Lie structures on differential algebras

Fujio Kubo* and Fumitake Mimura (Received September 11, 1987)

1. Introduction

Let L be a finite-dimensional Lie algebra over a field \mathfrak{t} of characteristic zero, A a commutative associative algebra over \mathfrak{t} with an identity, and $L \subseteq A$. In this paper, we first extend the Lie structure on L to A by means of some derivations of A. After presenting examples of such Lie algebras and showing a way to give a Lie structure on a localization of A, we study the Lie structures on the formal power series ring and some factor algebras of polynomial algebras.

2. Notations and preliminaries

Poisson Lie structure (Berezin [1]): Let L be a finite-dimensional Lie algebra over a field \mathfrak{k} of characteristic zero and c_k^{ij} the structure constants with respect to a basis $\{x_1,\ldots,x_n\}$ of L. Let $C^{\infty}(\mathbf{R}^n)$ be the set of all C^{∞} function on \mathbf{R}^n . Then the Poisson Lie structures on $C^{\infty}(\mathbf{R}^n)$ is given by

$$[f, g] = \sum_{i,j,k} c_k^{ij} x_k (\partial f/\partial x_i) (\partial g/\partial x_j) \quad \text{for} \quad f, g \in C^{\infty}(\mathbf{R}^n).$$

Let U(L) be the universal enveloping algebra of L and $U_n(L)$ the vector space spanned by the products $y_1...y_p$, where $y_1,...,y_p \in L$ and $p \le n$. Let S(L) be the symmetric algebra of the vector space L and $S^n(L)$ the set of elements of S(L) which are homogeneous of degree n. By making use of the canonical mapping π_n of $U_n(L)$ onto $S^n(L)$, we can obtain a Lie structure on S(L) as follows: Let $p \in S^m(L)$ and $q \in S^n(L)$, and take elements $\tilde{p} \in U_m(L)$ and $\tilde{q} \in U_n(L)$ such that $\pi_m(\tilde{p}) = p$ and $\pi_n(\tilde{q}) = q$. The Poisson bracket [p, q] of p and q is defined to be $\pi_{m+n-1}([\tilde{p}, \tilde{q}])$ ([3, p. 97]). By a simple computation we can see that this Lie structure on S(L) is the same as the Poisson Lie structure on the polynomial algebra $\tilde{t}[x_1,...,x_n]$.

Profinite Lie algebra (Christdoulou [2]): Let A_m ($m \in N$) be a finite-dimensional Lie algebra and f_{mn} a homomorphism of A_m into A_n for $m \ge n$. Let A be the inverse limit $\varprojlim \{A_m; f_{mn}\}$. Then A is a profinite Lie algebra in the following sense: Let f_m be a canonical homomorphism of A onto A_m and $K_m = \ker f_m$. Then the set $\{K_m: m \in N\}$

^{*} Partially supported by Grand-in-Aid for Encouragement of Young Scientist of Ministry of Education of Japan.

satisfies (i) A/K_m is a finite-dimensional Lie algebra for each $m \in N$, (ii) $\bigcap_{m \in N} K_m = 0$, (iii) for each $m, n \in N$ there exists $p \in N$ such that $K_p \subseteq K_m \cap K_n$. If we give a topology on A taking as a closed subbase the set $\{x + U : x \in A, U \text{ is a subspace of } A \text{ such that } K_m \subseteq U \text{ for some } m \in N\}$, then A is compact with this topology. If each of A_m is nilpotent, solvable, then A is called to be pro-nilpotent, pro-solvable respectively.

3. Definition

Let L be a finite-dimensional Lie algebra over a field \mathfrak{k} of characteristic zero with a basis $\{x_1, \ldots, x_n\}$. Let A be a commutative associative algebra over \mathfrak{k} with an identity 1 and having derivations d_1, \ldots, d_n satisfying the following conditions; for $i, j = 1, \ldots, n$,

$$L \subseteq A$$
, $d_i(x_i) = \delta_{ij}$, $d_i d_j = d_j d_i$.

For any elements $a, b \in A$, we define the product of them by

$$[a, b] = \sum_{i,j} [x_i, x_j] d_i(a) d_j(b)$$
$$= \sum_{i,j,k} c_k^{ij} x_k d_i(a) d_j(b)$$

where c_k^{ij} are the structure constants with respect to a basis $\{x_1, ..., x_n\}$ of L. By a slightly longer computation we can see that A is a Lie algebra with this product. We denote this Lie algebra by

$$L(L; A, \{d_i\}).$$

EXAMPLE 1. The Lie structure of $L(L; C^{\infty}(\mathbb{R}^n), \{\partial/\partial x_i\})$ is the same as the Poisson Lie structure on $C^{\infty}(\mathbb{R}^n)$.

