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Introduction

For a finite-dimensional Lie algebra I. M. Singer ([6]) introduced the
condition (A) (§1, Definition 1), A. JGichi ([4]) introduced the conditions (A,)
and (A,) (§1, Definition 2), and the properties of finite-dimensional Lie algebras
satisfying these conditions had been investigated by several authors in [4, 6, 8, 9].

For a not necessarily finite-dimensional Lie algebra, we shall define the
conditions (A), (A,) and (A,) in the same manner and moreover introduce the
condition (B,) strengthening the condition (A,). The purpose of this paper is
mainly to extend the known results on finite-dimensional Lie algebras satisfying
these conditions to not necessarily finite-dimensional Lie algebras.

In Section 1, let L be a not necessarily finite-dimensional Lie algebra over
a field and let H be an ideal of L. We show that if L satisfies (A, ) (resp. (A,),
(B,)) then H satisfies (A,) (resp.(A,), (B,)) (Proposition 2). More generally
we shall give similar results in case that H is a weakly ascendant subalgebra of L
(Propositions 5 and 7).

In Section 2, for a Lie algebra L belonging to LR (resp. N,) we show that
the conditions (A), (B,) and “abelian’’ (resp. (A), (B), (Ay), > (Ax+1), (Ay) and
“abelian’’) are equivalent (Theorem 8). For a Lie algebra L belonging to
L(EA N &) over a field of characteristic O, we show that the conditions (A),
(B,,) and “abelian’’ are equivalent (Theorem 9).

In Section 3, for a Lie algebra L belonging to L(ser)§ over a field of charac-
teristic 0, we show that L satisfies (A) (resp. (B,,)) if and only if L is the direct
sum of the center and a semisimple ideal S of L satisfying (A) (resp. (B,,)) (Theorem
11) and that the conditions (A) and (B,) are equivalent (Theorem 12). Finally
for a Lie algebra L belonging to L(ser)§ over an algebraically closed field of
characteristic 0, we show that the conditions (A), (B,) and ‘“abelian’’ are
equivalent (Theorem 13).

§1.

Throughout this paper @ is a field of arbitrary characteristic and all Lie
algebras are not necessarily finite-dimensional over a field ¢ unless otherwise
specified.
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For a Lie algebra L, by H< L (resp. H<L) we mean that H is a subalgebra
(resp.an ideal) of L. We denote by U (resp. &, N, N,, EA) the class of
Lie algebras which are abelian (resp. finite-dimensional, nilpotent, nilpotent of
class<k, soluble). For a class X of Lie algebras we denote by LX the class
of locally X-algebras.

Let D be a derivation of L and let k be an integer >2. Then D is called
k-nilpotent if LD*¥=0 and nil if for each finite-dimensional subspace V of L
there exists a positive integer n=n(¥) such that VD"=0.

Now for a finite-dimensional Lie algebra L, the condition (A) was introduced
by I. M. Singer ([6]) and the conditions (A;) and (A ) were introduced by A. J6ichi
([4]) as follows.

DEerINITION 1. L is said to satisfy the condition (A) if any pair of elements
x, y of L such that [x, ,y]=0 satisfies [x, y]=0.

DEFINITION 2. Let k be an integer >2. L is said to satisfy the condition (A,)
if ad L contains no non-zero k-nilpotent elements and L is said to satisfy the
condition (A ) if ad L contains no non-zero nilpotent elements.

For a not necessarily finite-dimensional Lie algebra L we define the con-
ditions (A), (A,) and (A_) in the same manner as above. Moreover we introduce
the following condition.

DErFINITION 3. We say that L satisfies the condition (B_), if ad L contains
no non-zero nil elements.

From now on we use the same notation (A) (resp. (A;), (A,,), (B,)) to express
the class of Lie algebras satisfying the condition (A) (resp. (Ay), (A,), (By)). For
unexplained terminology and notation we refer to [1, 13].

As in [4, Proposition 1], we show

PROPOSITION 1. Let L be a Lie algebra over a field ®. Then we have the
following implications for L:

(A)=(By) = (Ag) = - 2 (Ars ) = (A) = - = (Ay).
Moreover we have (A )= N2 (Ap)-

PrROOF. We only show the implication (A)=>(B,). Assume that Le(A)
and let ad; x be a nil element of ad L. Then for any y € L, there exists an integer
k=k(y) (k>2) such that (y)(ad, x)*=0. Because of Le (A), [y, x—,x]1=0. After
repeating this procedure k—2 times, we have [y, x]=0. Since y is arbitrary,
we have ad; x=0. Therefore Le(B,).
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ExampLES. Let L, be the Lie algebra over a field & described in terms of
a basis x, y, z by the table

x,y1=12, [v,zl=x, [z,x]=y,

and let L be the direct sum of a non-empty set of Lie algebras which are isomorphic
to Ly,. Then the following statements hold.

