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§ 1. Introduction

The present paper deals with a free boundary problem which models regional

partition phenomena arising in population biology. Our problem is to look for

a family of functions {w(x, 0> s(t)} ((x, i) e [0, 1] x [0, oo)) which satisfy

ut = d,uxx + uf(u) in S-, (1.1)

ut = d2uxx + ug(ύ) in S+, (1.2)

!i(0,ί) = 0 for f e(0, oo), (1.3)

ιι(l, 0 = 0 for t E (0,oo), (1.4)

u(s(t), 0 = 0 for ί e (0, oo) , (1.5)

ti-O* 0 + μ2uMt) + 0, 0
(1.6)

for ίe(0, oo) where 0 < s(t) < 1,

w(x, 0) = φ(x) for x e / = (0, 1) , (1.7)

5(0) = /, (1.8)

where x = s(f) corresponds to a free boundary, S~ (resp. S+) is an open subset of

I x (0, oo) in which x<s(t) (resp. x>s(0), d{ and μf(i = 1, 2) are positive constants,

5(0 denotes (d/dt)s(t) and wx(s(0~0, 0 (resp. wx(s(0 + 0, 0) means the limit of

w(x, 0 at x = s(t) from the left (resp. right). For the derivation of the free

boundary problem (1. !)-(!. 8), we refer the reader to [8].

In (1.1) and (1.2), /and g are assumed to possess the following properties:

(A.I) / is locally Lipschitz continuous on [0, oo) and satisfies /(1) = 0 and

/(w)^Oon [1, oo).

(A.2) g is locally Lipschitz continuous on (—00, 0] and satisfies #(1) = 0 and

0(w) = 0on(-oo, -1].

On the initial data {φ, 1} we put the following conditions:

(A.3) 0^/=1.

(A.4) φeH^I) satisfies φ(ϊ) = 0 and (/-x)φ(x)^0 for x e / = [0, 1].
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Some related results for the problem (1.1)-(1.8), which is denoted by (P),
can be found in our previous papers [8, 9] where we have studied the global
existence, uniqueness, regularity and asymptotic behavior of solutions {u, s} with
non-homogeneous Dirichlet boundary conditions

M(0, t) = m^ > 0 and w(l, t) = - w2 < 0 for ίe(0, oo).

Owing to the non-homogeneity, it is proved there that the free boundary x = s(t)
never touches the fixed boundaries x = 0, 1.

However, when homogeneous Dirichlet boundary conditions are imposed,
there is also the possibility that the free boundary hits one of the fixed ends x = 0, 1
in a finite time; that is, one phase disappears in a finite time. See Fig. 1, where
some numerical experiments exhibit the disapperance of one phase in appropriate
conditions. This is a very interesting phenomenon to discuss, though the analysis
will be complicate.

ix = s(t)

Fig. 1 (1A and IB).

dl=d2=μl=μ2 = l, f(u)=g(-u)=a(l-u),

Ϊ
a. sin πx/l for

-βsmπ(x-l)/(l-l) for

Now the purpose of this paper is to study the global existence, uniqueness,

regularity and asymptotic properties of solutions for (P) in the homogeneous case.
The essential points of our analysis are almost the same as those developed by the
authors in [8, 9]. Moreover, we intend to derive some conditions which guarantee
the disappearance of one phase.

In §2, we construct a solution {w, s} and derive its regularity properties over a
time interval where the free boundary is distant from the fixed boundary. It will
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be shown in §3 that, if the free boundary hits the fixed boundary at a finite time
t= T*9 the free boundary stays there after T*. So we can continue to solve u as a
solution of the usual initial boundary value problem for ί^ T* (cf. Fig. IB). The

global existence result is stated in this section (Theorem 3.1). In §4, we give two

comparison theorems for (P), which will help us to investigate the asymptotic

properties of solutions for (P). In §5, we show some results about the dependence

of {M, s} on the initial data {φ, I}. These results will be used for studying the
ω-limit set corresponding to the solution orbit for (P). Complete information on
the ω-limit set is stated in §6 (Theorem 6.2). Especially, it is shown that any

element of the ω-limit set satisfies the stationary problem associated with (P).

So the analysis of the stationary problem becomes very important. It is carried

out in §7 by putting some restrictions on the forms of /and g. In §8, stability or

instability of each stationary solution is investigated with use of the comparison
technique. Moreover, we give some sufficient conditions for the disappearance of

one phase in a finite time. Finally, §9 is devoted to the study of bifurcation

phenomena appearing for (P).

Notation
We summarize some notation used throughout this paper. We set

/ = (0, 1) and Q = / x (0, oo).

For any set A in / or ζ), we denote its closure by A. Let s be a continuous
function on [0, oo) with values in /. For 0^<5<T, define

j,r = {(X

and<5<ί<T}.

If T=oo, then S r̂ and 5J>Γ are simply denoted by S~j and SJ. Moreover, we

write S~ and S+ in place of SQ and SJ, respectively. Whens(ί) = 0(resp. 1) for

δ < t < T, we understand that SsiT — Φ (resp. S^ τ = Φ) and SJ, Γ = / x (δ, T)

(resp.Sj,τ = /x(<5, T)).
Let Ui(ί = 1, 2) be continuous functions on / and let sf(i = 1, 2) be numbers in

/. We write {w l 5 sί}^{u2, s2} if uί(x)^u2(x) for x e / and 5!^s2.

§ 2. Existence of solutions I

In this section we investigate existence and regularity properties of solutions

for (P) by assuming

in place of (A.3). Our first existence result is stated as follows.
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THEOREM 2.1. Under the assumptions (A.I), (A.2), (A.3)', and (A.4), there

exists a unique family {Γ*, w, 5} e (0, oo] x C(/x [0, T*))x C([0, T*)) with the

following properties.

( ii ) seL3(0, T*), 0<s(0<l/or 0^ί<T*. // T*<oo, then

exists and equals 0 or 1.

(ii i) {w, s} satisfies (l.3), (1.4) and (1.5) for 0^ί<T* and

0 ^ M ^ M = max {1, sup φ(x)} in S$ τ*
O^x^ί

0 ^ M ^ — M= min { — 1, inf φ(x)} JΛ SJ τ*

( i v ) 11*6^0, T*); HJ(/)) n L°°([0, T*); HJ(/)), w/zβr^ M

+ =max {M, 0}
M~ = —min {M, 0}.

( v ) MίeL2(So,τ*)nL2(SJ,τ,).
( v i ) i*,, w,xeC(So fr*)nC(SJ fT*) and {M, s) satisfies (1.1) flπd (1.2) /or

0<ί<T*.

(vii) For an^ δ>0 and (5'>0, MX is Holder continuous in (x, t)eS^ίT*_δ>

and s is Holder continuous in te [δ, T* — δ'].
(viii) {w, s} satisfies (1.6) /or 0<ί<T*.

PROOF. Since 0</<1, the arguments developed in [8, §§3-6] are valid to

show that a pair of functions {w, 5} with the required regularity properties exists

on some interval. Therefore, it exists on a maximal interval [0, T*). If T* = oo,
there is nothing to prove more.
If T* < oo, we will prove the that lim f_Γ* s(i) exists. For this purpose, we define

E(u9 s) = ̂  ΓS ux(x)2dx + ί£ Γ ux(x)2dx

\ , v »
F(u(x))dx - i Γ1 G(u(x))dx9

where F(u)= I vf(v)dv and (J(M)= I vg(v)dv. Then Lemma 6.1 in [8] yields
J o J o

,.2 Γί Γs(τ) ,.2 Γt Γl
E(u(t\ 5(0) + -̂  wf rfjcrfτ + ̂  M? ̂ rfτ

« l J θ J θ « 2 J θ J s(τ)

(2.2)

+ 4- Γ |5(τ)|3^τ ^ E(φ, /)
2 J o

for 0^ί<T*. Since iφc, ί) is bounded for all (x, Oe/x[0, T*), (2.2) implies
s e L3(0, T*), from which it follows that lim,_>τ» s(t) exists.

Now suppose that 0<limf_>Γ, s(0 = s(T*)<l. Then one can show that
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J i m f _ > r * M ( - , 0 = M( , T*) exists in Hl

0(I)-norm

by reducing the boundary value problem (1.1), (1.3) and (1.5) in SO,T* (resp. (1.2),
(1.4) and (1.5) in SJ;r*) to the usual boundary value problem in an appropriate
cylindrical domain (see, e.g., [8, §4]). Owning to the preceding local existence
result, {M, s} can be extended over [0, Γ**] with some τ**>τ*. This assertion

contradicts the maximality of T*; so that s(T*) must be one or zero.

Finally we will show the uniqueness of {T*, w, s}. Let {Tf, w , , st} be
another family satisfying (i)-(viii) in this theorem. Set Γ* = min {T*, T*}.
By virtue of the comparison principle for (P) (see [8, Theorem 6.3]),

u( - , 0 = uά - , 0 and 5(ί) = Sj(0 for 0 ^ t < Tf .

Moreover, it is easy to see that T* = T* = T*. q. e. d.

Further regularity properties of the solution {M, s} can be obtained by using

Moser's technique as in the paper of Evans [2].

THEOREM 2.2. Let {u, s} be the solution of (?) satisfying conditions (i)-(viii)

of Theorem 2.1. Then,

uxeL°°(SstTt) Π L«>(SϊίT.) and 5eL°°(<5, T*), (2.3)

for any δ e (0, T*). Moreover, if Γ* < oo, f/zeπ

iiieCίCO, T*];HJ(/)) απJ seC([0, Γ*]). (2.4)

PROOF. First we assume

φ,eL«(/) (2.5)

in addition to (A.4). Let p be any positive integer. Then

Γs(t)
2p uϊ'-iu^dx (2.6)

J 0

2pux(s(ί)-0, ί)2'-'«Xs(/)-0, 0

0

Differentiation of (1.5) with respect to t gives

wx(s(0-0, Os(0 + "rWO-0, 0 = 0.

