Lie algebras whose inner derivations satisfy certain conditions

Yûji SHIMIZUIKE and Shigeaki Tôgô (Received July 20, 1987)

Introduction

For a finite-dimensional Lie algebra I. M. Singer ([6]) introduced the condition (A) (§1, Definition 1), A. Jôichi ([4]) introduced the conditions (A_k) and (A_{∞}) (§1, Definition 2), and the properties of finite-dimensional Lie algebras satisfying these conditions had been investigated by several authors in [4, 6, 8, 9].

For a not necessarily finite-dimensional Lie algebra, we shall define the conditions (A), (A_k) and (A_{∞}) in the same manner and moreover introduce the condition (B_{∞}) strengthening the condition (A_{∞}). The purpose of this paper is mainly to extend the known results on finite-dimensional Lie algebras satisfying these conditions to not necessarily finite-dimensional Lie algebras.

In Section 1, let L be a not necessarily finite-dimensional Lie algebra over a field and let H be an ideal of L. We show that if L satisfies (A_{k+1}) (resp. (A_{∞}) , (B_{∞})) then H satisfies (A_k) (resp. (A_{∞}) , (B_{∞})) (Proposition 2). More generally we shall give similar results in case that H is a weakly ascendant subalgebra of L (Propositions 5 and 7).

In Section 2, for a Lie algebra L belonging to $L\mathfrak{N}$ (resp. \mathfrak{N}_k) we show that the conditions (A), (B_{∞}) and "abelian" (resp. (A), (B_{∞}), (A_{∞}),…, (A_{k+1}), (A_k) and "abelian") are equivalent (Theorem 8). For a Lie algebra L belonging to $L(\mathfrak{E}\mathfrak{A} \cap \mathfrak{F})$ over a field of characteristic 0, we show that the conditions (A), (B_{∞}) and "abelian" are equivalent (Theorem 9).

In Section 3, for a Lie algebra L belonging to $L(ser)\mathfrak{F}$ over a field of characteristic 0, we show that L satisfies (A) (resp. (B_{∞})) if and only if L is the direct sum of the center and a semisimple ideal S of L satisfying (A) (resp. (B_{∞})) (Theorem 11) and that the conditions (A) and (B_{∞}) are equivalent (Theorem 12). Finally for a Lie algebra L belonging to $L(ser)\mathfrak{F}$ over an algebraically closed field of characteristic 0, we show that the conditions (A), (B_{∞}) and "abelian" are equivalent (Theorem 13).

§1.

Throughout this paper Φ is a field of arbitrary characteristic and all Lie algebras are not necessarily finite-dimensional over a field Φ unless otherwise specified.

For a Lie algebra L, by $H \leq L$ (resp. $H \lhd L$) we mean that H is a subalgebra (resp. an ideal) of L. We denote by \mathfrak{A} (resp. $\mathfrak{F}, \mathfrak{N}, \mathfrak{N}_k, \mathbb{E}\mathfrak{A}$) the class of Lie algebras which are abelian (resp. finite-dimensional, nilpotent, nilpotent of class $\leq k$, soluble). For a class \mathfrak{X} of Lie algebras we denote by $L\mathfrak{X}$ the class of locally \mathfrak{X} -algebras.

Let D be a derivation of L and let k be an integer ≥ 2 . Then D is called k-nilpotent if $LD^k=0$ and nil if for each finite-dimensional subspace V of L there exists a positive integer n=n(V) such that $VD^n=0$.

Now for a finite-dimensional Lie algebra L, the condition (A) was introduced by I. M. Singer ([6]) and the conditions (A_k) and (A_{∞}) were introduced by A. Jôichi ([4]) as follows.

DEFINITION 1. L is said to satisfy the condition (A) if any pair of elements x, y of L such that $[x, _2y]=0$ satisfies [x, y]=0.

DEFINITION 2. Let k be an integer ≥ 2 . L is said to satisfy the condition (A_k) if ad L contains no non-zero k-nilpotent elements and L is said to satisfy the condition (A_{∞}) if ad L contains no non-zero nilpotent elements.