(1) Incase =R, L belongs to (A)~A.

(2) Incase @=C, L belongs to (A,)~(A;).
L. A. Simonjan ([5]) and T. Tkeda ([3]) constructed examples of the countable-
dimensional Lie algebra M over a field ¢ which is non-abelian, locally nilpotent
and has no non-zero bounded left Engel elements. Evidently

(3) M belongs to (A,)~(B,).

Denoting the center of L by {(L), we have

PROPOSITION 2. Let L be a Lie algebra over a field ® and let H<L. Then
the following statements hold.

(1) If Le(Ax+1), then He(A,). Furthermore if H={(L), then L/H € (A)).
(k=2,3,4,-))

(2) If Le(A,), then He(A,).

(3) If Le(B,), then He(B,).

PrOOF. (1) Assume that Le(A,,,). Let ady x be a k-nilpotent element
of ad H. Because of H<L, L(ad, x)**'< H(ady x)*=0 and therefore ad, x
is (k+ 1)-nilpotent. By assumption we have ad; x=0. Then ady x=0and He
(A,). Furthermore assume that H={(L). Let X be the element of L=L/H
corresponding to xe L. Now let ad; X be k-nilpotent. Then L(ad, x)*<H.
Since H = {(L), (ad, x)**'=0 and therefore ad; x=0. This implies that L € (A4,).

(2) We omit the proof.

(3) Assume that Le(B,) and let ady x be a nil element of ad H. Since
H<L, for each finite-dimensional subspace V of L. [V, x] is a finite-dimensional
subspace of H. By assumption there exists an integer k=k(V, x) such that
[V, xJ(ady x)*=0. Therefore V(ad, x)**'=0. Thus ad; x=0. It follows that
ady x=0and He(B,).

The following proposition clearly holds.

PROPOSITION 3. Let L be a direct sum of ideals L; (Ae A). Then Le(A)

(resp. (Ay), (A), (By)) if and only if L;e(A) (resp.(A,), (A,), (B,)) for all
AeA.

We shall here discuss the statement of Proposition 2 under a weaker
assumption instead of the assumption H<L.
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DEFINITION 4 ([10]). Let L be a Lie algebra over a field ® and H<L.
For an ordinal A, H is said to be a A-step weakly ascendant subalgebra of L,
provided there exists an ascending chain {M,|a <A} of subspaces of L such that

() My=Hand M;=L,

(2) [M,.,, Hl=M, for any ordinal a <4,

(3) My=\U,p M, for any limit ordinal f< 4.

We then write H<*L. H is said to be a weakly ascendant subalgebra of L if
H <*L for some ordinal A. We then write H wasc L. Especially H is said to be
a weak subideal of L if Al=n<w.

LEMMA 4. Let L be a Lie algebra over a field &, let H wasc L and let x
be an element of H. If ady x is nil, then so is ad; x.

PrOOF. Let V be any finite-dimensional subspace of L. By [2, Lemma 2.1],
there exists an integer n=n(V, x) such that [V, ,x]=H. Then [V, ,x] is a finite-
dimensional subspace of H. Since ad x is nil, there exists an integer k =k([V, ,x1)
such that [V, ,x] (ady x)*=0. Therefore V(ad, x)"*¥=0. Thus ad, x is nil.

PROPOSITION 5. Let L be a Lie algebra over a field ® and let H wasc L.
If Le (B,,), then H e(B,).

PROOF. Assume that Le (B, ) and let ad, x be a nil element of ad H. By
Lemma 4 ad, x is also nil and therefore ad, x=0. In particular ady x=0
and He(B,).

LEMMA 6. Let L be a Lie algebra over a field ®. Let H<"L and let
x be an element of H. If ady x is m-nilpotent, then ad, x is (m+ n)-nilpotent.

PrROOF. Since H<"L, L(ad, x)"< H. By assumption H(ady x)"=0 and
hence L(ad; x)"*"=0. Therefore ad, x is (m+ n)-nilpotent.

As a consequence of Proposition 5 and Lemma 6, we have

PROPOSITION 7. Let L be a Lie algebra over a field @ and let H<"L.
Then the following statements hold.

(1) If Le(Ag.,), then He(A,) (k=2, 3, 4,---).

(2) IfLe(A,), then He(A ).

(3) If Le(B,), then He(B,).

§2.