Making use of (1.1) and integrating by parts we have
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Γ(° u2

χP~2uxJ o

where f(u)=(d/du) (uf(uj), which is bounded almost everywhere on [0, M] for
M>0 (see (A.I)). Therefore, rearranging (2.6) one gets

•« 1^17 ί cίf\ f\ f}2pyif\
—j "J I l*χ-\ΛΛΓ T \4-ls ^/^xV^V*/ ^? '/ "\'/

Js(ί)
u2

χpf(u)dx.
o

Similarly,

4- I Γ iij^xl - (2p -1)11^5(0 + 0, f)2ps(0
«ί (J s(ί) J

(2.8)

= 2p Γ1 ul
J s(r)

where ^(M) = (d/du)(ug(u)). Here we observe that the following inequalities hold :

s(0-0, 0 + μ2(s(0 + 0, 0)

x {(-μlM;c(s(ί)-0, t))2»-1 + +(

^ 21-2P|s(t)|2p+I.

Therefore, it follows from (2.7) and (2.8) that

2(2p~l) {d, ΓS(<> {(μζu&fdx +d2 Γ |(μS«5),|2</xl (2.9)
,P I J 0 J s(r) )
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ί fs(O fi
:g 2pMo < \ μlpulpdx + I μ

U 0 J s(ί)

where M0 = max {ess. sup0^M^ |/(tι)|, ess. sup_M^u^0 |0(tι)|}.

Here we prepare the following lemma whose proof is given at the end of this
section.

LEMMA 2.3. For — oo<α</?<oo, let υ be any /^(α, β)-function satisfying

v(γ) = Q with some y e [α, /?]. Then there exists a positive constant C independent

of v, α and β such that

We continue the proof of Theorem 2.2. Since ux(Q, 0^0, ux(s(t)±Q, 0^0

and ux(l, 0^0, there exist s^t) e [0, s(0] and s2(ί)e [s(ί), 1] such that w^^CO, 0
= 0, j = l, 2. Hence Lemma 2.3 is applicable by taking v = μp

ίu? with (α, j?) =

(0, s(0) or v = μp

2u
p

x with (α, β) = (s(0, 1). Consequently, Lemma 2.3 together

with Young's inequality gives

for any ε>0 with some Cx independent of p and s(ί). This inequality is rewritten

as

J s(t) Γs(t) / Γs(t) \ 2

o i * * — J o l x l V J o /

Similarly,

J l Γί / Γl \2
\( ιιPιιP\ |2,r/v- ^> c~l I ιι2Pιι2ps1\- Γ* C~3/2 I I \ιιPιιP\s1v \ fj } ]\\\μ2.Mχ)x\ flx == £ I /*2 ^x ax — U j o ' i ι lA*2^xl^*-^ / \^•*•*•)

s(t) J s(ί) \J s(ί) /

Now we take p = 2k (k = ΐ , 2, 3,...) and set

Js(r) Γl
(μ1MJC)2kί/x + I (μ2ux)

2kdx.
0 J s(ί)

Then it follows from (2.9), (2.10) and (2.11) that, for any ε>0,

-jy- ̂ +ι(0 + (e-^o-2fc+1M0)Xfc+1(0 ^ s'^d^X^t)2, (2.12)

where J0 = 2 min {d l9 ί/2}
 since ε>0 is arbitrary, we take ε>0 sufficiently small

so that ε-1ί/0>2fc+1M0. If we take ε = </0/(2fc3M0), (2.12) becomes

αθ2, (2.13)
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with C2 = C1(3M0)
3/2^ό1/2 Solving differential inequality (2.13) one can find

Xk+ί(t) ^ max {*fc+1(0), 2*/2C3 sup *fc(02} for 0 ̂  t < T*, (2.14)

where C3 = C2/M0. We recall (2.2) to get

J s(t) f l
(μ\ux)2dx + I (μ2Mv)

2Jx ^ X 0 , (2.15)
0 J s ( r)

where K0 is a positive constant depending on μ l s μ2, J1? ί/2,/, ^f, | |Φ| |//J(/) and /•
Moreover, (2.5) implies

(2.16)

with some Ki>0. Here we may assume 2C3^1 and /C|^χ/2C3Xg without loss

of generality. In view of (2.15) and (2.16), it follows inductively from (2.14) that

where

1 fc-1 A:
k 2 i=o 2

6fc = *Σ 2f = 2k - 1 and Ck = 2k.
i=0

Therefore

fc-»oo

which implies

for all 0^ί<Γ* with some C4>0 independent of s(t) and Γ*. Moreover, (1.6)

and (2.17) give

|*(OI^C4Gι1+μ2). (2.18)

for allO<ί<T*.

We have put restriction (2.5) on φ to derive (2.17) and (2.18). For general

φ satisfying (A.4), we observe that, for any 0<(5< Γ*, x = s(δ) is distant from the

fixed boundary and ux( , <5) is Holder continuous in x e [0, s(<5)] (resp. x e [s(<5),

1]) by Theorem 2.1. Therefore, by taking {w( , <5), s(δ)} in place of {φ, /}, it is

sufficient to repeat the above procedure. Thus we see that (2.17) and (2.18) are
valid for every δ^t<T* and, therefore, (2.3) follows.
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It remains to show (2.4). Since Theorem 2.1 (ii) assures s e C([0, T*]), we have
only to prove M±eC([0, T*]; //£(/)). We may take s(T*)=l. We reduce
initial boundary value problem (1.1), (1.3), (1.5) and (1.7) in {(x, ί); 0<x<s(0,
0<ί^Γ*} to the corresponding problem in a cylindrical domain (see [8, §4]).
Then the standard parabolic regularity result yields u + e C([0, T*] //o(/)). As to
ι/_, we use (2.3) to see

j , Olli-w,),nO -'(')) - > 0-w,),ns(r)

as r-> Γ*. Consequently, u ~ e C([0, Γ*] f/i(/)). q. e. d.

PROOF OF LEMMA 2.3. We take α = 0 without loss of generality to prove this
lemma.

Let w be any //^-function satisfying vv(/) = 0 with some y ' e / . Since

| |w| |Hι ( / )gC 1 | |w J C | |L2 ( / ) with some C,>0 independent of vv, Gagliardo-Nirenberg's
inequality gives

l lwII^^C.IIwJIl/^^lwll i^), (2.19)

where C2>0 is a positive constant independent of w (see Nirenberg [11]).
Now let v be any function with the property stated in this lemma. If we set

w(x) = v(βx)9 O^x^ I, a simple computation shows

l |w| |L2(i) = P "Ίtflli^o.,), l |w| |Lι ( / ) = p-'\\υ\\

and ||wJ|L2(/) = βl/2\\vx\\L2(0tβ).

Substitution of these relations into (2.19) gives the assertion. q. e. d.

§ 3. Existence of solutions II

By Theorems 2.1 and 2.2, there exists a unique number T* (which maybe
+ oo) such that (P) has the unique solution {w, s} on [0, T*] whenever the initial

dat {φ, 1} fulfills (A.3)' and (A.4).
In the case T*<oo, the free boundary x = s(t) hits one of the fixed ends at

t=T*9 say, s(Γ*)=l. Suppose that the solution {w, s} can be extended beyond

ί=Γ* with the property 0<s(0<l for ίe(T*, T) with some T>T*. Since

u(l, t) = u(s(t), 0 = 0 for fe[Γ*, ?), one can show tφc, 0 = 0for(x, f)eSf* t r by
applying the maximum principle to (1.2) (see, e.g., Nirenberg [10]). Moreover,

since w(0, t) = u(s(t), 0 = 0 for ίe[Γ*, T) and M(X, T*) = 0 for xe[0, 1], another
application of the maximum principle to (1.1) yields w(x, 0 = 0 for (x, 0^ [0, s(0]
x [T*, f). Then it follows from (1.6) that s(0 = 0 for t e [T*, f), which contra-

dicts the assumption. Thus we have shown that, if the free boundary x = s(0 hits
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one of the fixed ends at t= T*, it never leaves there for ί^ T*.

In order to study conditions under which T* becomes finite, it is better to

continue to solve (P) beyond ί=T*<oo. In the case T*<oo, it seems natural

from the preceding arguments to take s(t) = Q or 1 for ί^T* and neglect the free

boundary condition (1.6) for ί>Γ*. For example, if s(Γ*) = l with T*<oo, we

set 5(0 = 1 for t^T* and construct w( , t) (*>T*) as the solution of the usual

initial boundary value problem (1.1), (1.3), (1.5) for ί>T* with initial data w( ,

T*)at t=T*.

The above procedure applies to the case / = 0 or 1 in an obvious manner.

Then we can show the following theorem which generalizes Theorems 2.1
and 2.2.

THEOREM 3.1. Under the assumptions (A.I), (A.2), (A.3) and (A.4) there

exists a unique pair of functions {u, s} e C(Q) x C[0, oo) with the following
properties'.

(i) u( ,0) = φands(0) = l.
( ii ) SE L3(0, oo) n L°°(<5, oo) for any δ > 0.

(iii) {u, s} satisfies (1.3), (1.4) and (1.5) for t e [0, oo) and

0 ^ u ^ M = max {1, sup φ(x)} in S~,
O ^ x g f

-l, inf φ(x)} in S+.

(iv) u± e C([0, αo); HJ(/)) n L°°(0, oo

/or an;; <5>0.

(v) WieL2(S-)nL2(S+).
(vi) wr, uxxeC(S~) Π C(S+) and {M, s} satisfies (1.1) αnJ (1.2) everywhere.
(vii) For any <5>0, ux is Holder continuous with respect to (x, t) in {(y, τ)e

5j;s(τ)^^} and {(j, τ)eSJ; s(τ)^l— δ} and s is Holder continuous for te

(viii) {M, s} satisfies (1.6) for ίe{τ; 0<s(τ)<l}.

