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1. Introduction

Let Ln be the general disconjugate operator

(I) L = — __ - __ l- __ - _____ - __ l- __ - __ — (n>2)( ) n Pn dt Pn_, dt dt Pί dt Po

 (n = 2)>

with Pi>0 and ^eC^α, oo), O^ϊ'^w. Let (1) be in canonical form [10] at oo i.e.,

(2)

With the operator (1) we associate the quasi-derivatives L0w,..., Ln.^u defined by

(3) L0u=^-; Lru=-^(Lr.ίuY9 1 ̂  r ̂  n - 1.
PO Pr

We give conditions which imply that the equation

(4) Lnu + /(ί,LoM,.. .,Ln_ιu) = 0

has solutions which behave as t-+ oo like solutions of the unperturbed equation

(5) Lnx = 0.

Several authors [e.g. 2, 3, 5, 6, 9] have studied perturbed disconjugate equa-
tions of the simpler form

(6) Lπu+/(ί,L0u) = 0.

The more general equation (4), in which the perturbing terms depend also on
LiW,..., L W _!M have been studied in [4], [11] and [12]. However, to the authors'
knowledge, all the results previously obtained for nonlinear equations of the
forms (4) or (6) are "local" near oo, in that the desired solutions are shown to
exist only for t sufficiently large. Although one of our results given below is a

local theorem of this kind which extends a result of Fink and Kusano [4], our
main thrust here is in the direction of global results, in which the desired solution
is shown to exist on a given interval. This continues a theme — global existence
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of solutions of nonlinear equations with specified asymptotic properties — which
has recently been developed by the authors in [7] and [8].

2. Formulation of the problem

Following Willett [13], we define the iterated integrals J0 = 1,

//ί, s; <?,.,..., tfO = ^/^)/y_ι(/l, s; qj-l9..., q^dλ, s, t ^ a, j ^ 1,

where qi9 q2, » are locally integrable on [α, oo). It is easily verified that the
functions

(7) xf(0 = PoW'i-iO, a; pl9...9 p^)9 l^i^n,

form a fundamental system for (5) on [α, oo), and that the functions

(8) ytf) = pn(t)In-i(t, a; pn-i9..., ft), 1 ̂  i ^ n,

are similarly related to the formal adjoint equation

- _ _ _ _ _ _ _ _ .
Po dt pγ pn^ dt pn

From (3) and (7),

(9) LΛ(0 = /ί.r_1(ί, a\ pr+1,..., ft-O, 0 ̂  r ̂  / - 1,

and

LrXi = 0, ί^r^n.

Because of (2) and Lemma 2 of [11],

(10) Km L'X^ = ex), r < i < 7 ^ π ,
ί^GO LrXi(t)

and

(11) l im_ZigL=cx), l ^ i < j < n ,
f->°° J'jvO

and the ratios in (10) and (11) are increasing on [a, oo). For reasons which will
become clear below, it is also convenient to define

„_ . . .
(12) ί/ίr(ί) = 1 ̂  i ^ n.

l// r_i- iO, α; pr,..., /?i), i ^ r ^ n - 1,

It is important to notice that
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(13) dir = L,xi9 0 ̂  r ̂  i - 1, 1 ̂  i ̂  n

(cf. (9)), and that (again because of (2))

(14) lim ^"ffi =00, 0 ̂  r ̂  Λ - 1, 1 ̂  i < m ^ n.
r-*oo α;rιr;

Because of this, there is a & > a such that

(15) dir(t) £ dmr(t\ 0 £ r £ n - 1, 1 ̂  z < m ̂  n, t ̂  b.

Equation (4) is related to (5) in the same way that the equation

(16) tt<">+/(f, M,...,ι/("-1)) = 0

is related to

(17) *<"> = 0,

since (4) and (5) reduce to (16) and (17) if

(18) J > i = - = P n = l .