For a not necessarily finite-dimensional Lie algebra L we define the conditions (A), (A_k) and (A_{∞}) in the same manner as above. Moreover we introduce the following condition.

DEFINITION 3. We say that L satisfies the condition (B_{∞}) , if ad L contains no non-zero nil elements.

From now on we use the same notation (A) (resp. (A_k) , (A_{∞}) , (B_{∞})) to express the class of Lie algebras satisfying the condition (A) (resp. (A_k) , (A_{∞}) , (B_{∞})). For unexplained terminology and notation we refer to [1, 13].

As in [4, Proposition 1], we show

PROPOSITION 1. Let L be a Lie algebra over a field Φ . Then we have the following implications for L:

$$(\mathbf{A}) \Leftrightarrow (\mathbf{B}_{\infty}) \Leftrightarrow (\mathbf{A}_{\infty}) \Leftrightarrow \cdots \Leftrightarrow (\mathbf{A}_{k+1}) \Leftrightarrow (\mathbf{A}_{k}) \Leftrightarrow \cdots \Leftrightarrow (\mathbf{A}_{2}).$$

Moreover we have $(A_{\infty}) = \bigcap_{k \geq 2} (A_k)$.

PROOF. We only show the implication $(A) \Rightarrow (B_{\infty})$. Assume that $L \in (A)$ and let $ad_L x$ be a nil element of ad L. Then for any $y \in L$, there exists an integer k = k(y) $(k \ge 2)$ such that $(y)(ad_L x)^k = 0$. Because of $L \in (A)$, $[y, _{k-1}x] = 0$. After repeating this procedure k-2 times, we have [y, x] = 0. Since y is arbitrary, we have $ad_L x = 0$. Therefore $L \in (B_{\infty})$.

EXAMPLES. Let L_0 be the Lie algebra over a field Φ described in terms of a basis x, y, z by the table

$$[x, y] = z, [y, z] = x, [z, x] = y,$$

and let L be the direct sum of a non-empty set of Lie algebras which are isomorphic to L_0 . Then the following statements hold.

(1) In case $\Phi = \mathbf{R}$, L belongs to (A) $\smallsetminus \mathfrak{A}$.

(2) In case $\Phi = C$, L belongs to $(A_2) \setminus (A_3)$.

L. A. Simonjan ([5]) and T. Ikeda ([3]) constructed examples of the countabledimensional Lie algebra M over a field Φ which is non-abelian, locally nilpotent and has no non-zero bounded left Engel elements. Evidently

(3) *M* belongs to $(A_{\infty}) \setminus (B_{\infty})$.

Denoting the center of L by $\zeta(L)$, we have

PROPOSITION 2. Let L be a Lie algebra over a field Φ and let $H \lhd L$. Then the following statements hold.

(1) If $L \in (A_{k+1})$, then $H \in (A_k)$. Furthermore if $H \subseteq \zeta(L)$, then $L/H \in (A_k)$. (k=2, 3, 4,....)

(2) If $L \in (A_{\infty})$, then $H \in (A_{\infty})$.

(3) If $L \in (\mathbf{B}_{\infty})$, then $H \in (\mathbf{B}_{\infty})$.

PROOF. (1) Assume that $L \in (A_{k+1})$. Let $ad_H x$ be a k-nilpotent element of ad H. Because of $H \lhd L$, $L(ad_L x)^{k+1} \subseteq H(ad_H x)^k = 0$ and therefore $ad_L x$ is (k+1)-nilpotent. By assumption we have $ad_L x = 0$. Then $ad_H x = 0$ and $H \in (A_k)$. Furthermore assume that $H \subseteq \zeta(L)$. Let \bar{x} be the element of $\bar{L} = L/H$ corresponding to $x \in L$. Now let $ad_L \bar{x}$ be k-nilpotent. Then $L(ad_L x)^k \subseteq H$. Since $H \subseteq \zeta(L)$, $(ad_L x)^{k+1} = 0$ and therefore $ad_L x = 0$. This implies that $\bar{L} \in (A_k)$.

