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ABSTRACT. The Harish-Chandra C-function for SU(n, 1) is explicitly computed in

the case of the fundamental representation. As an application, by using the asymptotic

expansion of the Eisenstein integral, the conditions for the square-integrability of the

Eisenstein integral are given.

1. Introduction

Let G be a semisimple Lie group with finite center, K a maximal compact
subgroup of G. Let θ be the Cartan involution of G fixing K. Let G = KAN
be an Iwasawa decomposition of G and g = I + α + n the corresponding de-
composition of Lie algebra g of G. Then each element g of G can be uniquely
written as g = κ(g) exp H(g)n(g) (κ(g) e X, Ή(g) e α, n(g) e N). Put N = ΘN
and let M be the centralizer of A in K. Let τ be a finite dimensional
irreducible unitary representation of K and denote its representation space
by V. Then the following operator given by the integral

-ICτ(λ) = _ e-(λ+p*H(*»τ(κ(n)Γ*dή, (λ e a*c),
JN

is called Harish-Chandra's C-function associated to τ (see Harish-Chandra
[7]). It is well known that the operators Cτ(σ:λ) obtained by restricting
Cτ(λ) to the irreducible M-components Vσ (c V), are closely related to the
intertwining operators between induced representations (see Harish-Chandra
[7], [8]), and also in some special cases they can be represented by a diagonal
matrix having diagonal elements in the form of quotients of products of
gamma factors with respect to a certain orthogonal basis (cf. Cohn [2], Wal-
lach [15]). It has been believed for a long time that these phenomena would
occur for more general cases. In the previous paper Eguchi-Miyamoto-
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Wada [5] we gave an explicit expression as a diagonal matrix of the C-
function for G = SU(n, 1), K = S(U(n) x l/(l)) <= G and τ = Ad.

In this paper we show that, for G and K above and fundamental represen-
tations τw>r of K, the C-function can be expressed as a diagonal matrix with
entries consisting of quotients of products of Γ-factors with respect to a
certain basis.

2. Notation and preliminaries

Let n (n>2) be an integer and

G = SI7(n, 1) = {A e GL(n + 1, C); lAlnΛA = /π>1 and det A = 1} ,

where

-1
e GL(n + 1, C)

and /„ is the unit matrix of order n. Let

g = fu(π, 1) = {X e gl(n + 1, C); *XInΛ + InΛX = 0 and tr X = 0},

I = < ί I—- \\A e u(n), ί e R and tr ,4 = -^/-^
(.\0 v — lί/

Let

a = {tHi t e R] ,

and n = 0n,

where α is the simple root of (g, a) which satisfies α(#) = 1, g^ denotes the
root subspace of g corresponding to the root β and θ is the Cartan involution
of g defined by

Then g = ϊ + α + n i s a n Iwasawa decomposition of g. Let K, A, N and N
denote the analytic subgroups of G with Lie algebras ϊ, α, n and n, respectively.
Then G = KAN is the Iwasawa decomposition of G corresponding to the
decomposition g = I + α + n and we have
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A =

N =

where

cosh t

sinh t

Π Zi

ί e / ?

sinh ί

cosh £

... zn_x 1-F

i=ι

-1

Moreover, N can be identified with Cn 1 x /? by the mapping (z1?..., zΛ_!, M)
-> ή(z, M), where

n(z, u) = P

1

e A T .

Let n(z, w) = κ:(n(z, w))α(n(z, w))n(n(z, u)) be the Iwasawa decomposition of
n(z, M). Then we can see that

(2.1) a(ή(z, u)) = P diag (IFΓ1, !,...,!,

0

0

0

(2.2) κ(n(z,w)) =

o o ... o F/IFI

(cf. Sekiguchi [13]). Let M be the centralizer of A in X, that is
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M = ZK(A) = X

d
;d2detX=l9Xe U(n - 1) y .

Let p = =ΣaeΣ+ (dim gα)α = nα be the rho function and an the invariant mea-
2

sure on N normalized so that

j
Since λ e α£ can be written in the form λ = μλα (μλ e C), we identify Λ, with

the complex number μλ. Thus p is identified with n and (2.1) implies

3. The Harish-Chandra expansions

We will first make some general statements concerning the Harish-

Chandra expansions of the Eisenstein integrals. We use the notation and

the definitions introduced in § 1. Moreover we assume that G has split rank

one and the multiplicity of the M-irreducible components which occur in any

irreducible unitary representation of K equals 0 or 1. This is the case if

G = Spin (n, 1) or SU(n9 1).

