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Introduction

For a finite-dimensional Lie algebra I. M. Singer ([6]) introduced the

condition (A) (§1, Definition 1), A. Jόichi ([4]) introduced the conditions (AΛ)

and (A^) (§1, Definition 2), and the properties of finite-dimensional Lie algebras

satisfying these conditions had been investigated by several authors in [4, 6, 8, 9].

For a not necessarily finite-dimensional Lie algebra, we shall define the

conditions (A), (Afc) and (A^) in the same manner and moreover introduce the

condition (B^) strengthening the condition (A^). The purpose of this paper is

mainly to extend the known results on finite-dimensional Lie algebras satisfying

these conditions to not necessarily finite-dimensional Lie algebras.

In Section 1, let L be a not necessarily finite-dimensional Lie algebra over

a field and let H be an ideal of L. We show that if L satisfies (A f e+ j) (resp. (A^),

(B^)) then H satisfies (Afc) (resp. (Ax), (B^)) (Proposition 2). More generally

we shall give similar results in case that H is a weakly ascendant subalgebra of L

(Propositions 5 and 7).

In Section 2, for a Lie algebra L belonging to L$l (resp. 9lk) we show that

the conditions (A), (B^) and "abelian" (resp. (A), (BJ, (AJ,---, (Ak+1), (Ak) and

"abelian") are equivalent (Theorem 8). For a Lie algebra L belonging to

L(ε2l n 5) over a field °f characteristic 0, we show that the conditions (A),

(Boo) and "abelian" are equivalent (Theorem 9).

In Section 3, for a Lie algebra L belonging to L(ser)5 over a field of charac-

teristic 0, we show that L satisfies (A) (resp. (B^)) if and only if L is the direct

sum of the center and a semisimple ideal S of L satisfying (A) (resp. (B^)) (Theorem

11) and that the conditions (A) and (B^) are equivalent (Theorem 12). Finally

for a Lie algebra L belonging to L(ser)g over an algebraically closed field of

characteristic 0, we show that the conditions (A), (B^) and "abelian" are

equivalent (Theorem 13).

§1.

Throughout this paper Φ is a field of arbitrary characteristic and all Lie

algebras are not necessarily finite-dimensional over a field Φ unless otherwise

specified.
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For a Lie algebra L, by H<L (resp. //oL) we mean that H is a sυbalgebra
(resp. an ideal) of L. We denote by 2ί (resp. ft, 51, 9ϊk, E«) the class of
Lie algebras which are abelian (resp. finite-dimensional, nilpotent, nilpotent of
class </c, soluble). For a class I of Lie algebras we denote by L£ the class
of locally £ -algebras.

Let D be a derivation of L and let k be an integer >2. Then D is called
/c-nilpotent if LD* = 0 and nil if for each finite-dimensional subspace V of L

there exists a positive integer n — n(V) such that FD" = 0.
Now for a finite-dimensional Lie algebra L, the condition (A) was introduced

by I. M. Singer ([6]) and the conditions (Afc) and (A^) were introduced by A. Jόichi

([4]) as follows.

DEFINITION 1 . L is said to satisfy the condition (A) if any pair of elements

x, y of L such that [x, 2.v] = 0 satisfies [x, j>]=0.

DEFINITION 2. Let k be an integer > 2. L is said to satisfy the condition (Afc)

if ad L contains no non-zero /c-nilpotent elements and L is said to satisfy the
condition (A^) if ad L contains no non-zero nilpotent elements.

For a not necessarily finite-dimensional Lie algebra L we define the con-
ditions (A), (AΛ) and (A^) in the same manner as above. Moreover we introduce
the following condition.

DEFINITION 3. We say that L satisfies the condition (B^), if ad L contains

no non-zero nil elements.

From now on we use the same notation (A) (resp. (AJ, (A^), (B^)) to express
the class of Lie algebras satisfying the condition (A) (resp. (Afc), (A^), (B^)). For

unexplained terminology and notation we refer to [1, 13].

As in [4, Proposition 1], we show

PROPOSITION 1. Let L be a Lie algebra over a field Φ. Then we have the
following implications for L:

Moreover we have (A00) = njt^2(^)-

PROOF. We only show the implication (A)cΦ(B00). Assume that Le(A)
and let adL x be a nil element of ad L. Then for any y e L, there exists an integer

k = k(y) (k>2) such that (>0(adLx)*=0. Because of Le(A), [y, k_ 1x] = 0. After
repeating this procedure k — 2 times, we have [y, x] = 0. Since y is arbitrary,

we have adL x = 0. Therefore Le (B^).
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EXAMPLES. Let L0 be the Lie algebra over a field Φ described in terms of
a basis x, y, z by the table

[x, y~\ = z, [v, z] = x, [z, x] = y,

and let L be the direct sum of a non-empty set of Lie algebras which are isomorphic
to L0. Then the following statements hold.

