by induction on n. q.e.d.

§4. Determination of H* M}

In this section, we study H*M} in (3.4.4) by using the exact sequence

(4.1.1) o Hr M npg9 So npg1 P, g pgy On, geripgg

(fa=(1/v,)y) for n=1 associated to the short exact sequence in (3.3.2) for
i=j=1.

Hereafter, for M} (i+j=2), we use the following notations:
(4.1.2) An element (x/y)®y in the cobar complex Q¥(M{® ,B)=M{® ,Q%B

for x/y e MJ (see (3.3.3)) and y e Q¥B is denoted by x®7/y, and if it is a cycle,
then its homology class in H*M/ is denoted by the same letter;

(4.1.3) F,{a;} denotes the F,-submodule of H*M1 generated by {a;|j=1} with
v;0;, 1 =a; such that the F,[v,]-submodule F,{a;} is isomorphic to F,[v,, v7']/
F,[v,]; and F,[v,]<«) denotes the cyclic F,[v,]-submodule of H*M} generated
by a=a’/v} such that it is isomorphic to F,[v,]/(v}).

(4.1.4) [11; Lemma 3.9] In (4.1.1), assume that a submodule K>Imf, of
H"Mj} is the direct sum of F,{a;;} (AeA) and F,[v,1<k,> (ue M) such that
{0,k,|ue M} is linearly independent. Then K=H"M}.

H°M} and H'M1 are given as F,[v,]-modules by

(4.1.5) [3; §5]1 H°M1 is the direct sum of F,{1/v{} and



Products of 8-elements 217

F[v,]1{x3/v§"> for n 20 and se Z — pZ, (see (3.6.4) for a,),
where x, €034, |x,|=p"(p+1) and x,=v5” in M3=v314/(v,, v).
Furthermore, d,(1/v})=0 and

So(x§/v,) = svyhy, Oo(x5/ven) = g,505("Ohy for n = 1 (hy=ty, hy=0v3'1})
in H1MY (see (3.5.6)), where &,=min {n, 2} and c(n, s)=sp"—p"~1.

(4.1.6) [11; §3]1 H'M} is the direct sum of F,{ho/vi}, F,{{”’[v]} and

Fy[0,1<ymlvi™)

for me Ay, = {sp"|n=0, se Z with p¥s(s+1) or p?|s+1},
F,[v,]<v5V[v}~1) for te pZ and
F,[v,]1<x5{"™* D [vg~> for n 20, se Z — pZ.

Here, A(m)=2+¢(s)p"(p?2-1)+(p+1)e'(n) for m=sp", &s)=0 if p2¥s+1 and
g(s)=11if p?|s+1; and the generators satisfy y, € Z, |y,/=m(p+1)+1, and

Ym = V3ho, v5V = — v§"Ph; and x3{D = vP(
in Q}(M3® 4B) = Z/(vo, ) -
Furthermore, in H2M9 (see (3.5.6)), &,(ho/vi)=6,(({[vi)=0 and
01(Y /vty = — 5,05™g, where s, # Omod p and
e(m) = m — &s)p"(p—1) — €'(n) = m — (A(m)—-2)/(p+1) for m = sp"€ Ao,
0, (vsV[vi~1) = — vi*P7lg, for tepZ,
svshy ® if n=0,
Oy (x5 [pan) = for se Z— pZ.
e, 505"Oh, ®C if n=1,
Lemma 4.2, Imf,=Coker d, in (4.1.1) is the F,-vector space spanned by
v3go/v, and v§("sPg [v, for s+ 1€ Z — pZ and n 2 0,
vshy @ {[vy for tepZ, hy @ {[vy, and v3ho ® {[v, for me A,,
where e(n, r)=rp*—é'(n).
Proor. Each ee Z is written as e=e(n, r) with n>0 and pfr+1. Then,
by the definitions of A, and e(m), we see that e e(m) for any m € A, if and only

if p|r and p2fr+p. Also, m#c(n, s)=(sp—1)p"~! for any n=1 and se Z—pZ
ifand onlyif me A,. Therefore we see the lemma by (3.5.6) and (4.1.6). q.e.d.
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Proposition 3.7 and (4.1.4-5) imply the following