PROOF OF THEOREM 3.1. In ivew of Theorems 2.1 and 2.2, there is nothing to

prove if Γ* = oo. We consider the case T* < oo and take s(Γ*)= 1. Since u( - ,

T*) e #£(/) by Theorem 2.2, it is standard to solve the initial boundary value
problem (1.1), (1.3), (1.5) for ί>T* with the initial data w( , T*) at ί=Γ* (see,
Ladyzenskaja et al [6] or Henry [3]). Observe that estimates (2.2) and (2.17)

remain true for all ί^T*. Therefore, recalling the results of Theorems 2.1 and

2.2, we have only to see the Holder continuity of ux with resect to (x, ί) e S^ for any
(5>0 to complete the proof. To do so, we reduce the initial boundary value

problem (1.1), (1.3), (1.5), (1.7) in 5_ to that in a cylindrical domain. Then the
parabolic regularity result yields the Holder continuity of ux (see [8, §4]). q.e.d.
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In what follows, we say that {M, s} is a smooth solution of (P) if it has the
properties stated in Theorem 3.1.

§ 4. Comparison principle

In this section we will give some comparison results which will be useful in the
study of asymptotic behavior of smooth solutions for (P).

We prepare some terminology. Let ̂  denote the set of all functions {u, s} e

C(Q)xC([0, oo)) satisfying (i) ux is continuous for (x, ί) in S~~ n {(y, τ); τ>0,

s(τ)>0} and S^Π {(y, τ); τ>0, s(τ)<l}, (ii) ut, uxxeC(S~) Π C(S+), and (iii) s(t)
is continuously differentiate for te {τ>0; 0<s(τ)<l}.

According to our previous papers [8, 9], we will define super- and subsolutions
for (P).

DEFINITION 4.1. A pair of functions {u, s}e^ is called a supersolution of
(P) for the initial data {φ, 1} if it satisfies

( i ) u^diU^ + fi/Xu) in S~,

( ii ) ut ̂  d2wxx + ιι0(u) in 5+,
( iii) w(0, 0^0 in (0, oo),
( i v ) ιι(l,ί)^0 in (0,00),

( v ) w(s(0, 0 = 0 for ίe{τ>0, 0<ly(τ)<l},

( v i ) 5(0^-^1^(5(0-0, 0 + /W*(0 + 0, 0 for f e { τ > 0 ; 0<s(τ)<l},
(vii) w(x, 0) = φ(x) in /,

(viii) s(0) = /.

A subsolntion of (P) for the initial data {φ, /} is defined by reversing the inequality
signs in (i), (ii), (iii), (iv) and (vi). If {M, s} is a super- and subsolution of (P), it is
called a classical solution of (P).

REMARK 4.1. Let {M, s} be a supersolution of (P) for the initial data {φ, 1}
satisfying (A.3) and (A.4). Then the maximum principle for parabolic equations
assures w^O in S~. Now we observe that, if s(T*)=l for some Γ*^0, then

s(0 = l for all ί^Γ*. In fact, suppose that s(0<l for ίe(T*, f). Then, by
the maximum principle, u^O in Sf*>τ; so that s(0^0 for te(T*9 T) (see (vi) in
Definition 4.1). This result contradicts the assumption s(ί)<l for ίe(T*, T).

Analogous results hold for a subsolution of (P); w^O in S+ and s(0 = 0 for

ί^Γ* whens(Γ*) = 0.

Our first comparison theorem corresponds to Theorem 5.1 in [8].

THEOREM 4.1. Assume that {φ\ I1} (i = l, 2) satisfy (A.3) and (A.4). Let
{w1, s1} (resp. {u2, s2}) be a supersolution (resp. subsolution) of (P) for the initial

data {φ1, I1} (resp. {φ2, I2}). If {φ1, I1} ̂  {φ2, I2} with I1 Φ I2, then
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{uK , 0,^(0} ^M ,0,s2(0} far all t > 0.

PROOF. We first consider the case when one of φl (/= 1, 2) is non-vanishing

and 1>/1>/2>0. Set T* = inf {ί; s'(ί) = 0 or 1 for some /}. Repeating the

arguments in [8, Theorem 5.1] one can easily show that sl(t)>s2(t) for t e [0, Γ*)

andw'Oc, t)^u2(x, t) for (x, ί)e/x[0, T*]. Therefore, sl(T*)=l or s2(Γ*) = 0.

For example, let s1(T*)=l. Then it follows from Remark 4.1 that s*(t) = l for

ί^ Γ* and, therefore, s2(t)^sl(t) for t^T*. Moreover, since wJ(Ό, r)^0^w2(0, ί)
and M^s^ί), ί)^0^u2(s2(ί), 0 for f^T*, the comparison principle for parabolic
equations gives u1 ^.u2 in (S2)^*; so that ul ^.u2 in Q x [T1*, oo).

We next consider the case when φ{ = φ2 = 0 and 1 > ί1 > ί2 >0. Making use
of the comparison principle again we can see w^Ogrw 2 in Q. Hence ^(0^0^

s2(ί) for a.e.te(Q, oo); so that s1(ί)>s2(ί) for all t e [0, oo).
Finally it remains to consider the case when /1 = 1 or /2 = 0. We will treat

the case /1 = 1. By Remark 4.1, 5HOΞ1 for ί^O and w^O in β. Since s2(ί)^l

and M2(s2(ί), 0^0 for ^ = 0> tne comparison principle enables us to conclude u1^
u2 in Q. Thus the proof is complete. q. e. d.

We will state another comparison theorem which gives a slightly preciser
result than Theorem 4.1.

THEOREM 4.2. In addition to the assumptions of Theorem 4.1, assume that

oneof {u\ s*} (i = l, 2) is a classical solution 0/(P). //{φ1, /^^{φ2, /2},

{wK - , 0, sHO) ^ ί"2( , 0, s2(i)} for all t ^ 0.

Moreover, ifφlφφ2, then

u*(x9 0 > M2(x, 0 /or (x, f)eβ

and s\t)>s2(i)for ίe{τe(0, oo); 0<s1(τ)<l or 0<52(τ)< 1}.

PROOF. In order to prove the former half of this theorem, it suffices to

combine the arguments used in [8, Theorem 6.3] and those in the proof of

Theorem 4.1. The latter half can be derived by using the strong maximum

principle for parabolic equations (see [10, Theorem 2]). q.e. d.

§ 5. Dependence on initial data

In this section we will study the dependence on initial data for smooth
solutions of (P). Our result reads as follows.

THEOREM 5.1. Suppose that {φn, ln} (n = l, 2,...) and {φ, /} satisfy (A.3),
(A.4),
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l i m / " = / and \im(φn)± = φ± in //£(/). (5.1)

Let {un, sn} (n = l, 2,...) am/ {M, s} be the smooth solutions of (?) for the initial

data {φn, I"} and {φ, /}, respectively. Then

lim s"(ί) = 5(0 and (5.2)
n->oo

lim («")±( , 0 = «*( , 0 in H^I) (5.3)

for every ί^O.

fl-»00

PROOF. First of all, we will give various uniform estimates for {un, s"}.

Observe that (2.2) remains valid for every f ^ O with {u, s} replaced by {w", 5"};

that is,

E(u»(t), s"(0) + P±- Γ {S"(τ) (u ;)2dxdτ
«ι J 0 J 0

,,2 Γt Γ\ ι Γt

+ ^- (u»tYdxdτ 4- -i- \s"(τ)\*dτ (5.4)
«2 J 0 J s"(τ) 2 J 0

", /»), for ί ̂  0,

where the right-hand side of (5.4) is bounded by a constant independent of n on

account of (5.1). Since Theorem 3.1 (iii) together with (5.1) yields the uniform

boundedness of {«"}, it follows from (5.4) that

{sn}^i is bounded in L3(0, oo), (5.5)

{un}*=ί is bounded in L°°(0, oo //i(/)), (5.6)

{«;}£=! is bounded in L2(Q). (5.7)

In view of (5.7) one can also find that

J δ Γs"(τ) Γδ Γl
\un

xx\
2dxdτ + \un

xx\
2dxdτ ^ C (5.8)

O J O J θ J s » ( τ )

for every δ > 0 with some positive constant C independent of n. Then (5.8) implies

that there exists some tn e [0, (5] satisfying

Γ(ίn) Iii-Λx, tn)\2dx + Γ IH-ΛJC, tn)\2dx ^ C/δ. (5.9)
J O J S"(ίn)

Here we note that the following inequalities hold by Holder's inequality:
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Hence, it follows from (5.9) that

(/) ^ Cι(«5), (5.10)

where Cx(<5) is independent of n. Repeating the arguments in the proof of

Theorem 2.2 one can derive from (5.10)

for every t^δ with some C2(<5)>0 independent of n(cf. (2.17)).

Let T>0 be any fixed positive number. Ascoli-Arzela's theorem together

with (5.4) implies that {sn}™=ί is relatively compact in C([0, T]). Using Ishii's
result [4, Lemma 3.1], we see from (5.6) and (5.7) that {un}™=ί is bounded in
CV2, ι/4(j X|-0j T]); so that {u"}*=ί is relatively compact in C(/x[0, T]).