EXAMPLE 2. Let A be a commutative associative algebra over \mathfrak{f} with an identity 1 and have derivations d_1,\ldots,d_n satisfying the conditions; $L\subseteq A$, $d_i(x_j)=\delta_{ij}$, $d_id_j=d_jd_i$ $(i,j=1,\ldots,n)$. Let B be a commutative associative algebra and d a derivation of B. Consider the tensor product $A\otimes_k B$ of the associative algebras A and B over \mathfrak{f} . Let us define the derivations D_1,\ldots,D_n of $A\otimes_k B$ by

$$D_i = d_i \otimes 1_R + 1_A \otimes d \quad (i = 1, ..., n).$$

Then we consider a Lie algebra $L(L; A \otimes_k B, \{D_i\})$. For elements $a \otimes b$, $e \otimes f$ of this Lie algebra, the product of them is given by

$$\lceil a \otimes b, e \otimes f \rceil = \lceil a, e \rceil \otimes bf + \lceil a, x \rceil e \otimes bd(f) - a\lceil e, x \rceil \otimes d(b)f$$

where $x = \sum_{i=1}^{n} x_i$, and the products [a, e], [a, x] and [e, x] are calculated in $L(L; A, \{d_i\})$.

REMARK. For a Lie algebra $L(L;A,\{d_i\})$, we can see that a Lie structure on the associative subalgebra L_0 generated associatively by L is independent of a choice of a basis of L. Let $\{y_1,\ldots,y_n\}$ be another basis of L and v_1,\ldots,v_n derivations such that $v_i(y_j)=\delta_{ij}, v_iv_j=v_jv_i$ $(i,j=1,\ldots,n)$. Set $y_i=\sum_{p=1}^n a_{ip}x_p, x_i=\sum_{q=1}^n b_{iq}y_q$ $(a_{ip},b_{iq}\in\mathfrak{f})$. It is easy to see that $v_i|_L=(\sum_{s=1}^n b_{si}d_s)|_L$. Hence we have $v_i=\sum_{s=1}^n b_{si}d_s$ on L_0 . Therefore we have, for $a,b\in L_0$,

$$\sum_{i,j} [y_i, y_j] v_i(a) v_j(b)$$

$$= \sum_{i,j,p,q,s,t} a_{ip} a_{jq} b_{si} b_{tj} [x_p, x_q] d_s(a) d_t(b)$$

$$= \sum_{p,q} [x_p, x_q] \{ \sum_{j,s,t} (\sum_i b_{si} a_{ip}) b_{tj} a_{jq} d_s(a) d_t(b) \}$$

$$= \sum_{p,q} [x_p, x_q] (\sum_{j,t} b_{tj} a_{jt} d_p(a) d_t(b))$$

$$= \sum_{p,q} [x_p, x_q] d_p(a) d_q(b).$$

4. Localization

Let A be a commutative associative algebra over a field f of characteristic zero with an identity 1. Assume that A is an integral domain and has a Lie structure whose Lie product $[\ ,\]$ satisfies the condition: [ab,c]=[a,c]b+a[b,c] $(a,b,c\in A)$. Considering A as an associative algebra, we take a multiplicatively closed subset S of A containing 1, and denote a localization of A by $S^{-1}A$. We can extend a Lie structure on A to $S^{-1}A$ as follow.

PROPOSITION 1. Let A, S be given above. Then the localization $S^{-1}A$ is a Lie algebra with the product

$$[f/s, g/t] = ([f, g]st + [g, s]tf + [s, t]fg + [t, f]gs)/(s^2t^2)$$

 $(f, g \in A, s, t \in S).$

PROOF. We verify that this rule gives the same result for [fu/su, g/t] ($u \in S$). By a slightly longer computation we can see that the Jacobi identity holds. Q.E.D.

Let $G = L(L; A, \{d_i\})$ and S a multiplicatively closed subset of an associative algebra A containing 1. Assume that A is an integral domain. We extend the derivations d_i to the localization $S^{-1}A$ by

$$D_i(f/s) = (d_i(f)s - fd_i(s))/s^2$$

where $f \in A$, $s \in S$ (Kaplansky [4; Theorem 1.1]). Let $L^* = L(L; S^{-1}A, \{D_i\})$, and f/s, g/t any two elements of L^* . Then the product of them is

$$[f/s, g/t] = \sum_{i,j} [x_i, x_j] D_i(f/s) D_j(g/t)$$

$$= \sum_{i,j} [x_i, x_j] ((d_i(f)s - fd_i(s))/s^2) ((d_j(g)t - gd_j(t))/t^2)$$

= ([f, g]st - [s, g]ft - [f, t]gs + [s, t]fg)/(s^2t^2).