For τ e K, we put M(τ) = (σ 6 M; [τ : σ] φ 0}. Let τ e K and σ e M(τ).
We denote by HomM(Vτ, Hσ) the space of all linear mappings P from Vτ into

Hσ satisfying σ(m)P = Pτ(m) for all m e M, where Vτ and Hσ are the representa-
tion spaces of τ and cr, respectively. By our assumption, there exists a unique

element Pσ(τ) of HomM(Fτ, Hσ) such that Pσ(τ)Pσ(τ)* = IHσ, where Pσ(τ)* denotes

the adjoint operator of Pσ(τ) and IHσ is the identity mapping of Hσ.

Let (T!, Fi) and (τ2, K2) be two irreducible unitary representations of
K. We write E for the space of all linear mappings T from V2 into Fx and

write EM for the subspace of E consisting of all elements T satisfying τ^nί^T —

Tτ2(m) for any me M. Then the double unitary representation (τ = (τ l5 τ2), E)

of K is defined as follows:

τ(*ι, *2)(T) = τΛfcJΓτ^Γ1 , (fc l f k2εK,TeE).

Let α denote the unique simple root and p denote the rho function. Then

for T e EM and λ e α£, the Eisenstein integral on G is defined by the following

integral:
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Eτ(T,λ,x)= I τι(κ
JK

The following theorem has been proved by Harish-Chandra.

THEOREM 3.1 (Harish-Chandra (cf. Harish-Chandra [9], Wallach [15],
Warner [16])). There exist an open connected dense subset T0 in α£ and
meromorphic functions C+, C_ on α£ with values in Homc(£

M, EM) and rational
functions Γk (fc = 0, 1,...) on Γ0 with values in Homc(£M, EM) satisfying the
following properties:
(1) Let T= {λ € α£; λ — p e Γ0 and — λ — p e Γ0}. Then the complement of
Tin α£ is a discrete set and the functions λ -> Γk(λ — p) are holomorphic on Y.
(2) For λ e Y and aε A+, we put

(3.1) Φ(λ :a)=Σ Γk(λ - p)e«-'-**w* > .
fc=0

Then the Eisenstein integral Eτ(T9 λ, a) is expanded as follows:

(3.2) Eτ(T9 λ, a) = Φ(λ: a)(C+(λ)(T)) + Φ(-λ : a)(C.(λ)(T)).

(3) For any T e EM, the following equalities are valid:

(3.4) C.(λ)(T) = τ1(w)-1Ctl(-I)*Tτ2(w),

where w denotes the nontrίvial element of the Weyl group.

REMARK. The expansion (3.2) is called the Harish-Chandra expansion
of the Eisenstein integral.

Let M(τ l5 τ2) = M(τ1)ΠM(τ2) and assume that M(τ l 9τ 2) is not empty.
For σ e M(τ1? τ2), we put Tσ = Pσ(τ1)*P(T(τ2). Then {Tσ; σ e M(τ l5 τ2)} forms
a basis of EM (cf. Mamiuda [11]). The following proposition tells us that
it is sufficient for computing Harish-Chandra's C-function to consider the
diagonal component with respect to the M-highest weight vector.

PROPOSITION 3.2 (cf. Sekiguchi [13]). Let τ e K and σeM(τ). Then
under the assumptions of this section, there exists a meromorphic function
Cτ(σ:λ) such that

Pσ(τ)Cτ(λ) = Cτ(σ:λ)Pσ(τ).

Combining the above results and the definitions of C+ and C_, we obtain

(3.5)

(3.6) (
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4. Diagonalization of the C-function

In this section, we shall return to the SU(n, 1) case. Recall the notation
and definitions introduced in § 2. Put Vr

n = Cn Λ Λ Cn (exterior products
of r times, r > 2) and t> f l_ ί r = etι Λ ••• Λ eir (ί1 < ••• < ίr), where {βj} is the
standard basis of Cn. Identifying C""1 with the subspace of Cn by the

mapping z-+( } (zeC"1"1), we regard V"'1 as the subspace of V". We

denote by Φ" the usual representation of the unitary group U(ή) on the space
Vr

n. For m e Z and r 6 TV, we define the irreducible unitary representations
of K and M as follows:

= umΦr

n(X)

Then it is known that τm>r|M = σmr + σm+1 Γ_ x and the projection mappings

Pσm,r(<rm,r) and ^^frm,!-) defined in § 3 are given as follows:

where δ^ is Kronecker's delta.
In this case, Harish-Chandra's C-function is given as follows:

