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1. Introduction

Let L, be the general disconjugate operator
6)) Ln=__________...________’_
with p;>0 and p;eC[a, ©0),0<i<n. Let (1) be in canonical form [10] at oo} i.e.,
9 fw piddt =0, 1<j<n—1.

With the operator (1) we associate the quasi-derivatives Lyu,..., L,_u defined by

3) Lou=-"; Lu=-Y(L_uy, 1srsn—1.

Po §

We give conditions which imply that the equation

) Lu + f(t, Lyu,...,L,_;u) =0

has solutions which behave as t— oo like solutions of the unperturbed equation
) Lx =0.

Several authors [e.g. 2, 3, 5, 6, 9] have studied perturbed disconjugate equa-
tions of the simpler form

(6) Lu + f(t, Lou) = 0.

The more general equation (4), in which the perturbing terms depend also on
L,u,..., L,_,u have been studied in [4], [11] and [12]. However, to the authors’
knowledge, all the results previously obtained for nonlinear equations of the
forms (4) or (6) are “local’’ near oo, in that the desired solutions are shown to
exist only for ¢ sufficiently large. Although one of our results given below is a
local theorem of this kind which extends a result of Fink and Kusano [4], our
main thrust here is in the direction of global results, in which the desired solution
is shown to exist on a given interval. This continues a theme —global existence
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of solutions of nonlinear equations with specified asymptotic properties— which
has recently been developed by the authors in [7] and [8].

2. Formulation of the problem

Following Willett [13], we define the iterated integrals I,=1,

t
Ij(t, S5 qjseees q,) = J\qu('l)lj—l()“’ S5 qj—15--0» q)di, s, t=za, j=1,

where g4, q,,... are locally integrable on [a, 00). It is easily verified that the
functions

(7) xi(t) = pO(t)Ii—l(t’ a; Pis---» pi—l)a 1 é i é n,
form a fundamental system for (5) on [a, o), and that the functions
(8) yl(t) = pn(t)ln—i(t’ a; Pn—la'“, pi)’ ]- é i é n,

are similarly related to the formal adjoint equation

1 d 1 1 d y
L¥ty = - ¢ ~ .. - ¢
Y=o dt py " pa df p,

From (3) and (7),
) Lxft)=1,_,—1(t, @; Prs15--- Pi-1), 0=Sr=si-1,

and

Lx;=0, i<r=n
Because of (2) and Lemma 2 of [11],

erj(t)

- Lx () _ i<
(10) }Lrg Lx0) 0, r<i<j=sn,
and

(1) im 2 — o 1<i<j<n,

o V(1)

and the ratios in (10) and (11) are increasing on [a, c0). For reasons which will
become clear below, it is also convenient to define

Ii_,_(t,a; pr1seer Pi-y), OZSr=i—1,
(12) d(n) = ‘ roe S 1gisn
I/Ir—i—l(t’ QA5 Drseees pi)’ isrsn-—1,

It is important to notice that
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(13) dir=eri’ O0sr=si-1, 1Zign
(cf. (9)), and that (again because of (2))

(14) lim '"'((t))—oo 0sr=n-1, 1fi<mZ<n.
t—=®© u

Because of this, there is a b>a such that

(15) d=d, (), 0Zr=n-1, 1gi<mgn, t=hb.
Equation (4) is related to (5) in the same way that the equation

(16) u™ + f(t, u,...,u" V) =0

is related to

a7 xm =0,

since (4) and (5) reduce to (16) and (17) if

(18) pr=r=p, =1

In order to gain insight into the results given below, the reader may wish to
interpret them in the case where (18) applies. We believe that our global existence
theorems are new even in this case (Beesack [1] has obtained different global
existence results for (16), by methods based on a generalization of Bihari’s
inequality). Note that

t— k
(19) Ik(t’ a, pil,'“a Pik) = ( k'a)

if (18) holds.
Throughout this paper i and m are integers, with 1<i<m<n, and

(20) q = ZT:i b,xl

(see (7)) is a given solution of (5). We give various conditions which imply
that (4) has a solution # such that

1 Lo =Lg+o(d), 0srsn—-1

(where we use “o0’’ in the standard manner to indicate behavior as t—00). In
the simpler case (18), (19) implies that

— $'m (t_ )J !
(22) q(t)_‘ j= th (] a1)| H

and (21) becomes
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a0t = g0 + o(tY), 0=r=n-1;

thus the constants b,,..., b, in (22) are all significant in describing the behavior of
A4 (0=r<m-—1) as t->o0. Because of (10), (13) and (14), a similar comment
applies to the general case; i.e., b,,..., b, are all significant in describing the
behavior of Lfi (0<r<m-—1) as t—o0.