(2) We omit the proof.

(3) Assume that $L \in (\mathbf{B}_{\infty})$ and let $\mathrm{ad}_{H} x$ be a nil element of $\mathrm{ad} H$. Since $H \triangleleft L$, for each finite-dimensional subspace V of L [V, x] is a finite-dimensional subspace of H. By assumption there exists an integer k = k(V, x) such that $[V, x](\mathrm{ad}_{H} x)^{k} = 0$. Therefore $V(\mathrm{ad}_{L} x)^{k+1} = 0$. Thus $\mathrm{ad}_{L} x = 0$. It follows that $\mathrm{ad}_{H} x = 0$ and $H \in (\mathbf{B}_{\infty})$.

The following proposition clearly holds.

PROPOSITION 3. Let L be a direct sum of ideals L_{λ} ($\lambda \in \Lambda$). Then $L \in (A)$ (resp. (A_k) , (A_{∞}) , (B_{∞})) if and only if $L_{\lambda} \in (A)$ (resp. (A_k) , (A_{∞}) , (B_{∞})) for all $\lambda \in \Lambda$.

We shall here discuss the statement of Proposition 2 under a weaker assumption instead of the assumption $H \triangleleft L$.

DEFINITION 4 ([10]). Let L be a Lie algebra over a field Φ and $H \leq L$. For an ordinal λ , H is said to be a λ -step weakly ascendant subalgebra of L, provided there exists an ascending chain $\{M_{\alpha} | \alpha \leq \lambda\}$ of subspaces of L such that

- (1) $M_0 = H$ and $M_\lambda = L$,
- (2) $[M_{\alpha+1}, H] \subseteq M_{\alpha}$ for any ordinal $\alpha < \lambda$,
- (3) $M_{\beta} = \bigcup_{\alpha < \beta} M_{\alpha}$ for any limit ordinal $\beta \le \lambda$.

We then write $H \leq {}^{\lambda}L$. *H* is said to be a weakly ascendant subalgebra of *L* if $H \leq {}^{\lambda}L$ for some ordinal λ . We then write *H* wasc *L*. Especially *H* is said to be a weak subideal of *L* if $\lambda = n < \omega$.

LEMMA 4. Let L be a Lie algebra over a field Φ , let H wasc L and let x be an element of H. If $ad_H x$ is nil, then so is $ad_L x$.

PROOF. Let V be any finite-dimensional subspace of L. By [2, Lemma 2.1], there exists an integer n = n(V, x) such that $[V, _n x] \subseteq H$. Then $[V, _n x]$ is a finite-dimensional subspace of H. Since $ad_H x$ is nil, there exists an integer $k = k([V, _n x])$ such that $[V, _n x]$ ($ad_H x$)^k=0. Therefore $V(ad_L x)^{n+k}=0$. Thus $ad_L x$ is nil.

PROPOSITION 5. Let L be a Lie algebra over a field Φ and let H wasc L. If $L \in (B_{\infty})$, then $H \in (B_{\infty})$.

PROOF. Assume that $L \in (B_{\infty})$ and let $ad_H x$ be a nil element of ad H. By Lemma 4 $ad_L x$ is also nil and therefore $ad_L x=0$. In particular $ad_H x=0$ and $H \in (B_{\infty})$.

LEMMA 6. Let L be a Lie algebra over a field Φ . Let $H \leq "L$ and let x be an element of H. If $ad_H x$ is m-nilpotent, then $ad_L x$ is (m+n)-nilpotent.

PROOF. Since $H \le {}^{n}L$, $L(ad_{L}x)^{n} \le H$. By assumption $H(ad_{H}x)^{m} = 0$ and hence $L(ad_{L}x)^{m+n} = 0$. Therefore $ad_{L}x$ is (m+n)-nilpotent.

