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Existence and qualitative theorems for nonnegative solutions
of a similinear elliptic equation
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In this paper we study a qualitative feature of positive solutions for the
Dirichlet problem

Au(x) + f(u(x)) =0 in By
0.1)
u(x) =0 on 0Bg,

where B = (xeR"; |x| < R}, N >2 and f is a continuous function on [0, o)
which satisfies the following conditions:
(A1) lim sup,, .o f(s)/s< —m<O.
(A2) There exists a unique {,€(0, c0) such that
F(o) =0, F({) <0 for {e(0, {o) and f({o) >0,
where F() = [4f(s)ds,
(A3) o =sup{{ <{o:f(() =0} and § =inf{{ > (o; () = 0}
exist and 0 < a < 8 < o0.
(A4) fis Lipschitz continuous in a neighborhood of .
We first establish an existence of positive radially symmetric solutions of
(0.1) and study their shape. Hence they satisfy the following ordinally
differential equation associated to (0.1)

, N—1
u +

u + fw)=0 for 0<r<R,
0.2)
u(0) = p, u'(0) = u(R) =0,

where u is now a function of r=|x| alone (xeR". Then we show the
following

THEOREM 1. Under the conditions (A1)—(A4) there exists an Ry > 0 such
that for any R > R, the equation (0.2) admits a positive solution with properties

{o<u0)< B and u' <0 on (0, R].

THEOREM 2. Let R = oo and define u(0) by lim,,  u(r). Under the

conditions (A1)—(A4) for some pe(l,, B) there exists a nonnegative solution u of
(0.2). Let
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R, = inf{r > 0; u(r) = 0}.
Then u' <0 on (0, R;) and u=0 on (R, ©) if R; < 0.

According to L. A. Peletier and J. Serrin [7, Theorem 5] the nonnegative
solutions u(r) of (0.2) with R = oo have compact supports if and only if
[sIF(€)|~"?dl < o0. Taking this fact into account we have

COROLLARY.. Let R, be the same constant as in Theorem 2 and f satisfies
the conditions (A1)—(A4). If, furthermore, f(0) = O and f(s) is Holder continuous
at s =0, then the solution obtained in Theorem 2 has a compact support which is
equal to [0, R{].

When f is locally Lipschitz continuous on [0, oo0), these theorems are
known by H. Berestyski, P. L. Lions and L. A. Peletier [2] with help of
B. Gidas, W. -M. Ni and L. Nireberg’s theorem [5]. But in the case f is not
Lipschitz continuous at s = 0, the situation is subtle. In [3,4] one of the
authors and N. Fukagai obtain analogous results by the “shooting
method”. This method is elementary but the calculus was complicated because
of the lacking of regularity of fat s = 0. In this paper, to simplify the calculus
we give different proofs under little weakened conditions than in [3,4]. Since
we adopt variational methods for existence of nonnegative solutions of (0.1), we
rewrite as

J(W) = ®(u) — ¥(w),

where

D(u) = %J |Vu|? dx
B

R

and

¥(u) =J F(u)dx.
BR
If we define f as f(s) = 0 on [, o), the nonnegative solutions of (0.2) for this f
don’t exceed B by virtue of the maximum principle, and so these solutions are
considered as the solutions of (0.2) for the original function f. Thus we may
assume f(s) =0 on [, o0). Furthermore, since the solutions considered here
are nonnegative, we define f(s) on (— oo, 0) as f(s) = — f(— s).

RemMark 1. If our problem is only the existence of solutions, the
conditions (A3) and (A4) are not necessary, but we may pose only a weaker
condition
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lim f*(s)/s'=0  with 1<ZJr2

’
§— 0 _2

where f*(s) = max{f(s), 0}.

§1. Existence of nonnegative solutions

As preliminaries for the proofs of Theorems 1 and 2 we show the existence of
weak solutons in H§ ,(Bg) and in H(R"), and then regularity of them, where

H§,(Bg) = (ue Hy(Bg); u(x) = u(|x))}
and
H;(R") = {ue H'R"); u(x) = u(|x|)}.