3. A fundamental lemma

All our results in Section 4 can be obtained by direct application of the
Schauder-Tychonoff fixed theorem. However, to avoid repetition, we will use
this theorem just once to prove the following fundamental lemma. Since the
hypotheses of this lemma are easy to check in specific situations, we believe that it
should be widely useful as a substitute for the direct application of the Schauder-
Tychonoff theorem to problems of this kind.

LeMMA 1. Let q be the given solution (20) of (5). Suppose that t,=b (cf.
(15)) and there is a constant M >0 such that the function f(t, ug,..., U,_,) is
continuous and satisfies the inequality

(23) lf(t, uO,'-" un—-l)l é W(t)
on the set
(24) S = {(ts uO’“" un— 1) I |ur—qu(t)I éMdir(t)’ Oé rén_ 1’ t;to} ’

where W is continuous on [b, o) and

(29) |7 viowaar < .

with y; as in (8). Let

26) o0 = [ nWEs.

Then (4) has a solution i on [t,, o) such that

27 Lt=Lgqg+oLx), 0Zr<i—2,

and

(2% IL A —Lq()] < p(Ddy(), tZtp, i—1=r=n-—1

The following lemma will be used to prove Lemma 1.

LemMA 2. Suppose Q € C[t,, o) and
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29) |7 v106)ds < co.

Then the integral

(30) 3459 = [ PO 8, 3 Py Pa- QNS
converges absolutely for t=t,. Now define

G1) o) = | v 10e)ds

and

Jit, 105 Q) = poJi(1; Q) if i=1;

or

I, 105 Q) = poI,(t, 105 I+ Q) if i=2;
or

It to3 Q) = po(OIi—1(t, to5 Pyyees Piv2s Pi-tJi(-5 Q) if 3SiZn
Then
(2 LIt 1050 = [ DAOTa st 55 Bros s Pa-)QSs,
i—-1Zrn-1

(where the integrals converge absolutely);
(33) Li_2J{t, to; Q) = Ii(t, to; pi— 1 J(-5 Q) if i22;

(34) Lr"i(t’ tO; Q) = Ii—r—l(t9 tO; Dr+15+++5 Pi-25 pi—-lji(’ > Q))’
0Sr<i-3 if i23;

and

(33%) LJ(, t; Q) = — Q).

Moreover,

(36) [LJit, to; QI < o(t)Lx(t), 0=r=i-2,
(37 LIt to; Q) =o(Lx(1)), O0=r=i-2,
and

(38) ILJ(t, ty; Ol S o(t)dy(t), i—1=<r=<n-1.

ProoF. The formal verification of (32)—«(35) is straightforward from (3).
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To establish the absolute convergence of the integrals in (30) and (32) and to
obtain the estimates (36) and (38), we employ an argument of Fink and Kusano
[4]. From Lemma 2.2 of Willett [13],

(39) In—r—l(t’ S5 Prt1sees pn—l) = (_1)"—’—1111—;-—1(5’ t; Pp—15-+5 pr+1)
and
I,,._,-(S, a3 Pn—15--+5 pi) =
323 In—i—v(ss t; Pn—15-++s pv+i)1v(t’ A Py+i—15-+» pl)

If s=t=a, then all the iterated integrals here are nonnegative; therefore, if i—1<
r<n—1 we can single out the term v=r—i+ 1 on the right side and conclude that

In—r—l(s’ t; Prn—15-++5 pr+1)Ir—i+1(ts a3 Drs--es pl)
é In-i(s, a, Pn—ls---a P.'), N g t 2 a.
This and (8), (12), and (39) imply that
(40) Pn(s)lln—r—l(t’ S5 Drs1seees pn—l)l é yi(s)dir(t)s
s2t=a, i—1Zrn—-1.

This and (29) imply the absolute convergence of the integrals in (30) and (32).
With (31) it also implies (38). With r=i—1, (40) implies that

[Jdt, to; Q) < a(f)

(see (30) and (31)); hence, (36) follows from (9), (33), and (34). Finally, (37)
follows from (2), (33), (34), and L’Hospital’s rule. This completes the proof
of Lemma 2.