ProrosITION 4.3. (i) H2M1 contains the elements represented by the
cycles

(“431) &) 7, ® L] (m=spredo, 1Sj<A(m)),
b) x3G,lv] (n20,s€Z,1<j<a,),
©) Ve (tepZ 1=j<p), and d) he® (D] (j21);
and 6,: H*tM1-H3MY in (4.1.1) maps these elements to
a) —s,v5™0, when j= A(m), b) (s+1)ev5™"9p when j=a,,
c) vy 16, when j=p—1, respectively, and 0 otherwise.
(ii) H3M} contains the elements represented by the cycles
4.3.2) xG, ® (™D[p] (n20,se Z,1<j<a,),
and 85: H3M}—H*M9 maps these elements to
(s+1De5™9p ® { when j = a,, and 0 otherwise.
(4.3.3) For z in a)-d) of (4.3.1), |z| is given by
a) m(p+1)+1-—j,
b) e(n—1,sp)(p+1)—1—j (n21), s(p+1) (n=0and so j=1),
¢ (+p(p+1)—-1—j, and d) 1—j, respectively.
ProOF. Let aeQ3B. Then, we see the following:
4.3.4) d(o/v9) = d(a)/v? in QFMI®,B) =M} ®,Q%B for a = 1.

(4.3.5) afvie H"M} if and only if d,x=vifmod(p, vit9) for some
Be @', and then 3,(o/of) =f ~'d,(oo}*)=f in H"*1M3

(4.3.6) If afv?3e H*M!} and o'/vs € H"M!} for a=1, then a®a'/vie H"™M}
and

O m(2®@a[v]) = 6,(2/v) ® &’ + (—1)"a ® S,('/v}) in H™ "+ IM3.

In fact, (4.3.4) is valid since the canonical map B- B/(v, v‘;)ﬂM l® B
is a map of X-comodules by [3; Lemma 3.7]; and (4.3.4) shows (4.3.5-6) by
definition.

Therefore, we see (i) by (3.5.24), (4.1.5-6), Proposition 3.7 and definition,
and (i) by (i) and (3.5.2-4). q.e.d.
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Now, we can prove the main result in this section:

THEOREM 4.4. H*M}=Extf (4, M})=Ext¥ (B, Mi® ,B) in (3.4.4) is given
as F[v,]-modules by (4.1.5-6) for x <1 and the following for »=22:

(i) H2M\} is the direct sum of F,{h,®(¥)[v}} and
F,[01{ym@®@L*D[v{m}  for m = sp"e 4,
F,[v,]1<{x5G,[vi"> for s+1eZ—-pZ and n=0 and
F,[v,]J<vtV®L[vi~')  for tepZ

(ii) H3M} is the direct sum of F,[v,]{x5G,&{"*Vvi~) for s+1e Z—pZ
and n=0.

(iii) H"M1=0 for n=4.

Proor. The direct sum K in (i) satisfies the assumption in (4.1.4) by
Lemma 4.2, (4.1.5-6), (3.7.1) and Proposition 4.3. Thus (4.1.4) implies (i).
In the same way as Lemma 4.2, (i) and Proposition 4.3 show that

(4.4.1) Imf,=Cokerd, in (4.1.1) is the F,-vector space spanned by
v500/v, and v§"-s0 /v, for s+ 1€ Z — pZ and n = 0.

Thus (4.1.4) implies (ii) in the same way as (i). Also, we see (iii) since Im f,=0 by
(ii) and Proposition 4.3 for n=4 and by (3.5.6) for n=5. q.e.d.

In the rest of this section, we consider the short exact sequence
4.5.1) 00— ML M3 M3 0, f'x = x[ve (vo=p),
in (3.3.2) and the associated exact sequence
(452) o — H'M} Lo, HoME 2o, Homg O, et s
Here, we notice the following (4.5.3-5) for any element

a=a'[viv] € QU M3® ,B) = M3® ,2:B with o« € Q1B:
4.5.3) d,a=d(viJa)vivk in Q3P (ME® ,B) for p~lk>j.

(4.5.4) aeH"M3 if and only if d, (v~ Ja’)=0vjf mod (vi'!, v¥) for some k
with pilk>=j and fe Q3!B, and then §,a=f/vke H"*1M1.

(4.5.5) If ae H"M} and I=mpi~!, then via=a'/vjvi~! € H*M3 and

S (via) = vid,o + mt; ® o« [v]~H*1 in H* 1ML,
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In fact, let pi~!|k. Then nv%=v% mod (vi) by (3.1.3), and so the canonical
map B-B/(vh, v¥) A M3® B (y=vivk) is a map of Z-comodules by [3;
Lemma 3.7]. Thus, we have (4.5.3), which implies (4.5.4-5) by definition and
by noticing do(v})/vi o] =mt, [vgvi~'*! for I=mpi-t.