As a consequence of Proposition 5 and Lemma 6, we have

PROPOSITION 7. Let L be a Lie algebra over a field Φ and let $H \leq {}^{n}L$. Then the following statements hold.

- (1) If $L \in (A_{k+n})$, then $H \in (A_k)$ $(k=2, 3, 4, \dots)$.
- (2) If $L \in (A_{\infty})$, then $H \in (A_{\infty})$.

(3) If $L \in (\mathbf{B}_{\infty})$, then $H \in (\mathbf{B}_{\infty})$.

§ 2.

In this section, we study the relationship between the conditions (A), (A_k) , (A_{∞}) , (B_{∞}) and "abelian" in case of locally nilpotent (resp. locally soluble-and-finite) Lie algebras. First we extend a result of A. Jôichi and show the following

428

THEOREM 8. Let L be a Lie algebra over a field Φ . Then the following statements hold.

(1) If $L \in L \mathfrak{N}$, then the conditions (A), (B_{∞}) and "abelian" are equivalent for L.

(2) If $L \in \mathfrak{N}_k$, then the conditions (A), (B_{∞}) , (A_{∞}) ,..., (A_{k+1}) , (A_k) and "abelian" are equivalent for $L(k=2, 3, 4, \cdots)$.

PROOF. (1) It is clear that if $L \in \mathfrak{A}$, then $L \in (A)$. By Proposition 1, if $L \in (A)$, then we have $L \in (B_{\infty})$. Now assume that $L \in L\mathfrak{N} \cap (B_{\infty})$. For any element x of L and for any finite-dimensional subspace V of L, there exists a subalgebra H of L such that $\{x\} \cup V \subseteq H \in \mathfrak{N} \cap \mathfrak{F}$. Then there exists an integer n > 0 such that $H^{n+1} = 0$. Thus $V(ad_L x)^n = 0$ and $ad_L x$ is nil. Therefore $ad_L x = 0$. Since x is arbitrary, we have $L \in \mathfrak{A}$.

(2) By Proposition 1, it suffices to prove that if $L \in \mathfrak{N}_k \cap (A_k)$ then $L \in \mathfrak{A}$. Assume that $L \in \mathfrak{N}_k \cap (A_k)$. For any element x of L, $(ad_L x)^k = 0$. That is, $ad_L x$ is k-nilpotent and by assumption $ad_L x = 0$. Since x is arbitrary, we have $L \in \mathfrak{A}$.

Let L be a Lie algebra over a field Φ . Then by $\rho(L)$ and $\sigma(L)$, we denote the Hirsch-Protkin radical (that is, LN-radical) and $L(\mathbb{E}\mathfrak{A} \cap \mathfrak{F})$ -radical of L respectively.

A Lie algebra L over a field Φ is said to be ideally finite, if any finite subset of L is contained in a finite-dimensional ideal of L. We denote by $L(\lhd)\mathfrak{F}$ the class of ideally finite Lie algebras ([7]).

THEOREM 9. Let L be a Lie algebra over a field Φ of characteristic 0 and assume that $L \in L(E\mathfrak{A} \cap \mathfrak{F})$. Then the following statements hold.

(1) The conditions (A), (\mathbf{B}_{∞}) and "abelian" are equivalent for L.

(2) If $\rho(L) \in \mathfrak{N}_k$, then the conditions (A), (B_{∞}) , (A_{∞}) , \cdots , (A_{k+2}) , (A_{k+1}) and "abelian" are equivalent for L ($k=1, 2, 3, \cdots$).

(3) In particular if $L \in L(\triangleleft)\mathfrak{F}$, then the conditions (A), (B_{∞}) , (A_{∞}) and "abelian" are equivalent for L.