We study critical points of J(u) in H} ,(Bg) and of ®(u) in H!(R") under the
condition ¥Y(u) = 1. Let {, be arbitrarily chosen in ({, f). Then by virtue of
(A2) and (A3) we see F(s) <F({,) for 0 <s < (.

LEMMA 1. Let pe(Ry, R) and put

& Fo<|x|<p—1,
dx)=§ Ll—Ix) if p—1<|x|<p,
0 if p<lx|,

Then die H} (Bg) and if R, is large enough, then
J@) <0
and
Y(@) > 0.
Proor. By simple calculation we have

p
¢(ﬁ)=%|S”'1|CfJ Noldr

p—1
1
=5 onti{p" = - D',
where |S¥7!| is the area of N — 1 dimensional unit sphere and

wy = 2722 /NT(N/2)

with
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I(N) = J e "tN"1dt.

0
On the other hand we have

P(i) = f F(i)dx + f F(i5)dx
B B

P-1 )’\BP—I

p
=F(£1)J dx+|S”“|f F@@rN~dr
B,_, -1

> F({on(p — 1YY + F&oy{p" — (0 — DY)
and so
J(6) = (@) — V(@)
<2 ayo — V{8 - 2F()] [(L) - 1} —2F ()},
2 p—1

where F({,) = ming. ., F({). Then there exists R, such that ¥(ii) >0 and
J(@) < 0 for any p > R,. The proof is complete.

LEMMA 2. Let R, be the constant obtained in Lemma 1. Then under the
conditions (A1)—(A3) for any R > R,, there exists a weak solution v of (0.1) in
H§ (Bg) such that J(v) <O.

Proor. Since the proof is standard, we sketch a brief proof. Consider
inf{J(u); ueH} (Bg)}. Since F({) is bounded, J(u) is bounded from
below. Hence we can choose {u;} in H,(Bg) such that

J(u) — C =inf{J(u); ue H§ (Bg)} as j— .

Then by an easy caculation we see that {u;} is bounded in H§ (Bg), and so we
may extract a subsequence—still denoted by {u;}— such that

u; —v weakly in H{ ,(Bg)
and by Sobolev’s imbedding theorem

u; — v strongly in LByg) for 2<gqg<?2%*

and
uj—v ae.,

where 2* = 2N/(N — 2) if N > 2 and 2* is any constant > 2 if N =2. From
these facts it follows that J(v) < C. By the definition of C we have

J@) = C.
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On the other hand, in view of Lemma 1 we see
J(v) <J(@) <0,
which asserts Lemma 2.

LemMa 3 (Strauss[9]). Let N >2. Every function ue H}(RY) is almost
everywhere equal to a function U(x) continuous for x # 0 and such that

[UX)| < Cylx|C ™2 |ullgigny  for x| >oay
where Cy and ay depend only on the dimension N.

LEMMA 4 (Strauss [9]). The injection H}(RY) = LA(R¥) is compact for 2 < q
< 2*

Putting R = oo in (0, 1) we interpret (0.1) as By = R" and lim,;_, u(x) = 0
instead of u(x) =0 on dBg. Then by the same way as in [1] we have the
following Lemma. We give a brief proof to close the paper.

LEMMA 5. Let R = o in (0.1). Then under the conditions (A1)—(A3) there
exists a nonnegative nontrivial weak solution w of (0.1).

Proor. Let M = {ueH}(R"); Y(u)=1}. Then M # ¢. In fact, accord-
ing to Lemma 1 we have ¥Y(i) > 0. Defining i, by i,(x) = ii(x/s) for any
6e(0, ). We see P(i,) = e ¥P(@). if we choose o as o"¥(il) = 1, we see
M # ¢. Consider inf{®@(u); ue M}. By the same way as in the proof of
Lemma 3, taking Lemma 4 into account we have we H!(R") such that

&(w) = inf{P(u); ue M}.