In order to gain insight into the results given below, the reader may wish to
interpret them in the case where (18) applies. We believe that our global existence
theorems are new even in this case (Beesack [1] has obtained different global
existence results for (16), by methods based on a generalization of Bihari's
inequality). Note that

(19) Ik(t,a;Piί,...9pik) = -^

if (18) holds.
Throughout this paper i and m are integers, with 1 g i ̂  m ̂  n, and

(20) q = Σ?=i bjXj

(see (7)) is a given solution of (5). We give various conditions which imply
that (4) has a solution ύ such that

(21) Lrύ = Lrq + o(dir\ O^r^n-ΐ

(where we use "0" in the standard manner to indicate behavior as f-κ>o). In

the simpler case (18), (19) implies that

(22) g(0 - ΣT-i bj (t-'V~ΐ ,

and (21) becomes
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β(Ό(ί) = qW(i) + o(ti~r~ί)9 0 ̂  r ^ n - 1;

thus the constants ftίv.., fem in (22) are all significant in describing the behavior of
#(r> (Orgr gw — 1) as ί->oo. Because of (10), (13) and (14), a similar comment
applies to the general case; i.e., £>/,..., bm are all significant in describing the
behavior of Lrύ (O^r^m —1) as f-»oo.

3. A fundamental lemma

All our results in Section 4 can be obtained by direct application of the
Schauder-Tychonoff fixed theorem. However, to avoid repetition, we will use
this theorem just once to prove the following fundamental lemma. Since the
hypotheses of this lemma are easy to check in specific situations, we believe that it
should be widely useful as a substitute for the direct application of the Schauder-
Tychonoff theorem to problems of this kind.

LEMMA 1. Let q be the given solution (20) of (5). Suppose that t0^b (cf.
(15)) and there is a constant M>0 such that the function /(ί, w0,..., w π _i) is
continuous and satisfies the inequality

(23) |/(ί, MO,-, "„-!>! £

on the set

(24) S = {(ί,u0,...,!!„_!) I \ur-L,q(t)\ί

where W is continuous on [fr, oo) and

(25) Γ
J tQ

with yt as in (8). Let

(26)

Then (4) has a solution ύ on [ί0, oo) such that

(27) Lrύ = Lrq + o(Lrxt), 0 ̂  r ̂  i - 2,

and

(28) \Lrύ(t)-L,q(i)\ Z p(i)dlf(f), t^t0, i-l£r

The following lemma will be used to prove Lemma L

LEMMA 2. Suppose Q ε C[ί0, oo) and
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(29) f"ΛWIβ(s)|Λ<oo.
J to

Then the integral

(30) Jfa 0 = J" PnWn-i(t, S Pi,-, A- l)β(s>fc

converges absolutely for ί^<0. Now define

(31) <τ(f) =

and

Jfc, t0; Q) = poO)Λ(ί; β)
or

or

T/ien

(32) LrJ((ί, ί0; Q) =

i- 1 ̂  r ̂  n - 1

(where the integrals converge absolutely);

(33) L,_2jχί, ί0;e) = Λ(f, ίo pί-Λ Q)) if i^i;

(34) MXί, ί0; β) = /i-,-!^, ί0; Λ+ι,...,Λ-a, Pi-iU β)),

O ^ r ^ i -3 // i ^ 3 ;

(35) LnJ(ί;ί0;β)=-β(ί).

(36) (L ί̂, ί0; β)| g σ((0)LΛ<ί), 0 g r g i - 2,

(37) LΛ<ί, Ό; fi) = o(Mi(ί)), 0 g r g / - 2,

and

(38) IV*', Ό; β)l ^ σ(ί)̂ (0, i - l ^ r ^ i f - l .

PROOF. The formal verification of (32)-(35) is straightforward from (3).
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To establish the absolute convergence of the integrals in (30) and (32) and to
obtain the estimates (36) and (38), we employ an argument of Fink and Kusano
[4]. From Lemma 2.2 of Willett [13],

(39) /,-,-Λf, s; Λ+1,.. , ft-!) = (-l)"-'-1

and

If s^ί^α, then all the iterated integrals here are nonnegative; therefore, if i — 1^
r ̂  n — 1 we can single out the term v = r — ϊ + 1 on the right side and conclude that

^ In-t(s, α; /?„_!,..., Pf), s ̂  ί ̂  α.

This and (8), (12), and (39) imply that

(40) pn(s)\In_r_L(t, s; pr+1,..., A. 01 ^ ̂ K>(05

s ^ ί ^ α , i - 1 ̂  r g n - 1.

This and (29) imply the absolute convergence of the integrals in (30) and (32).
With (31) it also implies (38). With r= ϊ- 1, (40) implies that

(see (30) and (31)); hence, (36) follows from (9), (33), and (34). Finally, (37)

follows from (2), (33), (34), and LΉospitaΓs rule. This completes the proof

of Lemma 2.