PROOF. (1) It suffices to prove that if $L \in (\mathbb{B}_{\infty})$ then $L \in \mathfrak{A}$. Assume that $L \in (\mathbb{B}_{\infty})$. Since $\rho(L) \lhd L$, $\rho(L) \in (\mathbb{B}_{\infty})$ by Proposition 2(3) and therefore $\rho(L) \in \mathfrak{A}$ by Theorem 8(1). On the other hand, because of $L \in L(\mathbb{E}\mathfrak{A} \cap \mathfrak{F})$ we have $[L, L] \subseteq \rho(L)$ by [1, Corollary 13.3.13] and [13, Corollary 8.3.5]. For any $y \in L$ and for any $z \in \rho(L)$ we have $[y, z, z] \in [\rho(L), \rho(L)] = 0$. That is, $y(\mathrm{ad}_L z)^2 = 0$. Since y is arbitrary, $(\mathrm{ad}_L z)^2 = 0$. Therefore $\mathrm{ad}_L z = 0$ because of $L \in (\mathbb{B}_{\infty})$. It follows that $[L, \rho(L)] = 0$. Now for any $x, y \in L$, we have $[y, x, x] \in [\rho(L), L] = 0$ and therefore $y(\mathrm{ad}_L x)^2 = 0$. Since y is arbitrary, $(\mathrm{ad}_L x)^2 = 0$. Then $\mathrm{ad}_L x = 0$

because of $L \in (\mathbf{B}_{\infty})$. Therefore $L \in \mathfrak{A}$.

(2) It suffices to prove that if $L \in (A_{k+1})$ then $L \in \mathfrak{A}$. Assume that $L \in (A_{k+1})$. For k=1, $\rho(L) \in \mathfrak{R}_1$ by assumption and therefore $\rho(L) \in \mathfrak{A}$. For $k \ge 2$, since $\rho(L) \lhd L$, $\rho(L) \in (A_k)$ by Proposition 2(1). It follows from Theorem 8(2) that $\rho(L) \in \mathfrak{A}$. Arguing as in the proof of (1), we have $[L, \rho(L)] = 0$ and conclude that $L \in \mathfrak{A}$.

(3) Assume that $L \in L(\triangleleft) \mathfrak{F} \cap (A_{\infty})$. For any $x \in \rho(L)$, it follows from [12, Lemma 7.3] that $ad_L x$ is nilpotent. By assumption we have $ad_L x = 0$ and therefore $[L, \rho(L)] = 0$. Now as in the proof of (1), we have $L \in \mathfrak{A}$.

§3.

In this section, we investigate the case of serially finite Lie algebras.

DEFINITION 5 ([1. §13.2]). Let L be a Lie algebra over a field Φ and let $H \leq L$. For a totally ordered set Σ , H is said to be a serial subalgebra of type Σ of L, provided there exists a collection $\{\Lambda_{\sigma}, V_{\sigma} | \sigma \in \Sigma\}$ of subalgebras of L such that

- (1) $H \subseteq \Lambda_{\sigma}$ and $H \subseteq V_{\sigma}$ for all $\sigma \in \Sigma$,
- (2) $\Lambda_{\tau} \subseteq V_{\sigma} \subseteq \Lambda_{\sigma}$ if $\tau < \sigma$,

$$(3) \quad L \searrow H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \bigtriangledown V_{\sigma}),$$

(4) $V_{\sigma} \triangleleft \Lambda_{\sigma}$ for all $\sigma \in \Sigma$.

We then write H ser L. L is said to be serially finite, if any finite subset of L is contained in a finite-dimensional serial subalgebra of L. We denote by $L(ser)\mathfrak{F}$ the class of serially finite Lie algebras.

A locally finite Lie algebra L is said to be semisimple if $\sigma(L)=0$.

Now we quote the following two results.

THEOREM A ([1, Theorem 13.4.2] and [12, (1.3)]). Let L be a Lie algebra belonging to L(ser) over a field Φ of characteristic 0. Then L is semisimple if and only if L is a direct sum of finite-dimensional non-abelian simple ideals.

THEOREM B ([1, Theorem 13.5.7] and [12, (1.5)]). Let L be a Lie algebra belonging to $L(ser)\mathfrak{F}$ over a field Φ of characteristic 0. Then there exists a semisimple subalgebra S of L such that $L=\sigma(L)+S$ and $\sigma(L) \cap S=0$.