Since w (> 0) attains an infimum of &(u) under the condition ¥(u) =1,
there exists a nonzero constant 6 such that

PD'(w) = 0" (w),
that is
1.1 —Aw=0f(w)  weakly in H}!(RM),
or
2 _
(1.2) d__w+N_ld_w= —0f(w) weakly in 0 <r < o0.

dr? r o dr

Suppose § < 0. Then we see w < a. In fact, from Lemma 3 it follows that w
is continuous except r #0 and lim,,, w(r) =0, from which we can find a
bounded domain Q = R¥ such tht w > « in 2 and for some ball B € Q2 we have
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Sup w = sup w,
B Q

if there exists x,eRY such that w(x,) >« Then the maximum principle
[6, Theorem 8.19] leads to a contradiction, and so we see w < a. Since w < a,
we have F(w) <0, which contradicts

JF(w)dx =1

Thus 8 > 0. If we take w(x/\/é) as w, this w is the solution to be found. The
proof is complete.

Let u be v or w. Since ue HJ ,(Bg) (or H!(RY)), a weak derivative du/dr is
locally integrable function of (0, R] (when R = co, (0, R] is interpreted as
(0, ©0)). Thus it follows from Schwartz distributional arguments [ 10, Theorem
17] that u is locally absolutely continuous on (0, R], and therefore u has
derivatives u'(r) at almost all re(0, R]. Since u satisfies

d’u N —1du

_+—

o2 P +fw)=0 weakly in (0, R),

and f(u) is bounded in (0, R), it follows from the same reasoning as above that
u’ is also locally absolutely continuous on (0, R]. From this we have, for any
s, re(0, R)

N-1 N-1
(1.3) u'(r)=<§> u'(s)—frf(u(C))G) dg,

which yields ue C2(0, R]. Furthermore, since f(u) is bounded in (0, R), we see
that ue W2P(Bg) for any 1 < p < oo (c.f. [6, Theorem 9.15]). Hence ue C'(Bg).
Letting s -0 and then r —» 0 in (1.3) we have ¥'(0) = 0. From the equation

N-1
uII + " ull +f(u) — 0

there exists u”(0) and so ue C%[0, R]. Thus we have the following

ProPOSITION 1. Let R, be the constant obtained in Lemma 1. Then under
the conditions (A1)—(A3) there exists a C?* positive solution v of (0.2) for some
ue(0, B) such that J(v) <O0.

In view of the above facts and Lemma 3 we have the following

PRrOPOSITION 2. Let R = 0. Then under the conditions (A1)—(A3) there
exists a C* nonnegative nontrivial solution w of (0.2) for some ue(0, p).
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§2. Qualitative lemmas for solutions
As in Section 1 let 4 be v or w. Then u is a C? solutin of

N —

1u’+f(u)=0,
r

2.1) u” +

and we have the following

LemMMA 6. For any 0 <r, <r, <R the following identity

r2 _1

|u'(r)|? dr

2 S+ Futr) + [

ry r

= WP + Flutry)

holds.

ProOF. Multiply the both sides of (2.1) by u’ and integrate them from r,
to r,. Then we have (2.2) since{(w')*} =2u"v’ and {F(u)} =f(uu'. The
proof is complete.

LEMMA 7 (Pohozaev’s identity [8]). Let v be a C? solution of
(0.2). Then the following identity

(2.2) <2_TN> JR |v'(r)|*r¥"1dr + N Jm F@)rN 1t = %R”lv’(R)lz.
0

0

holds.
Proor. Multiply the both sides of the equation
rl —N(rN—lv/)/ = f(v)

by v'r'™ and integrate them from O to R. Then we have

R

) - J " St = [ P F) IS + f F(o()r*~dr
0

0

R
= I F(v(r))r¥ tdr.