ProoF oF LEmMMA 1. Let &,_,[t,, ) be the set of functions v such that
Lov,..., L,_,v are continuous on [ty, o), with the topology of uniform conver-
gence on finite intervals; i.e., if {y,} is a sequence of functions in &,_[t,, o),
we write v, —v if

lim, Ly(t) = Lu(t), t=t,, 0Zr<n-1,

and all limits are uniform on [t,, t,] for every t;=t,. Let V=V(t,, q, m, i)
be the colsed convex subset of &, _,[t,, o) consisting of functions v such that

(41) ILrv(t)—qu(t)l é Mdir(t)’ t _2. t09 0 é r é n—1
Our assumptions on f imply that the Nemitskii function Fv defined by
(Fo)(?) = f(t, Lou(1),..., Lp- ,u(1))
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is continuous on [t,, ), and that

42 I(Fo)Ol = W), t21,
if ve V. Now define the transformation 7 by

43) (Zv)(1) = q(t) + (1, to; Fv).

We will show that .7 satisfies the hypotheses of the Schauder-Tychonoff theorem

on V.
From (26) and (42),

[y 1Feis < o0, 1210,

for every v in V; hence, Lemma 2 with Q=Fv implies that Jve %,_,[t,, o),
and that

p(tO)eri(t)’ 0 é r é i— 2,

IL(7v)(®)— L,q(1)| = [ SOd(),  i—lSrsn1, 12 1.

Therefore, (25) and the definition of V (see (41) and recall that d;,=L,x;, 0<r<
i—1) imply that Zve V. Therefore, we conclude that

(44) TWV)c V.

To see that 7 is continuous on V, suppose that {v,} is a sequence in V such
that v,—»v. Then |Fv,— Fv|<2W (see (42)), so (25) and Lebesgue’s domainated
convergence theorem imply that

iy [ 345)I(F)(5) = (Fos)ds = 0.
Therefore, if ¢>0, there is a k, such that
|7 v OUFu6) - Foxo1ds| < & 1210, k2 ko
t

Now Lemma 2 with Q= Fv,— Fv implies that
IL(Z 0 )(1)—L(T0)0)| = edi(t), tZ1tp, OSr=n—1, k2k,.

This implies that 7 v,— Jv; i.e., that 7 is continuous on V.
From (44) and the definition of V it is clear that the family of vector functions

(45) {(Lov,..., L,_v)|ve V}

is equibounded on every [t,, T] with T>1t,; moreover, since (35) (with Q=Fv)
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and (43) imply that
(46) L(Jv) = — Fu,

(42) also implies that the family (45) is equicontinuous on [t,, T] for every T =t,,.
Hence (V) has compact closure, by the Arzela-Ascoli theorem.

Now the Schauder-Tychonoff theorem implies that there is a function 4 in
V such that s 4=#. Letting v=1 in (46) shows that I satisfies (4) on [¢,, o)
(recall (42)). Moreover, since @i =7 #i, (43) (with v=1) and Lemma 2 (with Q=
F1) imply that @ satisfies (27) and (28). This completes the proof of Lemma 1.

4. Specific results

Our first two theorems require the following assumption.

AssumpTION A. The function f: [a, 00) x R"— R, is continuous and satisfies
the inequality

(47) If(t’ uO"'" un—l)l § F(t, |u0|a~-'a ‘un—l')9

where F(t, v, ..., U,—) is continuous and nonnegative for t2a,v,20(0=r=<n-1),
and nondecreasing with respect to each v,. Also,

r YOW(t; Ddt < o
for some A>0, where
(48)  W(t; ) = F(t, ALyx,(1),..., ALp— 1X,0(1), Adi(1),..., Ad; ,,— 1(1)).
Note: If m=n, then (48) becomes
W(t; ) = F(t, ALyx,(2),..., AL, 1%,(2)).

It is convenient to define
(49) oto; D) = [ oW (s 2yt
to

The following theorem extends a result of Fink and Kusano [4], applicable
to the case where m=i.

THEOREM 1. Suppose Assumption A holds and let q be as in (20), with
|bl <A and (if i<m) b,,..., b,,_, arbitrary. Then (4) has a solution fi on [t,, o0)
such that

olLx), 0Zr<i—1,

Lt—-Lg=
od,), isr=sn-—1,
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provided that t, is sufficiently large.

Proor. Choose a>1 such that «|b,|<A. Then choose t,>b (cf. (15))
such that

Iqu(t)l é a!bmlerm(t)9 t2 to, 0 é r é m — 1,

and
a(to; A) £ A — alb,l.
Since
(50) di(0) £ d,(t) = Lx,(1), t2b, 0=r=m-—1,

we can now infer the conclusion from Lemma 1, with W(f)=W(¢; 1) and M=
A—alb,,|.