First we extend a result of M. Sugiura and show the following

PROPOSITION 10. Let L be a semisimple Lie algebra belonging to L(ser) voer a field Φ of characteristic 0. Then the conditions (A), (B_w) and (A_w) are equivalent for L.

PROOF. By Theorem A, $L = \bigoplus_{i} S_{\lambda}$, where each S_{λ} is a finite-dimensional

430

non-abelian simple ideal of L. By [8, Theorem 1], the conditions (A) and (A_{∞}) are equivalent for each S_{λ} and therefore so are the conditions (A), (B_{∞}) and (A_{∞}) . Now the assertion follows from Proposition 3.

THEOREM 11. Let L be a Lie algebra belonging to L(ser) over a field Φ of characteristic 0. Then the following statements hold.

(1) $L \in (A)$ (resp. (B_{∞})) if and only if $L = \zeta(L) \oplus S$ where S is a semisimple ideal of L belonging to (A) (resp. (B_{∞})).

(2) Let $\rho(L) \in \mathfrak{N}_k$. Then $L \in (A_{k+2})$ if and only if $L = \zeta(L) \oplus S$ where S is a semisimple ideal of L belonging to (A_{k+2}) $(k=0, 1, 2, \cdots)$.

(3) In particular if $L \in L(\triangleleft)\mathfrak{F}$, then the statement (1) holds for the condition (A_{∞}) .

PROOF. Put $R = \sigma(L)$.

(1) We only prove the statement on (B_{∞}) . Assume that $L \in (B_{\infty})$. Since $R \lhd L$, we have $R \in (B_{\infty})$. Since $R \in L(\mathbb{E}\mathfrak{A} \cap \mathfrak{F})$, $R \in \mathfrak{A}$ by Theorem 9 (1). For any $x \in L$ and for any $y \in R$, we have $[x, y, y] \in [R, R] = 0$. Then $x(\mathrm{ad}_L y)^2 = 0$. Since x is arbitrary, $(\mathrm{ad}_L y)^2 = 0$. Because of $L \in (B_{\infty})$, $\mathrm{ad}_L y = 0$. This implies that [L, R] = 0 and therefore $R = \zeta(L)$. By Theorem B, there exists a semisimple subalgebra S of L such that L = R + S and $R \cap S = 0$. It follows that $S \lhd L$. That is, S is a semisimple ideal of L and $L = R \oplus S$. Because of $L \in (B_{\infty})$, we have $S \in (B_{\infty})$ by Proposition 3. The converse is clear.

(2) Assume that $L \in (A_{k+2})$. For k=0 $[R, R] \subseteq \rho(L)=0$, that is, $R \in \mathfrak{A}$. For $k \ge 1$ $R \in (A_{k+1})$ by Proposition 2 and since $\rho(R) = \rho(L)$ by [13, Proposition 8.3.3], $R \in \mathfrak{A}$ by Theorem 9(2). Now, the rest of the proof is similar to that of (1).

(3) When $L \in L(\lhd)\mathfrak{F}$, assume that $L \in (A_{\infty})$. Since $R \lhd L$, we have $R \in (A_{\infty})$. Since $R \in L(\mathfrak{E}\mathfrak{A} \cap \mathfrak{F}) \cap L(\lhd)\mathfrak{F}$, $R \in \mathfrak{A}$ by Theorem 9(3). Now, as in the proof of (1), we have the assertion of (3).

THEOREM 12. Let L be a Lie algebra belonging to $L(ser)\mathfrak{F}$ over a field Φ of characteristic 0. Then the conditions (A) and (B_{∞}) are equivalent for L. In particular if $L \in L(\triangleleft)\mathfrak{F}$, then the conditions (A), (B_{∞}) and (A_{∞}) are equivalent for L.