0
On the other hand

R R
J (¥ *v'Yv'rdr = R"v'(R))* + f {1 + v'v"rN}dr.
0

0
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Since

R 1 N R
f v'v"r¥dr = ~R¥(v'(R))? — —j @)*rN " dr,
0 2 2 Jo

it follows that
N 2N\ (¥

(24) J (rN—lv/)vrrdr — lRN(U,(R))Z _ <—>J (v’)er_ldr.
0 2 2 o

From (2.3) and (2.4) we obtain (2.2). The proof is complete.
Lemma 8. v'(R) <O.
Proor. By Pohozaev’s identity we have

<2_TN> JR )V Ydr + NJR F(v)r¥~1dr = RN(v'(R))>.

On the other hand, since v satisfies J(v) <0 or

1 1 R R
J(v)=§f (v’)r”‘ldr—f F)r¥ tdr <0,
0

[SN| 0
it follows that

RMW/(R))? = r )2~ tdr — %J(v) >0,
0 IS777

which together with the fact v'(R) <0 yields v'(R) < 0.

LEMMA 9. Suppose there exists ro€[0, R) such that u'(ro) =0. Then one
of the following statements holds:

(1) u(re) > Co.

(i) u=0 on [ry R].

Proor. Use Lemma 6 with r;, =r, and r, = R. Then,

1 RN -1
§|u'(R)|2+f

fo

|u'(r)|*dr = F(u(r,)).

r

Hence we obtain F(u(ry)) > 0, from which together with (A3) it follows that

(2.5) u(ro) = Lo
or
(2.6) u(ro) = 0.

First consider the case of (2.5). If u(ro) = o, then u’' =0 on [ry, R], and so
u={, on [ry,R], which is a contradiction, since u(R)=0. Thus
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u(ro) # {o. By the same reasoning as is mensioned above we see u =0 on
[ro, R] in the case of (2.6). Thus the proof is complete.

LEMMA 10. Suppose that there exists an roe[0, R) such that u(r,)
=0. Then u=0 on [ry, R].

PrOOF. Since u is C? and nonnegative on [0, R], we obtain u'(r,)
=0. Hence it follows from Lemma 9 that u=0 on [ry,, R], since u(r,)
=0. The proof is complete.

§3. Proofs of Theorems 1 and 2

As for the proof of Theorem 1 taking Lemmas 8, 9 and 10 into account we
have only to prove v <0 on (0, R). On the other hand, as for the proof of
Theorem 2, let

R, = inf{r > 0; w(r) = 0}.
Since w # 0, we have, from Lemma 10,

R, >0, w>0 on [0, R).
and

w=0 on [R,, ) if R, < 0.

Since w'(0) = 0, it follows from Lemma 9 that w(0) > {,. Thus we also have
only to show w’ < 0 on (0, R,). Since the proof of Theorem 1 is the same as in
Theorem 2, we prove only Theorem 2. Suppose there exists r' €(0, R;) such
that w'(r') = 0. Then we may assume w”(r') <0, since w > 0 on [0, R,) and
w(R,;) =0. From Lemma 9 it follows that

(3.1 w(r’) > {,.
Consider the case w”(r') = 0. Since w satisfies the equation (2.1), we have
Jw()) =0.
This together with (3.1) leads to
w(r') = p.

Then from the uniqueness of solutions of the equation (2.1) with u(r') = § and
u'(r') = 0 it follows that w = § on (0, R,], which contradicts w(R;) = 0. As for
the case w”(r') < 0, since w'(0) =0, there exists a r"€[0, r) such that

(3.2) w(r) =0 and w'(r")>0.

Then it follows from Lemma 9 that
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(3.3) w(r”) > (.

On the other hand, since w is a solution of the equation (2.1), we see
f(w(r")) <0, which yields

(3.4 0<wr)<a
or
(3:5) w(r") = f.

The inequality (3.4) contradicts (3.3). On the other hand, (3.5) doesn’t occur by
the same reasoning as is mentioned above. Thus we have w' <0 on
(0, R,). The proof is complete.
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