PROOF OF LEMMA 1. Let «^,-ι[ί0j °°) be the set of functions v such that
L0t;,..., L w _ ι U are continuous on [ί0, oo), with the topology of uniform conver-

gence on finite intervals; i.e., if {vk} is a sequence of functions in «^π-ι[ί0» °°)»
we write vk->v if

lim^ LΛ(0 = Lrv(t\ t^t09 Q^r^n-l9

and all limits are uniform on [ί0, ίj for every t^tQ. Let F=F(ί0, q, m, i)

be the colsed convex subset of JδfΛ_ι[ί0> °°) consisting of functions v such that

(41) \Lrv(t)-L,q(t)\^Mdir(t\ t ̂  ί0, 0 g r g n - 1.

Our assumptions on /imply that the Nemitskii function Ft; defined by
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is continuous on [f0, oo), and that

(42) \(Fυm£W(t), t*t09

if v e V. Now define the transformation « "̂ by

(43) (

We will show that &~ satisfies the hypotheses of the Schauder-Tychonoίf theorem

on F.
From (26) and (42),

™yi(s)\(Fv)(s)\ds ^ p(t), t*t09

for every v in F; hence, Lemma 2 with Q = Fv implies that ^"t?eJδPπ_1[ί0, oo),

and that

{ p(f0)L,Xj(0, 0 ̂  r ̂  ϊ - 2,

XOdiriO, i - l ^ r ^ n - 1 , ί ~ ί ° '

Therefore, (25) and the definition of F(see (41) and recall that rfir = Lrxi, O^r^

i — 1) imply that &~υ e V. Therefore, we conclude that

(44) f(V) c V.

To see that & is continuous on F, suppose that {t J is a sequence in F such

that υk-+v. Then |FϋJk-Ft?|^2W (see (42)), so (25) and Lebesgue's domainated

convergence theorem imply that

lim^ Γ yi(s)\(Fvk)(s)-(Fv)(s)\ds = 0.
J to

Therefore, if ε>0, there is a k0 such that

ε, t^t09 k^k0.)(s) - (Fv)(s) ]ds

Now Lemma 2 with Q = Fvk — Fv implies that

\Lr(<7-vk}(i)-Lr(<Tv)(i)\ ^ εdir(t), t ̂  ί0, 0 ̂  r ̂  n - 1, /c ^ fc0 .

This implies that &~υk-+3~v\ i.e., that "̂ is continuous on K

From (44) and the definition of F, it is clear that the family of vector functions

(45)

is equibounded on every [ί0, T] with Γ^ί0; moreover, since (35) (with Q = Fv)
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and (43) imply that

(46) Ln(Fυ) = - Fv,

(42) also implies that the family (45) is equicontinuous on [ί0, T] for every T^t0.
Hence &~(V) has compact closure, by the Arzela-Ascoli theorem.

Now the Schauder-Tychonoff theorem implies that there is a function ύ in
Fsuch that ^ύ = ύ. Letting v = ύ in (46) shows that ύ satisfies (4) on [ί0, oo)
(recall (42)). Moreover, since ύ = J~ύ, (43) (with v = ύ) and Lemma 2 (with Q =
Fύ) imply that ύ satisfies (27) and (28). This completes the proof of Lemma 1.

4. Specific results

Our first two theorems require the following assumption.

ASSUMPTION A. The function/: [0, oo) x /?"->/?, is continuous and satisfies
the inequality

(47) |/(ί, w0,..., un^)\ ^ F(f, K|,..., lii^l),

where F(ί, u0, . . . , vn _ t) is continuous and nonnegative for t ̂  α, vr ̂  0 (0 ̂  r ̂  n - 1),
and nondecreasing with respect to each vr. Also,

for some A>0, where

(48) W(t; λ) = F(t, λL0xm(t),..., λLm-lXm(t), λdίm(t),..., Ad,^-ι(0).

Note : If m — n, then (48) becomes

W(t; λ) = F(t, λL0xn(t),..., λLn_Λ(t)).

It is convenient to define

(49) σ(t0; λ) = Γ y,{tW(f, Wt.
J to

The following theorem extends a result of Fink and Kusano [4], applicable
to the case where m = i.

THEOREM 1. Suppose Assumption A holds and let q be as in (20), wi'f/i
\bm\<λ and(ifi<m) bi,...,bm-i arbitrary. Then (4) has a solution ύ on [ί0, oo)
such that

o(LΛ), 0 ̂  r ̂  i - 1,
Lrύ - Lrq = \

o(dir\ i g r <Ξ n - 1,
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provided that t0 is sufficiently large.