(1) In case Φ = /f, L belongs to (A)\2ί.
(2) In case Φ = C, L belongs to (A2)\(A3) .

L. A. Simonjan ([5]) and T. Ikeda ([3]) constructed examples of the countable-
dimensional Lie algebra M over a field Φ which is non-abelian, locally nilpotent
and has no non-zero bounded left Engel elements. Evidently

(3) M belongs to (AJ^BJ.

Denoting the center of L by £(L), we have

PROPOSITION 2. Let L be a Lie algebra over afield Φ and let //<ιL. Then
the following statements hold.

(1) 7/Le(Ak + 1), then //e(AΛ). Furthermore if //<=C(L), then L///e(A Λ ).

(fc = 2,3,4, . .)
(2) //Le(AJ, then H €(*„).
(3) //Le(BJ, thenHe(Bn).

PROOF. (1) Assume that Le(Afc+1). Let aάH x be a /c-nilpotent element
of ad//. Because of //oL, L(adLx)*+1 c//(adw x)fc = 0 and therefore adLx
is (fe-hl)-nilpotent. By assumption we have adLx = 0. Then adH x = 0 and He
(AΛ). Furthermore assume that H^ζ(L). Let x be the element of L = L/H
corresponding to xeL. Now let adL x be /c-nilpotent. Then L(adLx) fc£//.
Since H c ζ(L), (adL x)fc+1 = 0 and therefore &dL x = 0. This implies that L e (Ak).

(2) We omit the proof.
(3) Assume that Le(E00) and let ad^x be a nil element of ad//. Since

//<αL, for each finite-dimensional subspace V of L [V,x] is a finite-dimensional
subspace of //. By assumption there exists an integer k = k(V, x) such that
IV, x](adHx)fc = 0. Therefore F(adLx)fc+1=0. Thus adLx = 0. It follows that

The following proposition clearly holds.

PROPOSITION 3. Let L be a direct sum of ideals Lλ (λeλ). Then Le(A)
(resp. (Afc), (AJ, (B J) if and only if L λ e(A) (resp. (Ak), (AJ, (B J) /or α/7
λeA.

We shall here discuss the statement of Proposition 2 under a weaker
assumption instead of the assumption //<αL.
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DEFINITION 4 ([10]). Let L be a Lie algebra over a field Φ and H<L.

For an ordinal λ, H is said to be a Λ-step weakly ascendant subalgebra of L,

provided there exists an ascending chain {MΛ \ α< λ} of subspaces of L such that

(1) M0 = H and Mλ = L,
(2) [Mα + , , H] c Mα for any ordinal α < λ,
(3) Mβ=\ja<β Mα for any limit ordinal β<λ.

We then write H<λL. H is said to be a weakly ascendant subalgebra of L if

H <λL for some ordinal λ. We then write H wasc L. Especially // is said to be

a weak subideal of L if λ = n < ω.

LEMMA 4. Let L be a Lie algebra over a field Φ, let H wascL and let x

be an element of H. //adH x is nil, then so is adL x.

PROOF. Let Kbe any finite-dimensional subspace of L. By [2, Lemma 2.1],

there exists an integer n = n(V, x) such that [V, nx}^H. Then [V, ,,x] is a finite-

dimensional subspace of H. Since ad/, x is nil, there exists an integer k = /c([K Mx])

such that [K, Mx] (adw x)*=0. Therefore K(adLx)"+ fc = 0. Thus ad L x is nil.

PROPOSITION 5. Let L be a Lie algebra over a field Φ and let H wasc L.

PROOF. Assume that Le(E00) and let ad f/ x be a nil element of ad//. By

Lemma 4 adLx is also nil and therefore adLx = 0. In particular ad w x = 0

and//6(BJ.

LEMMA 6. Let L be a Lie algebra over a field Φ. Let H<"L and let

x be an element of H. //adH x is m-nilpotent, then ad L x is (m + n)-nil potent.

PROOF. Since //<"L, L(adL x)" c H. By assumption H(adHx)m = 0 and

hence L(adL x)m+π = 0. Therefore adL x is (m 4- n)-nilpotent.

As a consequence of Proposition 5 and Lemma 6, we have

PROPOSITION 7. Let L be a Lie algebra over a field Φ and let H<"L.

Then the following statements hold.

(1) //L6(A t + .), then We(A,) (k = 2, 3, 4,-).
(2) IfLe(AJ,thenHe(\J..

(3) lfLe(BJ,thenHe(BJ.

§2.

In this section, we study the relationship between the conditions (A), (At),

(A^), (B^) and "abelian" in case of locally nilpotent (resp. locally soluble-and-

finite) Lie algebras. First we extend a result of A. Jόichi and show the following
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THEOREM 8. Let L be a Lie algebra over a field Φ. Then the following
statements hold.