These compactness results imply that there exists a subsequence {un', sn'} of
{un, sn} such that

s"' - > s in C([0, T])

un
f - » {i jn c(I x [0, T]) as n' - > oo. (5.12)

We will accomplish the proof by dividing it into several cases. First we

consider the case when 0 < / < 1 and 0 < s(t) < 1 for t e [0, T] . Since 0 < s" ' (ί) < 1
for sufficiently large n'9 it can be shown that {(un)±}<^-ί is relatively compact in
C([ε, T] H^(I)) for any ε > 0 by the method used in [8, Theorem 6.5]. Therefore,

(ιι»')± - >(fi)± as n' - » o o in C([ε, Γ]; #*(/)) (5.13)

for any ε>0. Since we have already obtained uniform estimates (5.6), (5.7) and
(5.8), it is easily seen that the limiting function {#, 5} of {un /, s"'} satisfies (1.1),
(1.2) and initial boundary conditions. Moreover, following the arguments by
Yotsutani [14, Lemma 10.2] we find that {M, s} satisfies the free boundary

equation (1.6). The regularity properties of {w, s} are derived as in [8]; so it

becomes a smooth solution of (P). The uniqueness of smooth solutions for (P)

(Theorem 4.2) yields {u, s} = {u, s}. This fact implies that (5.12) and (5.13) hold
true with {wn >, sn'} and {«, 5} replaced by {un, sn} and {w, s}. Thus (5.2) and

(5.3) follow in the first case.
We next consider the second case when 0< /< 1 and x = s(t) hits a fixed end at

some time in (0, Γ). Let T*>0 be the first time when x = s(t) hits a fixed end,
say, s(T*)= 1. As in the first case, we can prove that {M, 5} is a smooth solution
of (P) on [0, Γ*]. Therefore, the uniqueness result gives s(ί) = 5(0 for t e [0, T *]

and M(X, t) = u(x, t) for (x, ί)e [0, 1] x [0, T*]. Moreover, Theorem 2.1 assures
T* = T*, where T* is the first time when the free boundary x = s(t) arrives at one
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of the fixed ends. We note that s(t)= 1 and u~( - , f) = 0 for t^ Γ*. We will show

that s(t) = l for ί^Γ*. Suppose that 0<s(f)<l for te(T*9 T) with some T >
T*. Since {u, s} can be proved to satisfy (1.1)-(1.6) for t E (T*, f), the reasoning
developed in §3 leads us to the contradiction. Therefore, s(t)=l and (w)~( , ί)
= 0 for r;>T*. Since it is easy to see that ύ satisfies (1.1), (1.3) and (1.5), one
can conclude that u( - , ί) = ύ( - , t) and s(ί) = s(ί) for t e [Γ*, T]. Hence, by virtue
of (5. 12) we get (5.2) and

limιι"( , 0 = «(•» 0 in C(/x[0, T]).
/ι->oo

By mapping (SgjT)~ or (Sg>Γ)
+ to a cylindrical domain by a suitable change of

variables, the regularity results for parabolic equations enable us to show that
{w+}^=1 is relatively compact in C([ε, Γ]; //£(/)) for any ε>0 and that {u~}™=1

is relatively compact in C([ε, T* — ε]; HJ(/)) for any ε>0. Hence

lim ul = u + in C([ε, T] #£(
ιι-»oo

lim u- = u ~ in C([ε, Γ* - ε] /f J(/)) (5. 14)

for any ε>0. Moreover, invoking (5.11) and lim,,^ s"(ί) = l for t e [T*, Γ] we

find that

|(tι;)-(x, f)\2dx ^ C2(T*)(1 -s»(0) > 0 as n > oo (5.15)
:o

for every t e [Γ*, T]. Thus (5.14) and (5.15) yield (5.3).
Finally it remains to consider the case when / = 0 or 1. For this case it is

sufficient to repeat the procedure developed in the second case for t e [Γ*, T].
q. e.d.

§ 6. Structure of co-limit set

For every {φ, 1} satisfying (A.3) and (A.4), Theorems 3.1 and 4.2 give a unique

smooth solution of (P), which is denoted by {w(x, ί; φ, /), s(ί; φ, /)}.
It is convenient to introduce the notion of ω-limit set associated with the

solution orbit {{M( , ί; φ, /), s(ί; φ, /); t°^Q}:

DEFINITION 6.1. For the solution orbit {{w( , ί; φ, /), s(ί; φ, /)}; f^O}, the

ω-limit set co(φ, I) is defined by

ω(φ, /) = {{M*, s*} e#£(/)x7; there exists a sequence {fj ί oo such

that s(ίπ; φ, /)->s* and u^f,,; φ, O-K"*)* in #J(/) as n->oo} .

The product topology induced from HJ(/) x / is called Ω-topology.
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LEMMA 6.1.

(i) {s(ί; φ, /); ί^O} is relatively compact in I.

(ii) {w( , ί; φ, /); f^O} is relatively compact in

PROOF, (i) Since 0^s(ί;φ, /)^1 for ί^O, the assertion follows from

Bolzano- Weierstrass's theorem.

(ii) We will complete the proof by dividing it into three cases.

(a) The case when the free boundary x = s(f, φ, /) hits a fixed end in a finite

time. For example, we take s(T*; φ, /)= 1 and, therefore, s(ί; φ, /) = 1 for t^T*.

Then M( , ί; <p, /) satisfies the usual boundary value problem (1.1), (1.3) and (1.5)

for ί^ T*; so that the parabolic regularity results yield the compactness of {u( , f

φ, /); r^Γ*} in Hi(/) (see, e.g., Henry [3]).

(b) The case when d£s(t'9 φ, l)^l-d for all ί^O with some de(0, 1).

In this case the proof is the same as that of Lemma 7.1 (iii) in [8].

(c) The remaining case (that is, the free boundary neither hits the fixed

boundary nor is distant from the fixed boundary by a positive constant). Let

{M( , tn\ φ, l)}™=ι be any sequence. We will prove that {u(tnι φ, /)} has a con-

vergent subsequence (in HJ(/)) in the situation where {s(fπ; φ, /)} satisfies

(If {s(ίπ; φ, /)} is distant from the fixed boundary by a positive constant, the

proof will become simpler). By Theorem 3.1,

for each ε>0 with some C(ε)^0. Therefore,

\ux(x, t)\2dx^C(εy(l-s(tn',φ, /)) > 0 as ni:
that is, lim u~( , ίπ) = 0 in H^(I). We next show the compactness of {u+(-, tn)}

π-*oo

in //oCO βy virtue of the uniform continuity of ί->s(ί; φ, /), there exists some

c>0 such that

1/4 ^ s(ί; φ, /) < 1 for ίe [ίπ-c, ίπ + c] .

Since M+eL°°(0, oo;/ίj(/)) by Theorem 3.1, we can follow the arguments in

[8, §4] to show the uniform Holder continuity of

x^ux(x9 i) in U r=ι {(x, 0; 0 ̂  x ^ s(ί), tn-c^t^tn -he}.

Then it is easy to extract from {M+( , ίn)} a subsequence which converges in

HJ(7). q.e.d.



Free boundary problems 257

We are ready to give some information on the structure of ω(φ, /).

THEOREM 6.2. (i) ω(φ, /) is non-empty, compact and connected in Ω-
topology.

(ii) ω(</>, /) is positively invariant; if {u*, s*} eω(φ, /), then {u( , \\ ι/*, s*),
s(f; φ*, s*)} eω(φ, I) for every /^O.

(iii) //{M*, s*} eω(φ, /), then it satisfies

dvU*x + M*/(!!*) = 0, W * ^ 0 /Λ (0,5*),

^2«?x + M*0("*) = 0, W * g O |Λ (S*, 1 ) ,

M*(0) = W*(S*) = M*(l) = 0,

0 // 0 <

(SP)

PROOF, (i) Lemma 6.1 assures that ω(φ, /) is non-empty. The compact-

ness and connectedness of ω(φ, /) are derived from the definition of the ω-limit

set (cf. [3, pp. 91-92]).
(ii) Let {M*, s*} eω(φ, /). Then there exists a sequence {tn} ί co satisfying

lim,,^ {w( , tn, φ, /)} = {«*, s*} in Ω-topology. Therefore, it follows from
Theorem 5.1 that

lim {ιι( , r; w(rn; φ, /), s(ίΛ; φ, /)), s(ί; u(rΛ; φ, /), s(ίΛ; φ, /))} (6.1)
Λ-*00

= {w(ί; M*, s*), s(ί; M*, s*)} in Ω-topology

for every ί^O. Since the uniqueness of solutions for (P) implies {u( , t\ u( , r/;;

φ, /), s(ίΛ; φ, /)), s(ί; n( , ίB; φ, /), s^; φ, /))} = {n(ί + r l l; φ, /), sίί + ί,,; φ, /)} for
ί^O, it follows from (6.1) that {u(ί; u*, s*), s(ί; M*, 5*)} eω(φ, /).

(iii) We introduce the functional £(w, s) defined by (2.1). By Lemma 6.1
in [8, I],

-~E(u(t',φ,l)9s(Γ9φ,l)) (6.2)

£ - f Γ} u>dx - f Γ ufrfjc - I |i(OI3
«1 J 0 «2 Js(f) 2

for ίe{τ>0; 0<s(τ; φ, /)<!}. Moreover, it is easily seen that

--^PiiϊΛc if ίelnt{τ>0; s(τ; <p,/) = !}
«ι J o

(6.3)

ι*dx if f e lnt(τ>0; s(τ; φ, l) = 0 } f
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where Int C means the interior of a set C. Since (6.2) and (6.3) imply that /->
E(u(t\ φ, /), s(t; φ, /)) is monotone non-increasing, E(u(t\ φ, /), s(ί; φ, /)) con-

verges to a constant E^ as ί-»oo. Therefore, it follows from Definition 6.1 that

£(M*, $*) = £„> for any {M*, s*}eω(<p, /). This fact, together with the positive

invariance of ω(φ, /), leads to

E(u(t; ιι*, 5*), s(t; u*, s*)) = £«, for every t ^0 . (6.4)

Differentiating (6.4) with repect to t and making use of (6.2) and (6.3) we have

ιιf(f; u*, s*) = 0 for ί > 0 and s(ί; ιι*, s*) = 0 if s(ί; φ, /)e/,

from which it follows that

tι(ί; ιι*, s*) Ξ M* and s(ί; tι*, s*) = s* for t ^ 0.