PROOF. Choose α>l such that α|6J<λ. Then choose t0>b (cf. (15))

such that

\Lrq(t)\ < α|bJLrxm(0, t ̂  ί0, 0 £ r £ m - 1,

and

σ(t0;λ)^λ-x\bm\.

Since

(50) dir(t) ^ dmr(t) = LΓxm(ί), t^b, O ^ r ^ m - 1 ,

we can now infer the conclusion from Lemma 1, with W(t)=W(t\ λ) and M =

A-α|6J.

Theorem 1 is "local near oo", in that ύ is guaranteed to exist only for t

sufficiently large. The following theorems are global, in that the desired solution
is guaranteed to exist on a given interval [ί0, oo).

THEOREM 2. In addition to Assumption A, suppose that

(51) A-χί 0 U)^y<l

for some t0^b and λ>0. Let

(52) P = xm+Σf^bjXj,

where (if i<m) fe;,..., &m-ι 0re arbitrary constants. Define

(53) μ = sup max

Now suppose that c is any constant such that

(54) 0 < |c| ^ A(1~

Then (4) Λ0s α solution ύ which is defined on [ί0, oo) and has the asymptotic
behavior

ί 0(LΛ), 0 ̂  r ̂  i - 1,
(55) L,U - cL,p ={

[ o(dir\ i^r^n-L

(56)

PROOF. If c satisfies (54), then we can write
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where

We now apply Lemma 1 with q = cp, W(t)=W(t\ λ), and M = θ\c\: if

\ur-cLrp(t)\ ^ θ\c\dM, t^t09 0 ̂  r ̂  n - 1,

then (50) and (53) imply that

and

|ιιr| g θ\c\dM < (μ + 0) \c\dM, t^tQ9 m

hence (56) implies that

ί, MO,... ,11,- 01 £W(t; λ\ t^

This verifies (23) on the set S as in (24), with M = θ\c\ and g = cp. Now (51),
(56), and (57) imply (25) with M = θ|c|, and Lemma 1 implies the conclusion.

COROLLARY 1. Suppose Assumption A holds, let p be as in (52), and let c

be a given nonzero constant. Then (4) has a solution which is defined on [ί0, oo)
and satisfies (55), provided that

(58) (i) lim sup λ~lσ(t0 λ) = $ < 1
λ->00

or

(ii) |c| is sufficiently small and

(59) lim sup A~V(i0 λ) = ? < 1.

PROOF. Suppose that $ < γ < 1. If assumption (i) holds, choose λ sufficiently

large so that (51) and (54) (with given c) both hold; then Theorem 2 implies the

conclusion. If (59) holds, choose λ sufficiently small so that (51) holds. Then
(54) holds for sufficiently small |c| (τ^0), and again the conclusion follows.

Corollary 1 has nontrivial applications to equations of the form

(60) Lnu 4- ΣP=3 Pn-MLru + 0(f, LOM,..., Lπ_ l W) = 0,

as follows.

COROLLARY 2. Suppose that Pl5..., Pn e C[α, oo) and

n_r(t)\L,xm(t)dt < αo, 0 ̂  r ^ m - 1,r
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J°° yM \Pn-M\dir(t)dt < a), m ̂  r ̂  n - 1.

Let g: [α, oo)x /?"->/? be continuous and satisfy the inequality

\g(t, ι/o,..., W Λ -I) | ^ G(r, |u0|,..., Iw^J),

where G(t, u0,..., vn_ ±) is continuous and nonnegaiive for t^a, y r^0(0^rgn — 1),
nondecreasing with respect to each vr, and

(61)

/or α / / λ, with

(62) l/(ί; A) = G(

Suppose also that t0^b and

(63) Γ yf(0 [Σ^o1 \Pn-M\L,xm(t)+ Σ-ri IP.-XOI^
J ίo

αwί/ /^ί /? be as in (52). TTzew (60) has a solution ύ which is defined on [ί0, oo)
and satisfies (55) if either of the following hypotheses is satisfied:

(HO:

(64) lim^ λ~lG(t, λvθ9...9 λvn-j = 0

for every (f, ι?0,..., ̂ .^ in [ί0, oo)x Rl.
(H2): |c| is sufficiently small and

(65) limΛ_o+ λ- ί̂, λι;0,..., ^-O = 0

/or ^^r.y (ί, ι;0,..., ̂ .^ in [ί0, oo)x /?ϊ.