Theorem 1 is “local near oo’’, in that @ is guaranteed to exist only for ¢
sufficiently large. The following theorems are global, in that the desired solution
is guaranteed to exist on a given interval [#,, c0).

THEOREM 2. In addition to Assumption A, suppose that
(51) Alo(te; DSy <1
for some t,=b and A>0. Let
(52) P =Xn+ X7 bjx;,
where (if i<m) b,,..., b,,_ are arbitrary constants. Define

L,p(1)]
5 - ALp(O1
( ) u ,Sgg ogrzl§arf—l erm(t)

Now suppose that c is any constant such that
(54) 0<le < lﬂuﬂi

Then (4) has a solution fi which is defined on [t,, o) and has the asymptotic
behavior

O(eri)9 0 é r é i— 1’
(55) Lt —cLp=
| o(dy) isrsn-1

PrOOF. If c satisfies (54), then we can write

A
(56) e| = m,
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where

0

-2 >
57 g 27

We now apply Lemma 1 with g=cp, W(t)=W(¢t; 1), and M =0|c|: if
lur_CLrp(t)l § elcldir(t)7 t g tO’ 0 é r é n— 11
then (50) and (53) imply that
Iurl é (#+0)|0|erm(t)a t g lo, 0 é r .S_ m — 1:

and
u,| < Olcldi (1) < (u+0)lcldi(t), t21, mSr=n-—1;
hence (56) implies that
1f(t, tgsees g DI S W(t; ), t2t,.

This verifies (23) on the set S as in (24), with M =0|c| and g=cp. Now (51),
(56), and (57) imply (25) with M =0|c|, and Lemma 1 implies the conclusion.

COROLLARY 1. Suppose Assumption A holds, let p be as in (52), and let ¢
be a given nonzero constant. Then (4) has a solution which is defined on [t,, )
and satisfies (55), provided that

(58) () limsup A-1o(ty; ) =9 < 1
A=
or
(i) |c| is sufficiently small and

(59) limsup A7 1a(ty; A) =9 < 1.
A0+

PrOOF. Suppose that ) <y<1. If assumption (i) holds, choose A sufficiently
large so that (51) and (54) (with given ¢) both hold; then Theorem 2 implies the
conclusion. If (59) holds, choose A sufficiently small so that (51) holds. Then
(54) holds for sufficiently small |c| (#0), and again the conclusion follows.

Corollary 1 has nontrivial applications to equations of the form
(60) Lu+ Y128 P,_(t)Lu + g(t, Lou,..., L,_qu) = 0,
as follows.

COROLLARY 2. Suppose that P,,..., P,€ C[a, ) and

f“’ YOy DILxn(dt < 0, OSr<m—1,
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[“rorpwidwdt <o, msrsn-1
Let g: [a, o0) x R"— R be continuous and satisfy the inequality

|g(ta Ugs---s un—l)l é G(ts |u0|a-~-9 |un—1|),

where G(t, v, ..., ,_ ) is continuous and nonnegative for t2a, v,20(0<r<n-1),
and nondecreasing with respect to each v,, and

(61) r’ Y{OU(E: )t < oo
for all A, with
62)  U(t; ) = Gt, ALoxo(t)y..er AL 1Xn(), Adin(D)....., A 1(1)).

Suppose also that ty=b and
(63) .[, Vi) (X750 1Py (OILox (1) + 270 | P (Dl (D)]dE < 1,

and let p be as in (52). Then (60) has a solution i which is defined on [t,, )
and satisfies (55) if either of the following hypotheses is satisfied:

(Hy):
(64) lim,_, , A71G(t, Avg,..., Av,—1) =0

for every (t, vg,..., U,— ) in [ty, 0)x R%.
(Hy): |c| is sufficiently small and

(65) lim,_ o, A71G(t, Avg,..., Av,_y) =0
for every (t, vg,..., U,— 1) in [ty, 00) X R%.
Proor. Equation (60) is of the form (4), with

f(t, ugye.y ty_q) = 2028 Py (Du, + g(t, ugy...r Uy_ 1),
which satisfies (47) with

F(t, vgyeery Uy_y) = P28 [Py (D0, + G(t, Vgs...r Vy—1q).
Therefore, from (48), (49), and (62),

olto, ) = 2(t0) + | vV s,

where I(t,) is the integral in (63). From (61), (62), (64) and Lebesgue’s dominated
convergence theorem,
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lim,, , A-! fw Y{OU(E; N)dt = 0
to

if (H,) holds, and this together with (63) implies (58). Similarly, (65) implies
(59) if (H,) holds. Therefore, Corollary 1 implies the stated conclusion.