Therefore the Lie structure of L^* is the same as that of the localization $S^{-1}A$ given in Proposition 1.

5. Lie structures of L(L; $f[[x_1,...,x_n]], \{\partial/\partial x_i\}$)

Let L be a Lie algebra over \mathfrak{f} with a basis $\{x_1,\ldots,x_n\}$ and G the Lie algebra $L(L;\mathfrak{f}[[x_1,\ldots,x_n]],\{\partial/\partial x_i\})$, where $\mathfrak{f}[[x_1,\ldots,x_n]]$ is the formal power series ring. For $m\in N$, let K_m be the ideal of G spanned by $\{\sum_{k_1,\ldots,k_n}\mathfrak{f}x_1^{k_1}\cdots x_n^{k_n}:k_1+\cdots+k_n\geqslant m\}$, G_m a finite-dimensional Lie algebra G/K_m and π_{mn} the canonical homomorphism of G_m onto G_n $(m\geqslant n)$. Then G is isomorphic to the inverse limit $\varprojlim\{G_m;\pi_{mn}\}$, in other words, G is a profinite Lie algebra.

If L is nilpotent or solvable, then a structure of G_m is deduced as follows.

LEMMA 2. If L is nilpotent, then G_m is nilpotent for any $m \in \mathbb{N}$.

PROOF. Since $[K_q, {}_pK_2] \subseteq K_{q+p}$, we have $[G, {}_{m-1}K_2] \subseteq K_m$ and so $[G_m, {}_{m-1}(K_2+K)/K_m] = 0$. On the other hand, since L is nilpotent, there exists an integer n such that $[G_{m,n}(L+K_m)/K_m] = 0$. Therefore $(G_m)' = 0$ for r = mn + 1. Q.E.D.

By induction on n, we see $K_2^{(n)} \subseteq K_{2n+1}$. From this we immediately have

LEMMA 3. If L is solvable, then G_m is solvable for any $m \in \mathbb{N}$.

Summing up these results we have

PROPOSITION 4. Let G be a Lie algebra given above. Then G is a profinite Lie algebra and if L is nilpotent or solvable, then G is pro-nilpotent or pro-solvable respectively.

6. Lie structures on
$$f[x_1,...,x_n,y]/(y^2-2\alpha y+\beta)$$

Let L be a finite-dimensional Lie algebra over f with a basis $\{x_1, ..., x_n\}$ and R be the polynomial algebra $f[x_1, ..., x_n]$. Consider the polynomial algebra R[y] over R and take a polynomial $T(y) = y^2 - 2\alpha y + \beta$ (α , $\beta \in R$). Let A(T(y)) be a commutative associative factor algebra R[y]/(T(y)), where (T(y)) is the ideal of R[y] generated by T(y).

We first extend a derivation $\partial/\partial x_i$ on R to A(T(y)).

LEMMA 5. There exist derivations d_1, \ldots, d_n of A(T(y)) such that $d_i d_j = d_j d_i$ and $d_i|_R = \partial/\partial x_i$ $(i, j = 1, \ldots, n)$ if and only if $\beta - \alpha^2 \in \mathfrak{t}$ and there exists an element b of R such that for $i = 1, \ldots, n$,

$$d_i(y) = d_i(\alpha) - \alpha d_i(b) + d_i(b)y$$

= $(\partial \alpha / \partial x_i) - \alpha (\partial b / \partial x_i) + (\partial b / \partial x_i)y$.

PROOF. Let $d_1, ..., d_n$ be the derivations of A(T(y)) satisfying the conditions given above. We set $d_i(y) = a_i + b_i y$ $(a_i, b_i \in R)$. Since $d_i(T(y)) = 0$ and $d_i d_j(y) = d_j d_i(y)$ in A(T(y)) (i, j = 1, ..., n), we have the equivalent conditions; for i, j = 1, ..., n,

(1)
$$a_i + \alpha b_i = d_i(\alpha)$$
, (2) $2\alpha a_i + 2\beta b_i = d_i(\beta)$,

(3)
$$d_i(b_i) = d_i(b_i)$$
, (4) $d_i(a_i) + a_ib_i = d_i(a_i) + a_ib_i$.