PROOF. Equation (60) is of the form (4), with

/(ί, M O , . . . , !!„_!) = Σ?=0 Pn-r(t)Ur + ^(f, M 0 , . . . , t^-i),

which satisfies (47) with

F(ί, ι;0,..., ̂ .0 = Zr^o1 l^-r(0i^ + G(ί, ̂ -, »»-ι)

Therefore, from (48), (49), and (62),

σ(ί0, λ) = λl(t0) + Γyi(t)U(t; λ)Λ,
J ίo

where 7(ί0) is the integral in (63). From (61), (62), (64) and Lebesgue's dominated

convergence theorem,
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if (Hλ) holds, and this together with (63) implies (58). Similarly, (65) implies
(59) if (H2) holds. Therefore, Corollary 1 implies the stated conclusion.

Note: It is sufficient that (61) holds for λ sufficiently small if (H2) holds.

The prototype form for g in (60) is

g(t, MO,-, MΠ-I) = Σί^o1 e.-r(OI«rl7 rsgnιι r,

where β0,..., Qn^i e C[α, oo) and

J00 yM \Qn-r(t)\ (L,xm(t))vdt < oo, 0 £ r £ m - 1,

and

J" Λ(0 \QH-M\ (dMΫ'dt < a), m ^ r ̂  π - 1.

Then (Hj) holds if (Ry r<l (O^r^n-1), while (H2) holds if y r>l (O^r^n-1).

THEOREM 3. Suppose that the function f : [α, oo) x /?"->/? is continuous and
satisfies the inequality

|/(ί, MO,..., w^i)! ^ F(ί, MO, Kl,..., IM^J),

w/ierβ F(ί, ι?o, ., ί^n-i) is continuous and nonnegative for t^a, — oo<t;0<oo,
0^ι;Γ<oo (l^r^n — 1), αnd nondecreasing with respect to each vr, and

(66) lim,^-^ F(ί, ι;0,..., ̂ .J = 0

for each (ί, i;1?..., ί^π-ι) such that t^a, vr^0 (l^r^n — 1). Let

p(ί, λ, α)

= F(ί, α + AL0xm(0, ALj

ι/m>l, or

p(ί, A, α) = F(ί,

ι/m = l, flMί/ suppose that

(67)

/or some A>0. Lei p flnί/ μ σe αs in (52) αnί/ (53), respectively, and suppose
that Q<cμ<λ. Let t0^b be given. Then there is an α0^0 such that i/α^α0,
then (4) has a solution ύ which is defined on [ί0, oo) and exhibits the asymptotic
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behavior

L0ύ - α - cL0p =

), 1 ̂  r ̂  i - 1,
Lrύ - cLrp =

[ o(dir\ i^r^n-L

PROOF. Choose 0>0 so that c(μ + θ)<λ. Then choose α0 so that

t, λ, <*Q)dt ^cθ, α ̂  α0 ,

(this is possible because of (66), (67), and Lebesgue's dominated convergence
theorem). Now apply Lemma 1 with M = cθ, q = axί+cp, and W(i) = ρ(t, λ, α0).

Theorem 3 applies, for example, to equations of the form

(68) Lnu + e»^g(t, LlW,..., Ln.,u) = 0,

as follows.

COROLLARY 3. Suppose that the function g: [α, oo)x Rn~l-+R is con-
tinuous and satisfies the inequality

where G(ί, vί9...9 vn_^) is continuous andnonnegativefor t^a, t;Γ^0(lgr^n — 1),
and nondecreasing with respect to each vr. Suppose also that h is continuous
and nondecreasing on (—00, oo), and that

= - oo.

Finally, suppose that, for some λ>0,

λLm.,xm(t\ λdίm(t\..., λd^.^dt < oo

ϊ/m>l, or

§™yί(t)G(t, ^ιι(0,.. , M^Vftdt < oo

if m = 1. Then the conclusions of Theorem 3 apply to (68).

5. Application to semilinear elliptic equations

Here we consider the semilinear elliptic equation of order 2n,

(69) Anv + φ(\x\, v, Av,..., A»-IV) = 0, xeΩp9
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where xe R2, A is the two-dimensional Laplacian, Δi is the ί-th iteration of A,

n^l, and

Ωp = {xeR2\\x\>p}, p>0.