LEMMA 4.6. There are elements {' e v{'Z and &' € X with |{'| =0, |§'| = — p?,
¢ ={® mod (vy) and d,{’ =v{®¢ mod (v3).

Proor. We have a,={"/v,0{" € H'M3 for any n=0 by (3.5.4), and
193 = v§dia, in H2M1 for ¢ = p* — p3 by (4.5.5), since a; = v5a, by (3.5.2).

Therefore, Theorem 4.4 (i) shows that dja;=ah,®({®[v}*?* for some ae F,,
since |az]= —p3=|hy®({@[v1*P®|. Here

ahy @ (Wfvy = Py = 51(vPa3) = 0, and so a =0,
which shows 6ja;=0. Hence, by definition of 87, we have
d,((3®)/v30P = (d,0)/vy in QYM3ER® 4B) for some we Q{M!® ,B).

Thus, v{¥w is a cycle in H'M} of degree 0 and so v{*w=a’h,/v, for some a’€ F,

by (4.1.6).
Put a={®/v3v{¥ —w/v, and «’ =v§'a (¢'=p3—p?). Then, |&'|= —p?,

o' = v§'8ja and VP8’ = §1(vPa) = 81(—a’ho/vev,) = a’hy ® hofv} =0

by (4.5.5), since d,(h3/2v})= —ho®hy/v} by (3.2.2) and (3.5.6). On the other
hand, we see an element ze H2M} with |z|=—p? is a linear combination of
V-1 /VPP, yi- v}, Gy/v8 P72 and ho®(®[v}*P* by Theorem 4.4 (i) together
with (4.3.3). Therefore, 6j0¢'=0, and so by (4.5.4), we have

d,({® — v @) = vPE + v3d,w’ mod (v3) for some ¢’ € and ' evilZ,

where @ evy!'2 is an element mapped to w under the canonical map vy'X—
QUMI® 2)=Z/(vy, vF). Then, {'={® —v,0¥® —v3w’ stisfies the conditions
of the lemma. q.e.d.

LemMMA 4.7. For m=sp"e€ Z with n=0 and p/s, let
Zpy = 2082, — sOFyTfvgvy,  z, = ZIEE((— 1)1 i)t ool
Then dyz,,=sv3(go— 1t ®{)/vov; .

ProoF. d,z,=0 for n=0 by [3; Th. 4.2 b)]; and (3.1.3), (3.2.2) and (3.5.2)
imply that
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do(v%) = mvs~(v,1] 4 vet,) mod (vg, v,)"+2 for m = spr,
dit; ) =0t L — @12 — 21 ® t; — v,9, mod (vy, vy).
Therefore, we see the lemma, since
d,z, = 2do(v?) ® z, — svT1d,(t,7/vev,) for m = sp". g.e.d.

LemMmA 4.8. v¥9,®(/v,=xFG,®(P/v; with pks(s+1) in H3M} (see
Theorem 4.4 (ii)) does not belong to Im (05f%) in (4.5.2).

Proor. v¥¥g,®(/v, ¢ v,H3M} by Theorem 4.4 (ii) and the elements in
(4.3.1) form an F,-basis of H2M} by Theorem 4.4 (i). Therefore, we see the
lemma by the following:

(4.8.1) The 8, f5-images of y,®L™*3 /vl for j< A(m)—2, x5G,/vi for n=1
and j<a,—2, and hy®{¥/v] are all contained in v, H3M};

(4.8.2) 6,f5(x§Go/v,) =0 if pls and p2f)s; and

(4.8.3) the degrees of the other elements in (4.3.1) is not equal to that
sp(p+1)q of v3go@{/v;.

We see immediately (4.8.1) by (4.5.5) and (4.8.3) by (4.3.3). By Lemma 4.6-7,
[a(x§Golv)=v5t, ®( vy, if p|ls and p?ts. Then, by (3.1.3), Lemma 4.6 and
definition, we have (4.8.2). q.e.d.

Now, we have the following proposition, which implies the non-triviality in §5:

PROPOSITION 4.9. v5t, ®(/vgv, #0 in H2M3 for m=sp" with n=0,1 and
pAs(s+1).