(4.1)
tm r(λ) = ί

JΛΓ
(λ e

It is known that the integral converges absolutely for λ = μλa E α£ such that
R e μ λ > 0 (see Wallach [15, §8.10.16]). By the mapping (z, u) -+ n(z9 u)
(Cn~l x R^N\ the measure (n - l)\/πn'dz1dzί -dzn_1dzn_ίdu on C"1"1 x R
induces an invariant measure on N. Then the above C-function is written
in the following form:

(4.2) Cτm r(λ) = c ί
JCn-lxR

9 u))Γldz<Bdu ,

where c = (n — l)!/πw. For simplicity we write c^λ) for Cτmr(σw+1>r_1 : A) and
c2(λ) for Cτwr(σm>r: A). Put v1 = e1 Λ ••• Λ er and t?2 = e2 Λ ••• Λ er+1. Then
p<rm+1.,.-ι(τm,r)(*;ι) and Pσmir(τWfr)(f;2) are M-highest weight vectors of σm+1>Γ_!
and σm r, respectively. Hence we have the following expressions:
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(4.3) τw r(κ(n))~lVι = — ^— I -—-) v1 + other ,
\F\ \\F\/

F — \z I2 — •-• — \z I2 / F \m

(4.4) τ^KWr^ = ' l ! ^ (lΐi) "2 + other .
F VI ' I/

Therefore, we have

(4.5) CιW = c f |f|-*-»^

(4.6) c2(A) = c ί
Jc»-iχ

respectively.

THEOREM 4.1. 77ie mαίπ'x elements c±(λ\ c2(λ) of Cτmr(λ) are represented
as follows:

- n + m + 2r - 1

/ + n - m + n / A + n + m + 1

λ + n - m + 2\ /A + n + m
(4.8)

+ n

REMARK. In Sekiguchi [13], c±(λ) is computed in another way.

To prove the theorem we need the following lemma.

LEMMA 4.2 (Sekiguchi [13]). For λeC, I e Z, p{ e Z, pf > 0 (i = 1, . . . ,
n — 1), we pwί

(4.9)

n^= \
J ί=l

Then the following formula holds:

(4.10) ln(λ,l Pί,...,pn^)

+"-'+"Γ(-A - Pl - - - p,_1 -
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The proof of the theorem 4.1. Since

F - \z,\2 -•-- \zr\
2 = 2 - (F - |zr+1|

2 - - - Iz^l2) ,

we obtain the following formulae.

= C \ f(-λ-*-m

J C»-l*R

= c/ w (-Λ-n- l ,m;

= c F(-A

J Cn~lxR
c2(λ) = c F(-A-"-m)/2F(-A-n+m-2)/2(2-(FH^^

The theorem now follows from the last expressions and the above lemma.

REMARK. In r = n case, we see that Vr

n is one dimensional space implying
the K-highest weight vector v = el Λ Λ en. Then we have

and

Γ / F V1"1

cτm(λ) = c \F\-*- ( \ dzdzdu.
JC"- iχΛ \ l * l /

Thus

(n-l)!2-*+T(l)
CτmW -

n-m+l\ (λ + n + m - 1

(cf. Muta [12]).

5. Square-integrability of the Eisenstein integrals

In this section, as an application of the results of §4, we write down
the condition for the norm of the Eisenstein integrals to be square-integrable.
For this purpose we need the following theorem.

THEOREM 5.1 (Casselman and Milicic (cf. Casselman-Milicic [1], Knapp
[10])). Retain the notation defined in §1. Then the following conditions are
mutually equivalent:
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(1) Every leading character v of the spherical function F has

(5.1) M<(Γ1 / 2,

where δ(a) = det (Ad(β))|n (a e A)
(2) F is square-integrable on G.

REMARK. A simple calculation yields δ(a) = e

2p(loga).

Our main results of this section can be stated.

THEOREM 5.2. We use the notation introduced in § 3 and § 4. Let Λ, e α£
and assume that Re λ > 0. Then we have the following statements.
(1) Let T! = τm_1>r+1 or τm>r, τ2 = τm>r, σ = σm,r and τ = (τ l5 τ2). Then the
norm of the Eisenstein integral Eτ(Tσ, λ, x) is square-integrable if λ satisfies the
following conditions (i) or (ii) or (Hi).
1 i ) λ + n — m is a negative even integer,
(ii) λ + n + m is a non-positive even integer,
(iii) λ = -n + m + 2r > 0.
Moreover, the Eisenstein integral Eτ(Tσ, λ, x) vanishes at λ= — n + m + 2r>0
if T! =τm_ 1 > Γ + 1.
(2) Let τ1 = τm+^r^ or τm>Γ, τ2 = τm>r, σ = σm+1>Γ_1 and τ = (τ l5 τ2). TTien
ί/ie norm of the Eisenstein integral Eτ(Tσ9 λ, x) is square-integrable if λ satisfies
the following conditions (i) or (ii) or (iii).
( i ) λ + n — m is a negative odd integer,
(ii) λ + n + m is a negative odd integer,
(iii) λ = n-m-2r+l>Q.
Moreover, the Eisenstein integral Eτ(Tσ, λ, x) vanishes at λ = n — m — 2 r + l > 0

if *ι =τm+ι iΓ-ι.