We will use the results of Section 4 to derive conditions which imply that (69)
has radially symmetric solutions on Ωp which have certain prescribed types of
asymptotic behavior as |x|->oo.

It is easy to see that v(x) = u(\x\) is a radially symmetric solution of (69) on
Ωp if and only if u(t) is a solution of the ordinary differential equation

(70) L2nu + φ(t, LOM, L2w,..., L2 n_2u) = 0, t > p,

where

2k ~\ ~dΓ ~dt) ' ~ ' ''"' n'

thus

L ^_ι d L_..._LA_L.
2n P2n dt p2n-ι Pi dt pQ

with

=-= p2B-ι(0 = r1,

Straightforward computation based on (3), (7), (8) (with n replaced by 2n) and
(13) yields

. . . oats;- i.

Now let 7 be an integer, 1 ̂ j^n9 and let c be a given nonzero constant. We
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will give sufficient conditions for (69) to have a radially symmetric solution v on
Ωp such that either

or

(72) Hmw

ASSUMPTION B. The function φ: (0, oo) x /?"->/? is continuous and satisfies
the inequality

\φ(t, MO,..., «„_!>! ^ Φ(ί, |ιι0|,.. , k,-ιl),

where Φ(t, ξ0, . . . , ξn _ J is continuous and nonnegative for t > 0, £r ̂  0 (0 g r ̂  n — 1),
and nondecreasing with respect to each ξr.

THEOREM 4. Suppose that Assumption B /ι0/ds αwd f/iere is a constant λ>0
such that

J«
ogf,..., A l o g f ,

Λr2, Ar4,..., Ar2<"-^)di < oo.

TTien, z/|c|(>0) is sufficiently small, there is a p sufficiently large such that (69)
fcαs a solution v on Ωp which satisfies (71).

The proof of this theorem is obtained by applying Theorem 1 (with m — i — 2j)
to (70). We leave the details to the reader. Similar reasoning (with m = i =
2j — 1) yields the next theorem.

THEOREM 5. Suppose that Assumption B holds and there is a constant λ>0
such that

Joe

ί2»-2./+i(iog t)Φ(t, λtw-v, ;u2<''-2>,..., λ, λ(t2 log O"1,
^logί)'1)* < oo.

Then, if \c\ (>0) is sufficiently small, there is a p sufficiently large such that
(69) has a solution v on Ωp which satisfies (72).

The last two theorems are local near oo, in that they guarantee the existence
of v only for large |x|. In the following theorems, it is to be understood that p
is a given positive number, so the results are global. Theorems 6 and 7 are
obtained by applying Corollary 2 (and Remark 1) to (70).

THEOREM 6. In addition to Assumption B, suppose that
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for every (ί, f0,..., ξn_^ such that ί>0 and ξr^Q (O^r^n-1). Lei c^O fee an
arbitrarily given constant. Suppose that (73) [(74)] holds for some /L>0.
77ιen (69) has a solution ϋ on Ωp which satisfies (71) [(72)].

THEOREM 7. In addition to Assumption B, suppose that

t, λξ0,...9 λξn-v) = 0

for every (t, ξθ9..., ξn-ι) such that ί>0 and £r^0 (O^rgw — 1). Suppose that
(73) [(74)] holds for some λ>0. Then (69) has a solution ϋ on Ωp which satisfies
(71) [(72)], provided that \c\ (>0) is sufficiently small.

We close by applying Corollary 3 to the equation

(75) Λnv 4- <KI*iy (y) = 0, x e Ωp .

We remind the reader that p is a given positive number.

THEOREMS. Suppose that ι^eC(0, oo), h is nondecreasing on ( — 00, oo),
and limy., _ ̂  h(v) = — oo .

(i) //

Γ t2n-\\ogt)\\j/(t)\dt < oo,

then there is a constant β0 such that if β<β0, then (75) has a solution ϋ on Ωp

such that lim^i^oo v(x) = β.
(ii) Ifl^j^nand

r /2π-2jτι/ ina f\ i,/,/ f \ \ i ^vn M J tί]-ί\ I/it ^ QQ

/or some λ>0, then (75) /ιαs α solution v on Ωp which satisfies (72), provided
that c is a sufficiently small positive constant.

(iii) Ifl^j^nand

Γ00 ^2^-27+1^^)1 |-eχp h(λt2'-2 log tftdt < oo

for some A>0, ί/ien (75) has a solution v on Ωp which satisfies (71), provided
that c is a sufficiently small positive constant.
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