PROOF. Assume that $L \in (B_{\infty})$. By Theorem 11(1), there exists a semisimple ideal S of L such that $L = \zeta(L) \oplus S$ and $S \in (B_{\infty})$. By Proposition 10 $S \in (A)$. Since $\zeta(L) \in \mathfrak{A} \subseteq (A)$, by Proposition 3 it follows that $L \in (A)$. The converse is evident. In case that $L \in L(\lhd)\mathfrak{F}$, the assertion follows from Proposition 10 and Theorem 11(3).

Finally we show the following

THEOREM 13. Let L be a Lie algebra belonging to L(ser) over an alge-

braically closed field Φ of characteristic 0. Then the following statements hold.

(1) The conditions (A), (B_{∞}) and "abelian" are equivalent for L.

(2) If $\rho(L) \in \mathfrak{N}_k$, then the conditions (A), (B_{∞}) , (A_{∞}) ,..., (A_{k+3}) , (A_{k+2}) and "abelian" are equivalent for L (k = 1, 2, 3, ...).

(3) In particular if $L \in L(\lhd)\mathfrak{F}$, then the conditions (A), (B_{∞}) , (A_{∞}) and "abelian" are equivalent for L.

PROOF. (1) It suffices to prove that if $L \in (\mathbf{B}_{\infty})$ then $L \in \mathfrak{A}$. Assume that $L \in (\mathbf{B}_{\infty})$. By Theorem 11(1), there exists a semisimple ideal S of L such that $L = \zeta(L) \oplus S$ and $S \in (\mathbf{B}_{\infty})$. Then we assert that S = 0. In fact, if $S \neq 0$, by Theorem A $S = \bigoplus_{\lambda} S_{\lambda}$, where each S_{λ} is a finite-dimensional non-abelian simple ideal of L. By [4, Lemma 3], $S_{\lambda} \notin (\mathbf{A}_{3})$ and therefore by Proposition 1 we have $S_{\lambda} \notin (\mathbf{B}_{\infty})$. On the other hand, $S_{\lambda} \in (\mathbf{B}_{\infty})$ by Proposition 3. Thus we have a contradiction. Therefore $L = \zeta(L)$ and $L \in \mathfrak{A}$.

(2) is similarly proved and (3) follows from (1) and Theorem 12.

References

- [1] R. K. Amayo and I. Stewart, Infinite-dimensional Lie algebras, Noordhoff, Leyden, 1974.
- [2] M. Honda, Joins of weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 14 (1984), 333-358.
- [3] T. Ikeda, Hyperabelian Lie algebras, Hiroshima Math. J. 15 (1985), 601-617.
- [4] A. Jôichi, On certain properties of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-1, 31 (1967), 25-33.
- [5] L. A. Simonjan, Certain examples of Lie groups and algebras, Sibirsk. Mat. Ž. 12 (1971), 837-843, translated in Siberian Math. J. 12 (1971), 602-606.
- [6] I. M. Singer, Uniformly continuous representations of Lie groups, Ann. of Math. 56 (1952), 242-247.
- [7] I. Stewart, Lie algebras generated by finite dimensional ideals, Pitman Publishing, 1975.
- [8] M. Sugiura, On a certain property of Lie algebras, Sci. Pap. Coll. Gen. Edu. Univ. Tokyo, 5 (1955), 1-12.
- [9] S. Tôgô, On a class of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-1, 32 (1968), 55-83.
- [10] S. Tôgô, Weakly ascendant subalgebras of Lie algebras, Hiroshima Math. J. 10 (1980), 175-184.
- [11] S. Tôgô, Serially finite Lie algebras, Hiroshima Math. J. 16 (1986), 443-448.
- [12] S. Tôgô, Infinite-dimensional algebraic and splittable Lie algebras, Hiroshima Math. J. 17 (1987), 91-116.
- [13] S. Tôgô, Infinite-dimensional Lie algebras (in Japanese), Maki, Tokyo, 1987 (to appear).

Department of Mathematics, Hiroshima Institute of Technology