Note: It is sufficient that (61) holds for A sufficiently small if (H,) holds.
The prototype form for g in (60) is

g(t, Ugs--es un—l) = 25';& Q,,_,(t)lu,|7' sgnu,,

where Q,,..., Q,_, € C[a, o) and

75010001 L xuymdt < 0, 05 r<m—1,
and
" v010,- 01 @ ymdi < 0, msrn—1.

Then (H,) holds if 0<y,<1 (0<r<n—1), while (H,) holds if y,>1 (0<r<n—1).

THEOREM 3. Suppose that the function f: [a, ©0) x R*— R is continuous and
satisfies the inequality

If(t9 Ugs---» un—l)l é F(t’ Uops lull’---; !un—l‘)a

where F(t, vy,..., V,_,) is continuous and nonnegative for t=a, — o0 <vy<o00,
0<v,<0 (1=r<n—1), and nondecreasing with respect to each v,, and

(66) lim,, ., _ , F(t, vgy..., V,—1) =0
for each (t, vy,..., v,_,) such that t=a, v,=20 (1=r=<n—1). Let
p(t, 4, &)
= F(t, a4+ ALoX,(t), AL;X,,(1),..., ALy 1X,,(1), Adip(D),..., Ad; ,— 4(1))
ifm>1, or |
p(t, A, &) = F(t, o+ A, Ady((2),..., Ady ,—1(2))

if m=1, and suppose that
(67) r’ Y{Op(t, 4, 0)dt < o0

for some A>0. Let p and pu be as in (52) and (53), respectively, and suppose
that 0<cu<A. Let ty=b be given. Then there is an ay <0 such that if a<a,,
then (4) has a solution @ which is defined on [t,, c0) and exhibits the asymptotic



Perturbed general disconjugate equations 427
behavior
Lot — a — cLop = o(Loxy),
O(eri)’ 1 é r é i— la

L& —cL,p=
od,), isr=n-1

PrOOF. Choose >0 so that c(u+60)<A. Then choose a, so that

|7 vt 2,00t < 0, @ < 0,
to

(this is possible because of (66), (67), and Lebesgue’s dominated convergence
theorem). Now apply Lemma 1 with M =c0, g=ax,+cp, and W(t)=p(t, 1, o).

Theorem 3 applies, for example, to equations of the form
(68) Lu + etlovg(t, L,u,..., L,_;u) =0,
as follows.

COROLLARY 3. Suppose that the function g:[a, 0)x R""'-R is con-
tinuous and satisfies the inequality

lg(t> Ugseens un—l)' é G(ts |ulls“'9 Iun—ll)a

where G(t, vy,..., v,_,) is continuous and nonnegative for t=2a,v,20(1<r<n-1),
and nondecreasing with respect to each v,. Suppose also that h is continuous
and nondecreasing on (— oo, ), and that

lim, ., _, h(ug) = — 0.
Finally, suppose that, for some A>0,
on Vi(t)erALoxmNG(t, ALy X(t),.. s ALp— 1Xp(1); Adip(2),..., Ad;,— 1(£))dt < 00
if m>1, or
r YOG, Adyy(0),..., Ady 1 (D)dt < 0

if m=1. Then the conclusions of Theorem 3 apply to (68).

5. Application to semilinear elliptic equations

Here we consider the semilinear elliptic equation of order 2n,

(69) A" + ¢(Ix|, v, 4v,..., A" ) = 0, xe€Q,,
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where x € R?, 4 is the two-dimensional Laplacian, 4’ is the i-th iteration of 4,
n=1, and

Q, = {xeR?||x|>p}, p>0.

We will use the results of Section 4 to derive conditions which imply that (69)
has radially symmetric solutions on €, which have certain prescribed types of
asymptotic behavior as |x|— oo.

It is easy to see that v(x)=u(|x]) is a radially symmetric solution of (69) on
Q, if and only if u(t) is a solution of the ordinary differential equation

(70) L,u + ¢(t, Lou, Lou,...,L,,_,u) =0, t>p,

where

k
Lu=(d 4 ko1

dt

thus

L,=-14_ 1 . 1.d -

" Dan dt Pau—y p1 dt po

with

po(t) =1,

p1(H) = p3() == pyu_1() = 171,

Pa(t) = pa(t) =--= pr(t) = 1.