Hence the conclusion of (iii) is easily derived. q. e. d.

The problem (SP) given in Theorem 6.2 is called a stationary problem

associated with (P). In subsequent sections, we will investigate various properties

of solutions for (SP) (stationary solutions).

REMARK 6.1. Let {u*, s*} be a solution of (SP). If u* is not identically

zero in (0, s*), then it must be positive in (0, s*). Similarly, M* must be negative

in (s*, 1) if it is not identically zero in (s*, 1).

§ 7. Stationary problem

In this section we will study (SP). First observe that for every ξ e /, {0, ξ}

satisfies (SP). So we say that {0, ξ} is a trivial solution. The set {{0, £}; ξeϊ}

is called the set of trivial solutions.
Our main task is to look for non-trivial solutions of (SP). Clearly, any

nontrivial solution {M*, s*} of (SP) satisfies one of the following three problems;

(i) I f s* = l, then

f dιμ*x + ιι*/(ιι*) = 0, M* > 0 in /,
(SP-1)

[ ιι*(0) = w*(l) = 0.

(ii) Ifs* = 0, then

$x + M*#(M*) = 0, M* < 0 in 7,
(SP-2)

ιι*(0) = ιι*(l) = 0.

(iii) IfO<s*<l, then
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u*x + U*/(M*) = 0, u * > 0 in (0, s*),

uL + w*0(w*) = 0, M * < 0 in (s*, 1),
(SP-3)

M*(0) = w*(s*) = M*(!) = 0,

We will partition the set of non-trivial solutions for (SP) into three classes,

Λ* and 0. These are the solutions of (SP-1), (SP-2) and (SP-3), respectively.

As in the paper of Smoller and Wasserman [13] (or [9, §3]) we set

(7.1)

and define the 'time' mapping

α p

(7.2)Jα

0

for p>0 such that there exists some α(p)e(0, 1) satisfying p2 = F(α(p)). In (7.2),

α(p) = min {α(p)e(0, 1); p2 = F(ά(p))}. In other words, 7\(p) is the minimum

of x > 0 at which the solution v(x p) of

d,vxx + vf(υ) = 0, x > 0 ,
(7.3)

ι<0) = 0, vx(Q) = P (>0),

vanishes. Therefore, any solution {M*, 1} in & is obtained by looking for p*

such that Γ1(p*) = l and M* is given by u*(x) = φc; p*).

Similarly, we define

u, q >0 (7.4)

with G(w) = 4- Γ" ϋflfί - ϋ)dt;,
"2 J 0

where j8(g) = min{/J(g)e(0, 1); q2 = G(β(q))}. Then it is seen that 1-Γ2(<?) is

the maximum of x < 1 where the solution w(x g) of

ί d2wxx + wflf(w) = 0, x < 1,
(7.5)

vanishes. Therefore, every solution in rf is given by {w(x; ^f*), 0}, where q*

satisfies T2(^*) = l.

We can also look for solutions in Θ with the aid of time mappings Tx and T2.

Consider the following auxiliary problem
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ιuxx + uf(u) = 0, u > 0 in (0, ξ ) ,

2uxx + ug(u) = 0, u < 0 in (ς, 1), (7.6)

tι(0) = u(ξ) = u(l) = 0,

where ξ e / is any fixed number. Suppose that p(ξ) and q(ξ) satisfy

7Ί(X«) = ξ (7.7)

and

T2(q(ξ)) = 1 - ί, (7.8)

respectively. Then the function

(7.9)
w(x; <?(£)) for f £ x £ l ,

satisfies (7.6). Since

-μίux(ξ-Oιξ) = μlP(ξ) and ^ii^ + O; ξ) = - μ2q(ξ)9 (7.10)

it suffices to look for all s*e/ satisfying μιp(s*) = μ2g(s*) in order to get all
solutions in Θ.

From the preceding consideration it becomes important to study the quali-

tative nature of Tx and T2. In what follows, we will put some restriction on /

and g to make our arguments clear and avoid technical complexity. The following

two typical cases are considered here.

Case A. In addition to (A.I) (resp. (A. 2)), f(u) (resp. g(u)) is monotone
non-increasing (resp. non-decreasing) and positive on [0, 1) (resp. (—1,0].

Case B. / and g are quadratic polynomials of the form

f(u) = - Vι(u-a)(u-\) with vl > 0 and 0 ̂  a < 1/2, (7.11)

g(u)= - v2(ιι + &)(ιι + l) with v 2 > 0 and 0 ̂  b < 1/2. (7.12)

7.1. Analysis of (SP) in Case A

In view of (7.2), 7\(p) is defined for Q<p<p0 = ̂ /F(l) and expressed as

. _ Γ1 ί Γ1 ) -!/2
Tv(p) = Λ/MI J 0 { J p vv/(α(p)w)rfw J dv. (7. 1 3)

Since p-»α(p) is monotone increasing for pe(0, p0), we see from (7.13) and the
monotonicity of /that Ti(p) is continuous and monotone increasing for p e (0, p0).
Moreover, simple calculations show
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and lim Γj(p) = ou.
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(7.14)

The graph of Γt is given in Fig. 2.

In the same manner, one can prove that T2(q) is continuous and monotone

increasing for q e(0, q0) with q0 = \/G(ί) and that it satisfies

= Tap)

Fig. 2. Graph of 7\ in Case A.

lim T2(q) = 7^/5^/0(0)" and lim T2(q) = oo.
a- 0 a~*ar\q-O

(7.15)

Now we are ready to state the existence result of non-trivial solutions for (SP).

THEOREM 7.1. Set A = πjdjf(0) and B = πjd2/gφ).
( i ) (SP) has no solutions in ̂  if A^V and has a unique solution {w, 1} in

ifA<ί.
(ii) (SP) has no solutions in N if B^.1 and has a unique solution {u, 0}

^l and has a unique solution {uc9 c](iii) (SP) has no solutions in Θ
in θ if A + B < 1. Moreover,

u<uc<ΰ in /, (7.16)

for the case A + B<1 where the existence of u and ΰ is assured by (i) and (ii).

PROOF. By virtue of the monotonicity of Γj and (7.14), equation (7.7)
determines uniquely a continuous and monotone increasing function p(ξ) for

ξ^A with p(A) = Q. Similary, since T2 is also monotone increasing and (7.15)

holds, a continuous and monotone decreasing function q(ξ) is determined uniquely
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from (7.8) for ξ^ 1 -B with q(l -B) = 0. So, (SP) has no solutions in 9 and Λ*
for A^i and B^l, respectively. The unique solution {w, 1} in 0> for A<\ is
expressed as

ΰ(χ] = v(x' pίl)) Γ7 17)

where v(x; p) is the solution of (7.3). Similarly, the unique solution (w, 0} in
^Γ for B< 1 is expressed as

(7.18)

where w(x; q) is the solution of (7.5).

In order to look for solutions in 0, we draw two curves

and

in (ξ, y/)-plane. See Fig. 3. By the monotonicity of p and #, one can see that, if

A + B^.ΐ, then Cγ and C2 do not intersect; so there are no solutions in Θ. If
A + B<1, then Cγ and C2 intersect at a unique point Pc, whose ^-coordinate is
denoted by c. So there is a unique solution in 0, which is expressed as {u( c), c},

where u( ξ) is given by (7.9).

Fig. 3

We will show the order relation (7.16) in the case A + B< 1. Since Tt and T2

are monotone increasing, we can employ the method in [9, Lemma 3.2] (which is
based on the phase plane analysis) to show that
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u(x) = v(x; p(l)) > v(κ\ p(c)) > 0 for 0 < x g c

0 > w(x; q(c)) > w(x; g(0)) = u(x) for c ̂  x < 1.

and

(Recall (7.17) and (7.18)). Hence (7.16) easily follows in view of the expression

of M(X; c). q.e.d.

7.2. Analysis in Case B.

We will study the time mapping 7\ by substituting (7.11) into (7.13). It is

easy to see that T\(p) is defined for 0< jp<p0= ={v1(l-2α)/6J1}
1/2. The

result of Smoller and Wasserman ([13, Theorem 2.1]) tells us that T^p) has

exactly one critical point at p = p* e (0, p0) (see also [12]). Hence TΊ(p) is mono-

tone decreasing on (0, p*) and monotone increasing on (p*, p0). Moreover, a

simple calculation yields

lim = lim = oo.

Setting A* = Tι(p*)9 we define Pί(ξ) e [p*, Po) (resp. p2(ξ) e (0, p*]) for ξ^

by (7.7). Then p^(ζ) is continuous and monotone increasing for ξ^A* and p2(ξ)

is continuous and monotone decreasing for ξ^A*. See Fig. 4.

0 p*! PO

Fig. 4. Graph of 7Ί in Case B.

Analogously, T2(q) has exactly one critical point at q = q* e(0, q0) with q0 =

{v2(l-2fr)/6d2}
1/2. Set B* = T2(q*). Then (7.8) determines a unique function
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qi(ξ) (resp. <?2(£)) with values in [<?*, ίo) (resp. (0, <?*]) for ^1-θ*. Then

qι(ζ) (resp. #2(£)) is monotone deceasing (resp. increasing) for ξ^ 1 — £*.

As in the proof of Theorem 7.1, we will draw the following curves in (£, 77)-
plane :

Cι = C n u C 1 2 with

and

C2 = C 2 1 U C 2 2 with
See Fig. 5.

( ΐ = l , 2 ) ,

(ί=l,2).

C2I

C22

Fig. 5

The existence results for (SP) can be stated as follows.

THEOREM 7.2.

( i ) (SP) has no solutions in £P if A*>ΐ, a unique solution {w l 5 1} in & if

A* = l and two solutions {w1? 1}, {ί/2, 1} in 0> with ΰί>ΰ2 if A*<i.