(1) 7/L6L91, then the conditions (A), (B^) and "abelian" are equivalent
for L.

(2) // Lest*, then the conditions (A), (B^), (AJ,---, (AΛ + 1), (Afc) and
"abelian" are equivalent for L (/c = 2, 3, 4, )

PROOF. (1) It is clear that if Le^ϊ, then Le(A). By Proposition 1, if
Le(A), then we have LeίB^). Now assume that LeiΛRnίB^). For any
element x of L and for any finite-dimensional subspace V of L, there exists a
subalgebra H of L such that {x} U V^ H e 91 Π $. Then there exists an integer
«>0 such that Hrt+1=0. Thus F(adLx)"=0 and ad L x is nil. Therefore
adLx = 0. Since x is arbitrary, we have Le2l.

(2) By Proposition 1, it suffices to prove that if Le 9lk Π (Ak) then Leίl.
Assume that Le9lk(](Ak). For any element x of L, (adLx)*=0. That is,
adLx is /c-nilpotent and by assumption adLx = 0. Since x is arbitrary, we have

Let L be a Lie algebra over a field Φ. Then by ρ(L) and σ(L), we denote the
Hirsch-Protkin radical (that is, L$R-radical) and L(ε3l n J?)-radical of L re-
spectively.

A Lie algebra L over a field Φ is said to be ideally finite, if any finite subset
of L is contained in a finite-dimensional ideal of L. We denote by L(<])g the
class of ideally finite Lie algebras ([7]).

THEOREM 9. Let L be a Lie algebra over a field Φ of characteristic 0 and
assume that L€L(E$Ϊ Π S) Then the following statements hold.

(1) The conditions (A), (B^) and "abelian" are equivalent for L.
(2) 7/p(L)e<R,, then the conditions (A), (BJ, (AJ,-, (Ak + 2), (A4 + 1)

"abelian" are equivalent for L (k= 1, 2, 3, )
(3) /n particular // LeL(<ι)5, ffref l ί/ze conditions (A), (B^), (A^)

"abelian" are equivalent for L.

PROOF. (1) It suffices to prove that if Le(Eao) then Le2l. Assume that
LeίB^). Since p(L)<ιL, ^(^€(8^) by Proposition 2(3) and therefore p(L)e$l
by Theorem 8(1). On the other hand, because of LeL(ε9ί n 5) we have [L, L]
Sp(L) by [1, Corollary 13.3.13] and [13, Corollary 8.3.5]. For any yeL and
for any zeρ(L) we have [y, z, z] E [ρ(L), p(L)] = 0. That is, XadLz)2 = 0.
Since y is arbitrary, (adtz)2 = 0. Therefore adLz = 0 because of Le(B00). It
follows that [L, p(L)] = 0. Now for any x, y e L, we have [j;, x, x] 6 [ρ(L), L] = 0
and therefore j;(adLx)2 = 0. Since y is arbitrary, (adLx)2 = 0. Then adLx = 0
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because of Le (B^). Therefore Le 2ί.

(2) It suffices to prove that if Le(Ak+l) then Le9(. Assumethat

For fe=l, p(L)e9Ϊ! by assumption and therefore p(L)e9ί. For /c>2, since

p(L)<ιL, p(L)e(AΛ) by Proposition 2(1). It follows from Theorem 8(2) that

p(L)e9l. Arguing as in the proof of (1), we have [L, p(L)] = 0 and conclude

that Le9t.

(3) Assume that LGL(O)$ Π (A^). For any xep(L), it follows from

[12, Lemma 7.3] that adLx is nilpotent. By assumption we have adLx = 0 and

therefore [L, p(L)] = 0. Now as in the proof of (1), we have Le 9ί.

§3.

In this section, we investigate the case of serially finite Lie algebras.

DEFINITION 5 ([1. §13.2]). Let L be a Lie algebra over a field Φ and let H <L.

For a totally ordered set Γ, H is said to be a serial subalgebra of type Σ of L,

provided there exists a collection {Λσ, Vσ\σeΣ} of subalgebras of L such that

(1) H^Λσand H^Vσfor all σeΓ,

(2) Λt=VσcΛσ\fτ<σ,

(3) L^//=Wσ 6 l(Λ,^Kσ),
(4) Fσ<a/l t f for all σel.

We then write // ser L. L is said to be serially finite, if any finite subset of L is

contained in a finite-dimensional serial subalgebra of L. We denote by L(ser)g

the class of serially finite Lie algebras.

A locally finite Lie algebra L is said to be semisimple if σ(L) = 0.

Now we quote the following two results.

THEOREM A ([1, Theorem 13.4.2] and [12, (1.3)]). Let L be a Lie algebra

belonging to L(ser)J over a field Φ of characteristic 0. Then L is semisimple if

and only if L is a direct sum of finite-dimensional non-abelian simple ideals.