Straightforward computation based on (3), (7), (8) (with n replaced by 2n) and
(13) yields

y2,(1) = IZE:)::i:(l,El_t)of]lz)] , 1£j=sn

1272+l og ¢t-[1+0(1)]

’

ij—l(t)= [2,,__,'("_]-)!]2 ’ 1 §]—S—n’
126Gk Jog t-[1+0(1) .
dzjll) = [21'"“1(]'g—-k—1)!]2 ] , 05k=sj—1,
—7 k=i(k —7)12
dyau(t) = 2EZIH DI =D o)), jsksn—1,
12Uk DT 4 o(1 ,
de-—l,Zk(t) = [2j_k_l(j|:-k—(l))%2 ’ 0 é k é.] - 1’

2(k—j+ D[2* I (k—))']?
126=i+D Jog 1

dyj-1,2(8) = [1+o(1)], jsk=n-1

Now let j be an integer, 1 <j<n, and let ¢ be a given nonzero constant. We
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will give sufficient conditions for (69) to have a radially symmetric solution # on
Q, such that either

D(x)

(71) lim, T2 Tog x| =c
or

. D(x
(72) lim) o W(“)_f =c.

AssumpTION B. The function ¢: (0, 00) x R"— R is continuous and satisfies
the inequality

Id)(t’ uOs":; un—l)l é ¢(t’ |u0|7-'~’ |un—1’)’

where &(t, £, ..., &, ) is continuous and nonnegative for t>0,£,20(0<r<n-1),
and nondecreasing with respect to each ¢&,.

THEOREM 4. Suppose that Assumption B holds and there is a constant A>0
such that

(73) JW 12n=2iv1g(t, Ar2U-D logt, At2U-2 logt,..., Alogt,
A2 74, AT 2(mi))dt < oo

Then, if |c|(>0) is sufficiently small, there is a p sufficiently large such that (69)
has a solution » on Q, which satisfies (71).

The proof of this theorem is obtained by applying Theorem 1 (with m=i=2j)
to (70). We leave the details to the reader. Similar reasoning (with m=i=
2j—1) yields the next theorem.

THEOREM 5. Suppose that Assumption B holds and there is a constant A>0
such that
(74) r 12n-25+1(log 1)1, A2U-D, 226D, ). i(* log )",
Mttlogt)~1,..., A(t2(*= log 1)~ Y)dt < oo.

Then, if |c| (>0) is sufficiently small, there is a p sufficiently large such that
(69) has a solution ® on Q, which satisfies (72).

The last two theorems are local near co, in that they guarantee the existence
of ¥ only for large |x|. In the following theorems, it is to be understood that p
is a given positive number, so the results are global. Theorems 6 and 7 are
obtained by applying Corollary 2 (and Remark 1) to (70).

THEOREM 6. In addition to Assumption B, suppose that
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lim;,_, o A= ®(t, A&o,..., AEy_y) = O

for every (t, &,..., &, 1) such that t>0 and £,20 (0Sr=n—1). Let c#0 be an
arbitrarily given constant. Suppose that (73) [(74)] holds for some A>0.
Then (69) has a solution  on Q, which satisfies (71) [(72)].

THEOREM 7. In addition to Assumption B, suppose that
lim,_ o, A71O(t, 2&y,..., A6,_) =0

for every (t, &q,..., .~ 1) such that t>0 and £,20 (0Sr<n-—1). Suppose that
(73) [(74)] holds for some A>0. Then (69) has a solution ® on Q, which satisfies
(71) [(72)], provided that |c| (>0) is sufficiently small.

We close by applying Corollary 3 to the equation
(75) A" + Y(|x|)et® =0, xeQ,.
We remind the reader that p is a given positive number.

THEOREM 8. Suppose that Y e C(0, ), h is nondecreasing on (— o0, 00),
and lim,_, __, h(v)= — o0.

(i) If
[ erraog ppoiar < o0,
then there is a constant B, such that if f<p,, then (75) has a solution d on Q,

such that lim,, , ,, B(x)=p.
(ii) If2<j<nand

on 12n=2i+1(log f) [Y(1)| [exp h(At2i—2)]dt < oo

for some 2>0, then (75) has a solution b on Q, which satisfies (72), provided
that c is a sufficiently small positive constant.
(iii) If1<j<nand

|7 ey ol texp hai=2 tog e < oo

for some A>0, then (75) has a solution » on Q, which satisfies (71), provided
that c is a sufficiently small positive constant.
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