(ii) (SP) has no solutions in Jf if B*>1, a unique solution {ul9 0} inN if

β* = l and two solution {w1? 0}, {w2, 0} in N with uv>u_2 if B*<\.

(iii) When A* + B*>1, (SP) has no solutions in Θ.

(iv) When A* + J5*^1, (SP) has the same number of solutions in Θ as that of

intersecting points of C1 and C2. Moreover any solution {«*, s*} in 0 satisfies

Wi(x) < M*(X) < MJ(X) for xe/ , (7.19)

where u± and ΰί are the solutions in (i) and (ii), whose existence is assured for
A* + B*<L
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PROOF. The idea of the proof is almost the same as that of Theorem 7.1.
We note that the number of solutions in &> is identical with that of p's satisfying
TI(P)=I So (SP) has no solutions in 0> for v4*>l . For Λ*<Π, there are so-
lutions {M!, 1}, {i/2, 1} in £?, which are expressed as

M!(X) = v(x; /?!(!)) and Π2(x) = φc; p2(l)),

where v(x\ p) is the solution of (7.3). These solutions are identical for A* = \

because pί(A*) = p2(A*). If A*<\, then Pι(l)>p 2 (l); so that it is possible to
show ΰ1>Π2 with the aid of phase plane analysis (see [9, Lemma 3.1]). Thus the
proof of (i) is complete.

One can prove (ii) in a similar manner.
If we want to know the number of solutions in Θ, we may count the number

of intersecting points of CΛ and C2. Therefore, it is easy to see (iii) and the
first half of (iv).

It remains to prove that any solution {w*, s*} eO satisfies (7.19) for

!g 1. In (7.19), ΰl and u1 are given by

ΰ^x) = φc; /?!(!)) and w t(x) = vφe;

where v(- p) and w( q) are the solutions of (7.3) and (7.5), respectively. For

the sake of convenience, let {w*, 5*} correspond to an intersecting point P* =
(s*, η*) of C12 and C21 as in Fig. 5; that is, ^* = μι/?2(s*) = μ2<7ι(s*) and w* is

expressed as

ί v(x; p2(s*)) for 0 ̂  x ^ s*
ιι*(x) = (7.20)

[ w(x; q^s*)) for s* ^ x ^ 1,

by (7.9). Since Pι(s*)^p2(s*), the same reasoning as in the proof of (i) yields

K*;P2(s*))^K*;Pι(s*)) for 0 ^ x ^ 5 * . (7.21)

We now make use of Lemma 3.2 in [9]. Since pt(ξ) is monotone increasing for

ξ>A*, we can show

v(x',pί(s*))^v(x'9pί(l)) = Uί(x) for 0 ̂  x ^ 5*. (7.22)

Similarly,

u^x) = w(x; qι(0)) g w(x; ίiίs*)) for 5* ̂  x g 1, (7.23)

because ^f^ξ) is monotone decreasing for ξ<l-B*. Therefore, the order
relation (7.19) is derived from (7.20), (7.21), (7.22) and (7.23) q. e. d.

REMARK 7.1. Theorem 7.2 and its proof imply the maximality of [ϋl9 \}e&
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with ΰ1=v( Piίl)) (whenever it exists) in the sense that {ΰl9 !}^{M*, s*} for

every solution {w*, s*} of (SP). Similarly, {uί9Q}e^ with w1 = w( ^ι(O))
is minimal whenever it exists.

REMARK 7.2. We have carried out the analysis of (SP) by putting the

restrictions 0^α<l/2 and 0^fc<l/2 in (7.11) and (7.12). For a<> -1, /satisfies

the conditions in Case A; so the results in 7.1 are valid. For α^l/2, (SP) has

no solutions in ̂  so the analysis of (SP) becomes very simple. For — l<α <0,
we can show that 7\ has only one critical point (see [13, Theorem 2.2]). There-
fore, our method developed in 7.2 remains valid. Since the similar results hold for

g, one can get complete information on the structure of ,̂ JV* and Θ for general
fandg.

§ 8. Asymptotic behavior

In this section we will investigate asymptotic properties of smooth solutions of
(P) in connection with stability or instability of stationary solutions.

We first prepare some terminology. For {u\ s'} eH^(I)xϊ (i = l, 2), we

sometimes use the metric defined by

P({U\ S1}, {W2, S2}) = \\U^-U2\\Hi(I) + IS 1-* 2!.

DEFINITION 8.1. Let{w*, s*} be any solution of (SP). Then it is said that

{M*, s*} is asymptotically stable from above (resp./row below) if there exists a
positive number δ with the following property: whenever the initial data {φ, /}

fulfills

p({φ, /}, {ιι*, s*}) < δ and {φ, /} ̂  {M*, 5*}

(resp.{φ, ί}^{w*, s*}),

the smooth solution {u( , ί; φ, /), s(t; φ, /)} of (P) satisfies

limp({ιι( , ί; φ, /), s(f; φ, /)}, {M*, s*}) = 0.
f-»00

In particular, it is said that {w*, s*} is asymptotically stable if it is asymptotically

stable from above and below.

DEFINITION 8.2. Let {w*, s*} be any solution of (SP). It is said that {M*, 5*}

is asymptotically unstable if for any ε>0 there exists some (φ, /} and <5>0 which

satisfy p({w*, s*}, {φ, /})<ε and limsup^ p({w( , ί; φ, /)}, {w*, s*})^(5.

We also introduce the notion of asymptotic stability for a subset of #o(/) x /
in place of a stationary solution.
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DEFINITION 8.3. Let K be any set in H0(I) x /. Then it is said that K is

asymptotically stable as a set if there is a positive number δ such that, if

dist ({φ, /}, K) = inf p({φ, /}, [u, s}) < δ,
{u,s}eK

then

lim dist ({«( - , t φ, /), s(f φ, /)}, X) = 0.
r-»oo

8.1. Stability analysis in Case A

First we will study Case A for which Theorem 7.1 gives complete information
on the set of stationary solutions.

THEOREM 8.1. Let f and g satisfy the conditions in Case A. Set A =

( i ) If A^.1 and B^l, then the set of trivial solutions is asymptotically

stable as a set in the sense that

lim ιι( - , t φ, ί) = 0 in HJ(/) (8. 1)
f-+oo

for all {φ, I}. Moreover, if A>i and B>1, then

lims(ί;φ, /) = s* (8.2)
ί->00

wif/ι some s* depending on {φ, /}.
(ii) // A<\ and B^l, then {ΰ, 1} e & is asymptotically stable and any

trivial solution (0, ξ} with A<ξ^i is asymptotically unstable in the sense that

lim {u(',t;φ, I), s(t φ, ί)} = {ΰ, 1} in Ω-topology (8.3)

for any {φ, 1} satisfying φ^O, φ^O and A<1^\. Moreover, the set {{0, ξ } ;

Q^ξ<A and π2(dίξ-2-d2(l-ξΓ2)>f(ty-g(ty} is asymptotically stable

as a set.
(iii) If A^i and B<i, then {M, 0}eyΓ is asymptotically stable and any

trivial solution {0, ξ} with Q^ξ<l—B is asymptotically unstable in the sense

that

lim {«( - , t φ, /), s(t φ, /)} = fa °} ™ Ω-topology (8.4)

for any {φ, 1} satisfying φ^O, φφQ and 0^/<1-B. Moreover, the set {{0, ξ};

1-J3<<^1 and π2(diξ-2-d2(l-ξ)-2)<f(ty-g(ty} is asymptotically stable

as a set.
(iv) // A<1, B<19 and A + B>1, then {M, l}e^ and {u, l}e^Γ are
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asymptotically stable and any trivial solution {0, ξ} satisfying Q^ξ<l—B or
A<ξ<l is asymptotically unstable in the sense of (ii) or (iii).

(v) If A + B<\, then both {ιl, l}e^ and {w, 0}e^Γ are asymptotically

stable and any trivial solution is asymptotically unstable. Moreover, {wc, c} e 0

is asymptotically unstable in the sense that (8.3) (resp. (8.4)) holds true for any

{φ, 1} satisfying [φ, /}^{wc, c} (resp. [φ, /}^{wc, c}) with [φ, l}φ{uc, c}.

PROOF, (i) In this case (SP) has no non-trivial solutions by Theorem 7.1.
Therefore, Theorem 6.2 implies that ω(φ, /) is contained in the set of trivial
solutions; so that (8.1) easily follows. In order to show (8.2) in the case A>\
and B>19 we consider the following functions

U(x, 0 = α(ί)sinπx, (8.5)

U(x9 f)= - b(i) sin πx, (8.6)

as comparison functions. We take

(8.7)

where α(0) > 0 and b(0) > 0 are sufficiently large numbers such that

- &(0) sin πx ̂  φ(x) ^ a(0) sin πx for x e /, (8.8)

then {E7, 1} and {£/, 0}, respectively, become a supersolution and a subsoluton
of (P). Hence, by virtue of (8.8), Theorem 4.2 gives

{£/(•, 0, 0} £{ιι( , ί; φ, /), s(t', φ, /)} ̂  {Γ7(-, ί), 1} for all t ^ 0, (8.9)

which, in particular, implies the exponential decay of \u( - , ί; φ, /)| to zero as ί->oo
(use A> 1, B> 1 and (8.7)). Now (8.2) is trivial in the case when s(f φ, /) arrives
at a fixed end in a finite time Γ* (and, therefore, stays there for ί^ 71*). Hence
we may assume 0<s(ί; φ, /)<! for all ί^O. Multiplying (1.1) by μlx/d1 and

integrating the resulting expression over S^ one gets

i- P ( i )jcw(x, t)dx- &- Γ xφ(x)dx
i J 0 "I J 0

(8.10)
ft u Γt Γs(τ)

= A*ι I s(τ)ux(s(τ) — 0, τ)dτ + -̂ - I dτ I xuf(u)dx.
J o «ι J o J o

Similarly, multiplying (1.2) by μ2x/d2 and integrating over 5^ we have

u C1 u C1

-*¥- \ xu(x, t)dx — 5-̂ - I xφ(x)dx
"2 J s(θ "2 J /
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= Pi f "*(!> τ)dτ - μ2 P 5(1)11 (̂5(1) + 0, τ)dτ (8.11)
*) o J o

Γ Jτ Γ
J 0 J s(τ)

"2

By virtue of (1.6), addition of (8.10) and (8.11) yields

2 2y - - - ] xφ(x)dx}

\- ^ fS ( f )χκ(x, t)dx - ^ Γ1 xu(x, t)dx\ (8.12)
( «1 J 0 «2 J s(t) )

^2 Γ "Λ1' τ)rfτ + Γ dτ \%- (s(τ)χuf^dχ + !ί2 Γ
J O J θ ( « ι J θ «2 J s(τ)

for every ί^O. It follows from (8.9) that the second term in the right-hand side
of (8.12) approaches to zero as ί->oo and that the fourth term converges as f-χx>.
Moreover, (8.9) assures

0 ^ ιι,(l, τ) ̂  πfe(0)exp {(0(0) - π2d2)t} for t ̂  0;

so that the third term also converges as f-» oo. Thus we find from (8.12) that (8.2)
holds true with some s*.