THEOREM B ([1, Theorem 13.5.7] and [12, (1.5)]). Let L be a Lie algebra

belonging to L(ser)g over a field Φ of characteristic 0. Then there exists a

semisimple subalgebra S of L such that L = σ(L) + S and σ(L) n S = 0.

First we extend a result of M. Sugiura and show the following

PROPOSITION 10. Let L be a semisimple Lie algebra belonging to L(ser)5

over a field Φ of characteristic 0. Then the conditions (A), (B^) and (A^) are

equivalent for L.

PROOF. By Theorem A, L=@Sλ, where each Sλ is a finite-dimensional
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non-abelian simple ideal of L. By [8, Theorem 1], the conditions (A) and (A^)

are equivalent for each Sλ and therefore so are the conditions (A), (B^) and (A^).

Now the assertion follows from Proposition 3.

THEOREM 11. Let L be a Lie algebra belonging to L(ser)J5 over a field Φ

of characteristic 0. Then the following statements hold.

(1) Le(A) (resp. (B^)) if and only if L = ζ(L)@S where S is a semisimple

ideal of L belonging to (A) (resp. (B^)).

(2) Let p(L)e3lk. Then Le(AΛ + 2) if and only if L = ζ(L)0S where S is a

semisimple ideal of L belonging to (A f c+2) (/c = 0, 1, 2, )
(3) In particular ifLe L(<i)g, then the statement (1) holds for the condition

(AJ.

PROOF. Put # = <7(L).

(1) We only prove the statement on (B^). Assume that Leφ^). Since

floL, we have Re(BJ. Since KeL(E$ln5), Ke9l by Theorem 9 (1).

For any xeL and for any j e R , we have [x, y, j]e[Λ, K] = 0. Then x(adLy)2

= 0. Since x is arbitrary, (adL.y)2 = 0. Because of LeίB^), adLy = 0. This

implies that [L, K] = 0 and therefore R = ζ(L). By Theorem B, there exists a

semisimple subalgebra S of L such that L = R + S and R n S = 0. It follows that

S<αL. That is, S is a semisimple ideal of L and L = R®S. Because of Leφ^),

we have 56(8^) by Proposition 3. The converse is clear.

(2) Assume that Le(A f c+2). For /c = 0 [R, R]cp(L) = 0, that is, ReM.

For /c>l Re(A,k+ί) by Proposition 2 and since p(R) = ρ(L) by [13, Proposition

8.3.3], R e 21 by Theorem 9(2). Now, the rest of the proof is similar to that of (1).

(3) When Le L(o)g, assume that Le (A^). Since R^L, we have R e (A^).

Since R e L(E^Ϊ n 5) n L(o)δ, R e ̂ l by Theorem 9(3). Now, as in the proof of

(1), we have the assertion of (3).

THEOREM 12. Let L be a Lie algebra belonging to L(ser)5 over afield Φ of

characteristic 0. Then the conditions (A) and (B^) are equivalent for L. In

particular //LeL(<ι)3r, then the conditions (A), (B^) and (A^) are equivalent

for L.

PROOF. Assume that Le(Bao). By Theorem 11(1), there exists a semisimple

ideal S of L such that L = C(L)©S and Se(Ba,). By Proposition 10 Se(A).

Since £(L)e$Ϊ£(A), by Proposition 3 it follows that Le(A). The converse is

evident. In case that LeL(o)5, the assertion follows from Proposition 10

and Theorem 11(3).

Finally we show the following

THEOREM 13. Let L be a Lie algebra belonging to t(ser)5 over an alge-
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braically closed field Φ of characteristic 0. Then the following statements hold.
(1) The conditions (A), (B^) and "abelian" are equivalent for L.

(2) //p(L)e5«k, then the conditions (A), (BJ, (AJ,-, (A fc + 3), (A fc + 2)
and "abelian" are equivalent for L(k=\, 2, 3, )

(3) In particular // LeL(o)g, f/?έ?H ί/7e conditions (A), (B^), (A^)
"abelian" are equivalent for L.

PROOF. (I) It suffices to prove that if LeίB^) then Le3ϊ. Assume that
By Theorem 11(1), there exists a semisimple ideal S of L such that

and Se(BJ. Then we assert that S = 0. In fact, if S^O, by
Theorem A 5=© Sλ, where each Sλ is a finite-dimensional non-abelian simple

λ
ideal of L. By [4, Lemma 3], Sλ £ (A3) and therefore by Proposition 1 we have
SΛ^(β00). On the other hand, SΛe(B r χ )) by Proposition 3. Thus we have a
contradiction. Therefore L = ζ(L) and Le2ί.

(2) is similarly proved and (3) follows from (1) and Theorem 12.
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