Proor. By Lemmas 4.6-7, we have
a, = 2v5t; ® {[vevy = vea,, for a,, = v3z, ® ' in H2M3; and
0%a,, = mvgg, ® {/v, for pym and
dsa,, = sv%go ® /v, for m = sp with pjts,

since v3t, ®{®{/v;=0. Assume that p}ts(s+1). Then, the first equality shows
a,#0 for m=s by Theorem 4.4 (ii); and the second one shows d&5a,, ¢ Im (6513)
for m=sp by Lemma 4.8, which implies a,, ¢ Im f) and a,,=v,a,,#0, as desired.

q.e.d.

§5. Non-triviality of the products of S-clements

Consider the boundary and induced homomorphisms
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(5.1.1)  H"N3 -, H+1iNy %, H+24 and A,: H"N3 — H"M3
associated to the short exact sequences in (3.3.1). Then, we have the f-elements

(5.1.2) (cf. [3; p. 483]) B,=0'0(v3/vev,) and B,,,;=08"6(v¥[vovi) in H2A for
s21 and 1=i<p, where B, =f,,; and

(5.1.3) these elements except for B,, converge in the Adams-Novikov
spectral sequence (1.1) to the f-elements in x, S with same notation given in (2.1.7).

LemMa 5.2 (cf. [7; Lemma 4.4]). B, =sB,_; ;mod (vy, v}*7*"') in the
cobar complex Q% A, where

(5.2.1) B,; = 00 1P P(—ivht, @12 — sv3V 1D + 0,05 TP).
ProOOF. By the definition of § and (3.1.1-3), we see that
8(6% oov!) = do(v7 05 Ju) = (50703~ + 03~ X) v € H'N}
for some X eI'. Furthermore, in QM3=Q2v;14,
dy(v5 '}~ X) = v5 {do(v}F) ® X + vir~id, X}
= — iU @ X 4+ voY + vIPTIZ
for some Ye Q34 and Ze Q3MQ. Thus we see the lemma by definition and
(5.2.2) d,(v7 vPt?) = vyB,;mod (v3, v3P7i7Y) (s20),
which is proved directly from (3.1.1-3) and (3.2.2). g.e.d.
LeEmMMA 5.3. Let s and t be positive integers. Then,
BsBipjp = 10'0b  and Ab = — v5t P71t @ (v
Sfor b=v3B,_, ,/vov; =v5"'P7PTP[vov, € H2N3.
PrOOF. (3.1.1-4) and Lemma 4.7 show that
d (V37 Pt3/vov1 +(1/9)2) = — V3P TP +1,@()/vov; in QMR ,4B)

for m=sp" with pts. Therefore, we see the lemma by Lemma 5.2 and defi-
nition. g.e.d.

LeEMMA 5.4. Let s, t21 and 1Zi, j<p satisfy plu=s+tand 35k=i+j—
p<p. Then, c=v¥B,_, ;/vovi € H2N3 satisfies

BspjiBipj = t6'6c and Ayc = sviPPt®) @ (P[vgvk + Y[vovk~* for some Ye Q3B.

Proor. By Lemma 5.2 and (5.1.2), c satisfies the first equality and
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(*) ¢ =B,y 4/vovE + iv§?Pt; @ 1P [vovhtt + s08P" 22V @ tP[vvh~t in H2M3.

The first term is O because d,(v]~*v4P~7¢{? [v3v}) =B, _; ,/vov} by (5.2.2).
Consider the following elements in Q{(M3® ,B):

(541 gu, = o¥1P [0} — vi V]veoi*P~t — olF-r Vi [oevk?,
Oieyu = Xk,u-1 — (k[2) Zo[vo0}*? — kvsP=Pe}*P?[vovfte.

Then, (3.1.1-3), (3.5.1-3) and direct calculations show that d,x, ;= —kv¥’t, @12/
vov¥*1 and so the second term in () is 0 since k<p. Furthermore, we see that

(54.2) dior,, = (k[2)vrP? @ [P[vgvh + (k[4)v3P~ g, [vevh™2 + Xy [vevh3,
d;(v4272(5 + 205712 V) ook 1)
= — 2047722V ® 1 [vovk ! — vyP=1g, Jogvk™2 + X ,[vgv}3
for some X, and X, € Q2B. These together with (*) show that
AgC = sv8P P2 @ {P[vgvk + X 3/vovk~3 for some X, € Q2B.