(ii) Let ξ e I be fixed. We make use of the following functions

!

a(t) sin πx/ξ for 0 £Ξ x ^ ξ with a > 0,
(8.13)

- 6(f)sinπ(l-x)/(l-ξ) for { ̂  x ̂  1 with 2> > 0

as comparison functions in place of (8.5) or (8.6). It is easy to see that {(7, ξ}
is a supersolution of (P) if a and b satisfy

(8.14)

and -α|i-g . .?._ with α g 1 and ft ^ J,

while {U, ξ} is a subsolution of (P) if

= -
(8.15)

and ..β-&-^-*^- with α g l and d g 1.

First we fix ζe(/l, 1) and construct subsolutions of (P) by using (8.15). It

follows from the assumptions A < 1 and B^. 1 that
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+0 as f — > o o , (8.16)

and

\ima(t) = u* (8.17)
f-»00

for some uξeΦξ = {u e/;/(w) = J^2/^2}. Observe 0(0 i^ min {0(0), min {vξι vξe
Φξ}}. Therefore, in order to get a subsolution of (P), it suffices to choose #(0)^ 1
and 6(0)^1 such that

μ^l - ξ) min {α(0), min {υζ; vξ e Φξ}} ^ μ2ίfr(0)

(use (8.15)). Theorem 4.2 assures that, if {φ, /} ̂  {£/( , 0), ξ} then {w( - , t; φ, /),
s(ί; <p, /)}^{l/( , 0» £} for every ί^O. Therefore, in view of (8.16) and (8.17),
one can assert that for any {u*, s*} eω(φ, /)

{M*, s*} ^ {17 ,̂ ξ} (8.18)

where Uξ(x) = uξ sin πx/ξ for x e [0, ξ] and Uξ(x) = Q for x e [ξ, 1]. On the other
hand, it follows from Theorems 6.2 and 7.1 that stationary solution satisfying
(8.18) must be {Ϊ7, 1}; so that ω(φ, /) = {{w, 1}}. Therefore, we have shown the
validity of (8.3) for any [φ, 1} such that [φ, /}^ {£/(-, 0), ξ}. This fact implies
the asymptotic instability of {0, ξ} with A < ξ < 1 as well as the asymptotic stability
of {ΰ9 1}. (The assertion obtained here is stronger than that of (ii).)

We next fix £e(0, A) and construct supersolutions of the form (8.13). In
view of (8. 14),

and

as /— * oo

as f — > oo.

Moreover, one can see that for any ε>0,

6(ί) ^ b(TE) exp {(^(0)- (f^ - e) ί) for t * Tε

with some Tδ>Q. If ξ satisfies

/(O) - 0(0) < π* (-||- - T̂ p-) , (8.19)

it is possible to choose sufficiently small α(0) so that {U( , 0> ^} becomes a
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supersolution of (P). Therefore, Theorem 4.2 implies

{u(.,t 9φ,l)9s(t'9φ9l)}£{V(.9t)9ξ}

for any {φ, /}:g {£/(-, 0), <!;}. The same resoning as in the case A<ξ<i shows
that ω(φ, /) is contained in a set of trivial solutions {0, ξ} satisfying ξ e(0, A) and
(8.19). This fact yields the asymptotic stability of this set.

The proofs of (iii) and (iv) are accomplished in the same way as that of (ii)
with use of the comparison principle.

The proof of (v) is completed as follows. For ξe(A, 1), take a subsolution
{£/(•, f), ζ} defined by (8.13) with fe(ί) = 0. Repeating the preceding procedure
leads us to conclude the asymptotic stability of {i/, 1} and the asymptotic instability
of {0, ξ} with A<ξ<l. The asymptotic stability of {w, 0} and the asymptotic
instability of {0, ξ} with 0<£<1— B are derived in an analogous manner. It

remains to show the asymptotic instability of {uc, c}. In place of (8.13), we

consider

φc Xί)) for O ^ x g
U(x) =

f o r ξ ί x ί l ,

where φc; p) (resp. w(x; q)) is the solution of (7.3) (resp. (7.5)) with A<ξ<i — B.
Since {17, ξ} is a supersolution (resp. subsolution) of (P) for any ξe(A9 c) (resp.

ξe(c9 ! — #)), the standard method based on the comparison principle yields
the instability of {uc, c} in the sense of (v) (see [8, §9]). q. e. d.

We will study conditions under which the free boundary arrives at one of the

fixed ends in a finite time.

THEOREM 8.2. Let {u( , t)9

 s(0) be a smooth solution o/(P). //

lim {w(0, s(i)} = {ΰ, 1} (resp. [u, 0}) in Ω-topology, (8.20)
ί-»00

then there exists a non-negative number Tί<cc (resp. T2<oo) such that

s(t) = 1 for t ^ TI (resp. s(t) = 0 for t ̂  T2) .

PROOF. Assume that lim^^ {u(t)9 s(t)} = {Π9 1} (in Ω-topology) and that

0<s(ί)<l for all ί^O. Then we can make use of the identity (8.12). Since

w ^ O i n S", w ^ O i n 5+ and u^l, 0^0 for f^O, it follows from (8.12) that

*>a*{y/ 2 + ίrT( 2 a2 J i

J t ( u Γs(τ) u ΓL
dτ <-^- \ xuf (u)dx+ -y- \

0 ( "i J 0 "2 J «(τ)
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where the first term in the right-hand side of (8.21) is bounded from below by

some constant. Since (i/, 1} e & satisfies (SP-1),

~^ 1- I xΰf(ΰ)dx = — μ t I xΰxxdx = — μιΰx(i) = CΛ < 0.
MI J o J o

Therefore, by virtue of (8.21), there exists a positive number T0 such that

-£- P(°xιφc, t)f(u(x, t))dx + J± Γ xiί(x, 00(«(*, 0¥x
«1 J 0 «2 J s(ί)

^ y cί for all ί ̂  Γ0.

Therefore, letting ί^oo we see that the right-hand side of (8.21) tends to oo. This

result contradicts the boundedness of s(ί); so that the free boundary hits a fixed

end in a finite time.

If we wish to get the assertion in the case where Hindoo {w(f)» s(t)} = {u_9 0} in

Ω-topology, we have only to use the following identity in place of (8.12):

1 /1 ^ / * Λ Λ 2

= {I (1 -O2- 5| £ d -x)φ(x)dx- -g- J| (1 -x)φ(x)dx}

^ Γ0 (1 -*)!!(*, t)dx+ ̂  Γ (1 -X)U(X, t)dx\
«1 J 0 «2 J s(0 )

ι Γ Mχ(0, T)^T - Γ dτ {-gi. Γ^'d-x^/dίMx
J o J o I «ι J o

whose derivation is almost the same as that of (8.12). q. e.d .

8.2. Stability analysis in Case B

We next study stability or instability properties of stationary solutions given

by Theorem 7.2 in Case B.

THEOREM 8.3. Let f and g be of the forms (7.11) and (7.12), respectively.

( i ) The set of trivial solutions is asymptotically stable as a set. Moreover

if A* > 1 (resp. B* > 1), then

l i m M + ( , r; φ, I) = 0 (resp. lim ιι-( , ί; <p, /) = 0) ί/i //0(/) (8.22)
f-*00 f-400

/or α«y {φ, I}. In particular, if A*>1 and £*>!, then
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lim {u( , ί; φ, /), s(ί; φ, /)} = {0, s*} in Ω-topology (8.23)
f-K30

with some s*e7 depending on {φ, I}.

(ii) // ^* = 1 (res/?. £* ̂  1), ίnen {w 1 ? l}e^> (res/?. {w1? 0} e^T) is
asymptotically stable from aobve (resp. from below) in the sense that

lim{tt( , ί; φ, /), s(ί; φ, /)} = [ΰl9 1} (8.24)
f-»00

(r^sp. {w1? 0}) in Ω-topology)

for any {φ, 1} satisfying φ^u± (resp. φ^u^).

In paticular if A*<1 (resp. B*<1), then {ΰί9 1} e 0> (resp. {uί9 0} e^T) is

asymptotically stable and {ΰ2, 1} e ̂  (resp. {u2, 0} e^Γ) is asymptotically

unstable in the following sense: (8.24) is valid for any {φ, 1} satisfying φ^Π2

with φφΰ2 (resp. φ^u2 with φφu^), while (8.22) is valid for any {</>, /} satisfying

φ^ΰ2 with φφΰ2 (resp. φ^u2 with φφu2).