If $\beta - \alpha^2 \neq 0$, then by (1), (2) we have $2(\alpha^2 - \beta)b_i = d_i(\alpha^2 - \beta)$. Therefore $b_i = 0$ (i = 1, ..., n) and $\beta - \alpha^2 \in \mathbb{I}$. In this case a derivation d_i , defined by $d_i(y) = d_i(\alpha)$, satisfies all conditions given in the proposition.

Assume that $\beta = \alpha^2$. Then by (3) there exists an element b in R such that, for i = 1, ..., n,

$$b_i = d_i(b) = \partial b/\partial x_i$$
.

Hence by (1), $a_i = d_i(\alpha) - \alpha d_i(b)$. In this case the derivation d_i , defined by $d_i(y) = d_i(\alpha) - \alpha d_i(b) + d_i(b)y$, satisfies all conditions given above.

LEMMA 6. Let A, B be commutative associative algebras over \mathfrak{t} and ϕ be an associative isomorphism of A onto B. Assume that A contains a Lie algebra L and derivations d_1, \ldots, d_n of A and derivations D_1, \ldots, D_n of B satisfy the conditions; $d_i d_j = d_j d_i$, $D_i D_j = D_j D_i$, $d_i (x_j) = \delta_{ij}$, $D_i \phi = \phi d_i$ (i, $j = 1, \ldots, n$). Then the map ϕ is a Lie isomorphism of a Lie algebra $L(L; A, \{d_i\})$ onto a Lie legebra $L(\phi(L); B, \{D_i\})$.

We denote by $d_i^{\alpha,b}(y) = d_i(\alpha) - \alpha d_i(b) + d_i(b)y$. Now we set about proving the following results.

THEOREM 7. Let $c \in f$. Every Lie algebra $L(L; A((y-\alpha)^2+c), \{d_i^{\alpha,b}\})$ is isomorphic to the Lie algebra $L(L; A(y^2+c), \{d_i^{0,b}\})$, where b is taken as 0 in the case that $c \neq 0$. The Lie product of any two elements of the Lie algebra $L(L; A(y^2+c), \{d_i^{0,b}\})$ is given by, for p, q, s, $t \in R$,

$$[p+qv, s+tv] = [p, s] - c[q, t] + ([q, s] + [p, t])v$$
 $(c \neq 0),$

$$[p+qy, s+ty] = [p, s] + ([p, t]+[q, s]+q[b, s]+[p, b])y$$
 $(c=0).$

PROOF. Let ϕ be a linear map of $A(y^2+c)$ onto $A((y-\alpha)^2+c)$ defined by

 $\phi(p+qy)=p+q(y-\alpha)$ $(p, q\in R)$. Then the map ϕ makes sense. By simple computation we can see that $d_i^{\alpha,b}\phi=\phi d_i^{0,b}(y)$ (i=1,...,n). Therefore the map ϕ is a differential isomorphism of $A(y^2+c)$ onto $A((y-\alpha)^2+c)$. Hence by Lemma 6 and the remark given in the section of Definition we have the first assertion.

The second assertion follows from the formula

$$[r, y] = \sum_{i,j} [x_i, x_j] d_i^{0,b}(r) d_j^{0,b}(y)$$

$$= \sum_j [r, x_j] d_j(b) y$$

$$= [r, b] y \qquad (r \in R).$$
 Q.E.D.

COROLLARY 8. The Lie algebra $L(L; A(y^2), \{d_i^{0.b}\})$ is a split extension $Ry \dotplus_d R$ of the abelian Lie algebra Ry by R, where $d_r(qy) = ([q, r] + q[b, r])y$ $(q \in R)$. If $c \neq 0$, then the Lie algebra $L(L; A(y^2 + c), \{d_i^{0.0}\})$ is isomorphic to the Lie algebra $R \times R$ with [(p, 0), (0, t)] = ([p, t], 0), [(p, 0), (t, 0)] = (0, -c[p, t]) $(p, t \in R)$.

References

- [1] F. A. Berezin, Some remarks on the associative envelope of a Lie algebra (in Russian), Funkcion. Anal. Priloz. 1 (1967), 1-14.
- [2] C. A. Christdoulou, Profinite Lie algebras, Ph. D. Thesis, Warwick University, 1979.
- [3] J. Dixmier, Enveloping algebras, North-Holland, New York, 1975.
- [4] I. Kaplansky, An introduction to differential algebras, Actualites Sci. Ind., Herman, 1957.

Department of Mathematics, Kyushu Institute of Technology