Since A4c and the first term are in H2M3, so is the second term, which shows
X;/vgv, € H*M3 by (4.5.5). Then X;/v, € H*M!} and |X;/v;|=—3mod p+1,
since |c|=|B,_; ;|—i=1—kmod p+1 by definition. On the other hand, there is

no nonzero element z in H2M} with v,z=0 and |z]=-3modp+1 by
Theorem 4.4 (i). Therefore X;/v, =0 and there is an element Ye Q2B such that
.X3 = vl }’. q. €. d.

By using these results together with Proposition 4.9, we can prove the
following non-triviality theorem:

THEOREM 5.5. On the products of the B-elements in n, S given in (1.4).
(1) BBipip # O # BBip2jp,2 if pAtr(r—=1), for r2 1, t 2 2;
Bsp+1Bepip # 0 if pAt(s+1)(s+1+1) and
Bsp+1Bip2ip,2 # 0 if phts(s+1), for s 20, t 22;
(1) BspiBeps; # 0 if pA1, pls+t, p2fs+it+p and p+3=<i+j<2p,
for s, t=1 and 1Zi, j<p with (i, s)#(p, 1)#(J, 1).

ProoF. By (5.1.3) and the sparseness of the spectral sequence (1.1), it is
sufficient to show the non-triviality in its E,-term H*A.

Consider the homomorphisms (5.1.1) for n=2, where 6 and &’ are isomorphic
because H*M{ =0 for j=0, 1 and n2j+1 by [3; Th. 3.16, 4.2]. Then (i) is seen
by Lemma 5.3, Proposition 4.9 and the equality 8,8,,2/5,2= B, +1(p2- p)Bipsp in H*A
[7; Prop. 6.1].
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Now, let i, j, s and ¢ satisfy the assumption in (ii), and put k=i+j—p and
u=s+t. Then, by Lemmas 5.4, 4.6, (5.4.1-2), Proposition 3.7 and (4.1.5), we have

BopiBipi = 16'3¢, Ayc — Y/vgvh=* = sv4p~?t2 @ (P[vgvk = svowy, ® ',
05Ac = (ks/4)x3'PG, ® {/vi~2 + X/[vh~3 for some X € Q3B,

because v4?PtP@(P@¢?[vk=0. Thus 854,c#0 in H3M}! by Theorem 4.4 (ii),
which shows (ii) since 6 and ¢’ are isomorphic. q.e.d.

REMARK. The non-triviality of the other products of the f-elements in the
E,-term stated in [7; Th. 5.6 (ii)] can be seen by [7; Lemma 4.4] and Propo-
sition 4.9 immediately.

References

[1] M. Hazewinkel, Constructing formal groups III: Application to complex cobordism and
Brown-Peterson cohomology, J. Pure Appl. Algebra 10 (1977), 1-18.

[2] H.R.Miller and D. C. Ravenel, Morava stabilizer algebra and the localization of
Novikov’s E,-term, Duke Math. J. 44 (1977), 433-447.

[3] H.R.Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-
Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.

[4] S.Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math.
J. 5 (1975), 87-114.

[5] S.Oka, A new family in the stable homotopy groups of spheres II, Hiroshima Math.
J. 6 (1976), 331-342.

[6] S.Oka, Realizing some cyclic BP« modules and applications to stable homotopy of
spheres, Hiroshima Math. J. 7 (1977), 427-447.

[7] S.Oka and K. Shimomura, On products of the S-elements in the stable homotopy of
spheres, Hiroshima Math. J. 12 (1982), 611-626.

[8] D. G. Quillen, On the formal group laws of unoriented and complex cobordism theory,
Bull. Amer. Math. Soc. 75 (1969), 1293-1298.

[9] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977),
287-297.

[10] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer.
J. Math. 106 (1984), 351-414.

[11] K. Shimomura and H. Tamura, Non-triviality of some compositions of S-elements in the
stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.

[12] R. M. Switzer, Algebraic Topology —Homology and Homotopy—, Springer, 1975.

[13] H. Toda, Algebra of stable homotopy of Z,-spaces and applications, J. Math. Kyoto
Univ. 11 (1971), 197-251.

[14] N. Yamamoto, Algebra of stable homotopy of Moore spaces, J. Math. Osaka City
Univ. 14 (1963), 45-67.

Department of Mathematics,
Faculty of Science,
Hiroshima University