(in) When (8.24) holds true, there exists a non-negative number T1<co

(resp. T2<oo) such that

s(ί; φ, /) = 1 for t ^ TΊ (resp. s(t'9 φ, l) = Qfor t^.T2).

(iv) Any solution {M*, s*} in 0 is asymptotically unstable.

PROOF. First it is better to state some results on the asymptotic behavior of

solutions for

(x,t)eQ,
(8.25)

7(0, 0 = 7(1, 0 = 0, t > 0,

with initial conditions V( - , 0)= V0 = 0.

For y4*>l, the stationary problem associated with (8.25) has no positive

solutions; so that every solution of (8.25) decays to zero in Hl(I) as ί-»oo.

For A* = l, the stationary problem has exactly two non-negative solutions

V=ΰί and 7=0. Note that ΰί(x) = v(x; pί(i)) = v(x; p2(l)), where φc; p) is

the solution of (7.3). For ξ> 1, one can see

MI > K P2(0) in (0, x0) and M t < f< p2(ζ)) in (x0, 1)

with some x0el', so that t;(x; p2(ξ)) and its suitable translations become super-

solutions for (8.25). Therefore, by the comparison principle any solution V of

(8.25) satisfies

limK( ,0 = δ1 (resp.O) in //>,(/) (8.26)
ί-κ»

for V0 such that V0^ΰi (resp. VQ^U^) with V0φΰί (See, e.g., Aronson et al [1] or

Matano [7]).
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For A*<1, (8.25) has exactly three non-negative stationary solutions F=w l 5

V=ΰ2 and K=0 with 0<w2 = t;( , p2W)<ui = v(- , p^ϊj) on /. We observe that
v( ' I P2(ζ)) and its suitable translations are supersolutions (resp. subsolutions) of
(8.25) for ξ>i (resp. A*^ζ<l). Therefore, the comparison argument allows
us to see the validity of (8.26) for any V0 satisfying V0^U2 (resp. F0^w2) with
V»φΰ2.

These results assure that 7=0 is asymptotically stable from above. More-
over, if a solution of (8.25) decays to zero as f-κχ>, then its decaying rate is of
exponential type because -d^2+/(0)<0 (see, e.g. Kielhόfer [5]).

Analogous results hold for the following initial boundary value problem

Wt = d2Wxx+Wg(W), (x, Oeβ,

W(0, 0 = W(l, 0 = 0, t ^ 0, (8.27)

W(x,0) = W0(x)^Q, xEl.

Making use of these asymptotic properties for (8.25) and (8.27) one can easily
derive the assertions of (i) and (ii). Especially, the convergence of s(ί; φ, /) in
(8.23) is proved in the same manner as Theorem 8.1 (i) with use of the exponential
decay of \u( , t\ φ, l)\ as f-»oo.

The proof of (iii) is the same as that of Theorem 8.2.
Finally, we will show (iv). For the sake of convenience, let {w*, s*} corre-

spond to an intersecting point of C12 and C21 and let u* be expressed by (7.20).

We define

ί v(x; p2(ξ» for 0 = x ^ ξ
U2l(x; ξ) =

for { ^ j c ^ l .

Since both p2(ζ) and q^ξ) are monotone decreasing, one can show that,

if ξ e [A*, s*) then

t/2i( ; ί)>«* on (0,xx) and l/21( 0 < u* on (χlf 1)

with some xl e (0, s*) and, if ξ e (s*, 1 — β*]

V2l( ;ξ)<u* on (0, x2) and l/21( ; ξ ) > u * on (x2, 1)

with some x2e(0, s*) (see [9]). Note that μιp2(ξ)-μ2qι(ξ) changes sign at
ξ = s* when ξ moves in its neighborhood. Then {U21( ξ), ξ} becomes a

supersolution (resp. subsolution) of (P) if μιp2(0<μ2<?ι(£) (resp. μίp2(ζ)>μ2(lί '
(ξ)). Therefore, Theorem 4.2 enables us to drive the asymptotic instability
of{w*, s*}. q.e.d.

RREMARK 8.1. Suppose that (8.22) holds forw + andw". Then |ιι( , t; φ, /)|
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decays exponentially to zero (uniformly in 7) as ί->oo. Therefore, we can show

the validity of (8.23) in this situation (see the proof of Theorem 8.1 (i)).

REMARK 8.2. The comparison principle enables us to get preciser information
on the asymptotic stability or instability for stationary solutions if one can choose
suitable comparison functions. For instance, take

f V(x,t 9 ξ ) i f 0 ^ x ^ £ ,
U(x, t; ξ) =

[ W(x, t ξ) if ξ£ x £ 1,

where V(x, t\ ξ) (resp. W(x, ί ; ξ)) is the solution of (8.25) (resp. (8.27)) with 0<

x < 1 replaced by 0 < x < ξ (resp. ξ < x < 1). Suppose that A* < 1 and A* + B*>1.

We fix ξe(A*9 1) and take V0 such that F0^( p2(ξ» (V0=έι;(. p2({))) on

(0, ξ). It is possible to show lim^^ F( , t\ ξ) = v( 9 ί; p^ξ)) uniformly on

(0, ξ) and lim^oo W(-9 t\ ξ) = Q uniformly on (ξ, 1) for any W0 (see the proof of

Theorem 8.3). Hence {U(-9 t; ξ), ξ} becomes a subsolution of (P) with an

appropriate choice of W0. Since no stationary solutions {M*, s*} other than

{Uί9 1} satisfy {w*, s*}^{limί_>00 t/( , ί; ξ), ξ}, we can decide that

lim {ιι(. , ί; φ, /), s(ί; φ, /)} = {ΰl9 1} in Ω-topology
f-» αo

for any [φ, 1} satisfying {φ, /}^{t/( , 0; ξ), {}.

§ 9. Bifurcation results

In this section we will state some bifurcation results by taking dί = d2 = d9

i = μ2 = μ and /(ιι) = g( - u).

9.1. Case A

Set

where /ι is a monotone decreasing and Lipschitz continuous function on [0, 1]

such that /ι(0)=l and Λ(l) = 0. We fix dί9 μ and regard a as a parameter.

Theorem 7.1 gives us complete information about the structure of the set of

solutions for (SP).

When a is smaller than π2d, (SP) has no nontrivial solutions so that the set

of trivial solutions is asymptotically stable (as a set) by Theorem 8.1 (i) (Fig. 6A).

As a becomes larger than π2d, two nontrivial solutions {ΰ, l}e^ and { — M, 0}e^Γ

bifurcate from the set of trivial solutions as in Fig. 6B. These bifurcating solutions

are asymptotically stable and trivial solution {0, ξ} satisfying Q^ξ<l—π^/d/a

or πjd/a <ξ^i becomes asymptotically unstable (see Theorem 8. 1 (iv)). Further-
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Fig. 6 A a^ Fig. 6 B π2d<a^4π2d Fig. 6C 4π2d<a

Fig. 6 (6A, 6B and 6C). Solutions of (SP) in Case A.

more, as a becomes larger than 4π2d, another nontrivial stationary solution {w1/2,
1/2} bifurcates from the set of trivial solutions (see Fig. 6C). By virtue of Theorem
8.1 (v), {ιι1/2, 1/2} together with all trivial solutions is asymptotically unstable.
Fig. 7 shows some numerical experiments which exhibit the asymptotic behavior
of the solutions {u, s} of (P). Here we have carried out the numerical analysis
by taking dι=d2 = μl=μ2 = lj(u) = g(-u) = a(\.-

φ(x) =
α sin πx/l for 0 ̂  x ^ I,

- β sin π(l-x)/(l-/) for / ̂  x ^ 1.

9.2. CaseB

We take

Fig. 7A. For a=9<π2, every solution of (P) converges to one
of trivial stationary solutions.
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a = 25
/ =0.5
α = 0.5
£=0.5

= s(t)

Fig. 7B. For 0=25e(τr2, 4τr2), the maximal solution {w, 1} is asymptotically stable and
the free boundary x=s(t) hits the fixed boundary jt-1 in a finite time if {«, s]
converges to {«, 1}.

/ = 0.52
α = 0.1
θ=0.1

7=0.5

* = 0.1

X =

"t ί

0

Fig. 1C. For 0=50>4ττ2, the maximal solution {w, 1} is asymptotically stable, while
another non-trivial solution {w,/2, 1/2} is realized if the solution of (P) starts
from a symmetric initial data.
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Fig. 8A v<a*d

» x

Fig. 8C a*d<v<4a*d

Fig. 8B v = a*d

Fig. 8D v=4a*d

Fig. 8E 4a*d<v

Fig. 8 (8A, 8B, 8C, 8D and 8E). Solutions of (SP) in Case B.



Free boundary problems 279

f(u) = -v(u- a) (u - 1) with 0 < a < 1/2.

Fixing d, μ{ and a we regard v as a parameter. By Theorem 7.2, the structure of
,̂ Jf and Θ changes depending on A* ( = £*), which is the minimum of T^(p)

defined by (7.2). Note that A* is written in the form

where a* is a positive constant depending only on a.

By Theorem 8.3 (i), the set of trivial solutions is always asymptotically
stable as a set. For, v = a*d, a pair of nontrivial stationary solutions in 0> and
jV* suddenly appear as in Fig. 8B (In [13], Smoller calls such a phenomenon a
spontaneous bifurcation). Then, for v>α*d, each non-trivial solution bifurcates

into two non-trivial solutions in the same class, one of which (a maximal one
{M!, 1} or a minimal one {uί9 0}) is asymptotically stable and the other is
asymptotically unstable (use Theorem 8.3 (ii)). See Fig. 8C. Moreover,
for v = 4αd*, a new non-trival solution in Θ, which is asymptotically unstable,

appears as in Fig. 8D and, for v>4ad*, it bifurcates into two non-trivial solutions

in G which are asymptotically unstable by Theorem 8.3 (iv) (Fig. 8E).
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