In this section, we study the relationship between the conditions (A), (A),),
(Ay), (B,,) and ““abelian’’ in case of locally nilpotent (resp.locally soluble-and-
finite) Lie algebras. First we extend a result of A. JGichi and show the following
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THEOREM 8. Let L be a Lie algebra over a field ®. Then the following
statements hold.

(1) If LeLNM, then the conditions (A), (B,,) and “abelian’ are equivalent
for L.

(2) If LeR,, then the conditions (A), (By), (Ay), -, (Axsy), (Ay) and
“abelian’ are equivalent for L (k=2, 3, 4,-+-).

Proor. (1) It is clear that if Le¥, then Le(A). By Proposition 1, if
Le(A), then we have Le(B_,). Now assume that Ler®Rn(B,). For any
element x of L and for any finite-dimensional subspace V of L, there exists a
subalgebra H of L such that {x} UV=HeNNF. Then there exists -an integer
n>0 such that H"*'=0. Thus V(ad,x)"=0 and ad, x is nil. Therefore
ad; x=0. Since x is arbitrary, we have Le .

(2) By Proposition 1, it suffices to prove that if Le %, n(A4,) then Le.
Assume that Le R, n(A,). For any element x of L, (ad, x)*=0. That is,
ad; x is k-nilpotent and by assumption ad, x=0. Since x is arbitrary, we have
LeN.

Let L be a Lie algebra over a field #. Then by p(L) and (L), we denote the
Hirsch-Protkin radical (that is, L-radical) and L(EU n §)-radical of L re-
spectively.

A Lie algebra L over a field @ is said to be ideally finite, if any finite subset
of L is contained in a finite-dimensional ideal of L. We denote by L(<)§ the
class of ideally finite Lie algebras ([7]).

THEOREM 9. Let L be a Lie algebra over a field @ of characteristic 0 and
assume that Le L((EU N ). Then the following statements hold.

(1) The conditions (A), (B,) and “abelian’’ are equivalent for L.

(2) If p(LYeR,, then the conditions (A), (B,), (Ag), ++, (Axs2), (Arsy) and
“abelian’ are equivalent for L (k=1, 2, 3,---).

(3) In particular if Le .(<){, then the conditions (A), (B,), (A,) and
“abelian’ are equivalent for L.

Proor. (1) It suffices to prove that if Le(B,) then Le . Assume that
Le(B,). Since p(L)<L, p(L)e(B,,) by Proposition 2(3) and therefore p(L)e U
by Theorem 8(1). On the other hand, because of Le L(EU N &) we have [L, L]
< p(L) by [1, Corollary 13.3.13] and [13, Corollary 8.3.5]. For any ye L and
for any zep(L) we have [y, z, z]e[p(L), p(L)}]=0. That is, y(ad, z)>=0.
Since y is arbitrary, (ad, z)?=0. Therefore ad;, z=0 because of Le(B,). It
follows that [L, p(L)]=0. Now for any x, y e L, we have [y, x, x] e [p(L), L]=0
and therefore y(ad, x)2=0. Since y is arbitrary, (ad; x)?=0. Then ad, x=0
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because of Le (B,). Therefore Le .

(2) It suffices to prove that if Le (A, ) then LeA. Assume that Le(A,,,).
For k=1, p(L)e®N, by assumption and therefore p(L)e . For k>2, since
p(L)<L, p(L)e(A,) by Proposition 2(1). It follows from Theorem 8(2) that
p(L)eA. Arguing as in the proof of (1), we have [L, p(L)]=0 and conclude
that Le 2.

(3) Assume that LerL(<)Fn(A,). For any xep(L), it follows from
[12, Lemma 7.3] that ad, x is nilpotent. By assumption we have ad, x=0 and
therefore [L, p(L)]=0. Now as in the proof of (1), we have Le .

§3.

In this section, we investigate the case of serially finite Lie algebras.

DEerFINITION 5 ([1. §13.2]). Let L be a Lie algebra over a field ¢ and let H < L.
For a totally ordered set X, H is said to be a serial subalgebra of type X of L,
provided there exists a collection {A,, V|0 € Z} of subalgebras of L such that

(1) HcA,and HcV, foralloel,

2) A cV,cA4,if1<a0,

(3) L~H=U,es(4,~V,),

4 V,<A, foralloel.
We then write H ser L. L is said to be serially finite, if any finite subset of L is
contained in a finite-dimensional serial subalgebra of L. We denote by L(ser)§
the class of serially finite Lie algebras.

A locally finite Lie algebra L is said to be semisimple if o(L)=0.
Now we quote the following two results.

THEOREM A ([1, Theorem 13.4.2] and [12, (1.3)]). Let L be a Lie algebra
belonging to L(ser)§ over a field @ of characteristic0. Then L is semisimple if
and only if L is a direct sum of finite-dimensional non-abelian simple ideals.

THEOREM B ([1, Theorem 13.5.7] and [12, (1.5)]). Let L be a Lie algebra
belonging to L(ser)§ over a field ® of characteristic 0. Then there exists a
semisimple subalgebra S of L such that L=0o(L)+S and a(L)n S=0.

First we extend a result of M. Sugiura and show the following

PROPOSITION 10. Let L be a semisimple Lie algebra belonging to L(ser)§
over a field @ of characteristic 0. Then the conditions (A), (B,) and (A,) are
equivalent for L.

PrROOF. By Theorem A, L=@® S,, where each S, is a finite-dimensional
A
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non-abelian simple ideal of L. By [8, Theorem 1], the conditions (A) and (A,)
are equivalent for each S, and therefore so are the conditions (A), (B,) and (A,).
Now the assertion follows from Proposition 3.

THEOREM 11. Let L be a Lie algebra belonging to L(ser)§ over a field &
of characteristic 0. Then the following statements hold.

(1) Le(A) (resp.(By)) if and only if L={(L)®S where S is a semisimple
ideal of L belonging to (A) (resp.(By)).

(2) Let p(LYeR,. Then Le(A,,,) if and only if L={(L)®S where S is a
semisimple ideal of L belonging to (A,,,) (k=0, 1, 2,---).

(3) Inparticular if Le L(<1)§, then the statement (1) holds for the condition
(Ay)-

Proor. Put R=oa(L).

(1) We only prove the statement on (B,). Assume that Le(B,). Since
R<L, we have Re(B,). Since ReL(EANF), ReA by Theorem 9 (1).
For any x € L and for any y € R, we have [x, y, y]e[R, R]=0. Then x(ad, y)?
=0. Since x is arbitrary, (ad, y)>=0. Because of Le(B,), ad, y=0. This
implies that [L, R]=0 and therefore R={(L). By Theorem B, there exists a
semisimple subalgebra S of L such that L=R+S and Rn S=0. It follows that
S<L. Thatis, S is a semisimple ideal of L and L=R@®S. Because of Le(B,),
we have S € (B,) by Proposition 3. The converse is clear.

(2) Assume that Le(A,,,). For k=0 [R, R]<p(L)=0, that is, Re .
For k>1 Re(A,,) by Proposition 2 and since p(R)=p(L) by [13, Proposition
8.3.3], Re A by Theorem 9(2). Now, the rest of the proofis similar to that of (1).

(3) When Le (<)@, assume that Le (A,). Since R<tL, we have Re(A,).
Since Re L(EU N &) NL(<)F, ReU by Theorem 9(3). Now, as in the proof of
(1), we have the assertion of (3).

THEOREM 12. Let L be a Lie algebra belonging to L(ser)§ over a field & of
characteristic 0. Then the conditions (A) and (B,) are equivalent for L. In
particular if Le L(<)@, then the conditions (A), (B,,) and (A,) are equivalent
for L.

PROOF. Assume that Le (B,). By Theorem 11(1), there exists a semisimple
ideal S of L such that L={(L)®S and Se(B,). By Proposition 10 Se(A).
Since {(L)e A <=(A), by Proposition 3 it follows that Le(A). The converse is
evident. In case that LeL(<)@, the assertion follows from Proposition 10
and Theorem 11(3).

Finally we show the following

THEOREM 13. Let L be a Lie algebra belonging to L(ser)§ over an alge-
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braically closed field ® of characteristic 0. Then the following statements hold.

(1) The conditions (A), (B,) and “abelian™ are equivalent for L.

(2) If p(LYe Ny, then the conditions (A), (By), (Ag),++, (Arss), (Arsz)
and “abelian’’ are equivalent for L (k=1, 2, 3,---).

(3) In particular if Le (<), then the conditions (A), (By), (A,) and
“abelian’’ are equivalent for L.

Proor. (1) It suffices to prove that if Le(B,) then Le . Assume that
Le(B,). By Theorem 11(1), there exists a semisimple ideal S of L such that
L={(L)®S and Se(B,). Then we assert that S=0. In fact, if S#0, by
Theorem A S= (-P S,, where each S, is a finite-dimensional non-abelian simple

ideal of L. By [4, Lemma 3], S, ¢ (A;) and therefore by Proposition 1 we have
S,¢(B,). On the other hand, S, e(B.) by Proposition 3. Thus we have a
contradiction. Therefore L={(L) and Le A.

(2) is similarly proved and (3) follows from (1) and Theorem 12.
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