PROOF. Since the proof of (2) is the same as that of (1), we shall prove
the case of (1).

We write a+(λ) for Cτ2(σ:λ) and a_(λ) for Ct ι(σ: —λ), respectively. For
λ e Y and a e A+, we put

(5.1) Φ(σ : λ: a) = £ Γk(A - p)(Γ><λ-^kα><lo**>.
fc=0

Because τί(w)~1Tστ2(w) = εTσ, where ε = 1 if τ x = τm>r and ε = — 1 if τ1 =
τw_ l f Γ + 1, the Harish-Chandra expansion of Eτ(Tσ, λ, x) (τ = (τ l 5τ2)) can be
written as follows:

(5.2) Eτ(Tσ, λ, a) = a+(λ)Φ(σ :λ:a) + sa.(λ)Φ(σ :-λ:a).

Using the estimate of Γk (cf. Eugchi-Hashizume-Koizumi [4]), we see that
the function λ->Φ(σ:λ:a) can be extended to a meromorhic function on α£.
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Let Λ e α £ be such that Re/l>0. If a+(λ) ^ 0, then the character
g(A-pχiogα) is contained in the leading characters of Eτ(Tσ9 λ, x). Thus (5.1)

implies that Eτ(Tσ9 λ, x) is not square-integrable. Therefore, if Eτ(Tσ9 λ, x) is
square-integrable at λ then a+(λ) = 0. We denote by S+ the zeros of a+(λ).
From (4.8), we have the following:

S+ = {λ > 0; λ = -n + m + 2r or -n + m - 2 - 21 or

We first consider the case τ1 = τm_1>r+1. It is clear that M(τ l5 τ2) = {σ}
(i.e. dim EM = 1) and there exists a rational function λ -» Ak(λ) such that
Γk(λ - ρ)(Tσ) = Ak(λ)Tσ. Hence from the definition of Γk (cf. Harish-Chandra
[9], Warner [16]), we obtain the following:

(5.3) A0(λ) = 1 ,

(5.4) \k(2λ - k)Ak(λ) = (n-l)Σ(λ-n-k + 2l)Ak.2l(λ)
4 />ι

4i(A) - 2(2r + 1) £ M

- (2m2 + 2m - 1) £ M fc_4iW .
ί>l

From the above expression, it is clear that A2p+1(λ) = 0 (p = 0, 1, 2, ...) and
the poles of the function λ -> A2p(λ) are contained in (1, 2, . . . , p}. From (4.7),
we have

(5.5) α
-A + π - m + 2\ /-A + n + m

Let λeS+\{-n + m + 2r}. Then since α_(^) ̂  0, there exists μ > 2Λ,
such that the leading characters of £τ(Tσ, A, x) are e^-px10*") and e(

λ-p-»n°*a\

Therefore, from theorem 5.1, we see that the norm of Eτ(Tσ, λ, x) is square-
integrable.

On the other hand, from the functional equation for the Eisenstein integral
(cf. Harish-Chandra [7], [8]), we obtain the following:

(5.6) -a+(-λΓla.(λ)Eτ(Tσ9 -A, x) = £τ(Γσ, λ, x), (λe α« .

Noting that a+(-λ)/a_(λ) = (λ - n + m + 2r)/(λ + n - m - 2r) and the poles
of a+( — λ)/a_(λ) correspond to the zeros of the function λ -> Eτ(Tσ, A, a), we
see that Eτ(Tσ9 λ, x) vanishes at λ— —n + m + 2r.
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We next consider the case τ t = τm>r. We write σ^ for σw>r and σ2 for
σm+ι,r-ι Then M(τ l9 τ2) = {σl9 σ2} (i.e. dim EM = 2) and there exist rational
functions λ-*Al(λ) and λ-+Aϊ(λ) such that Γkμ - p)(Tσι) = A fc

1(A)Γ ίΓι-f

2. From the definition of Γk, we obtain the following:

(5.7) Aftλ) = 1 ,

(5.8) l-k(2λ - k)Al(λ) = (n - 1) £ (λ - n - k + 2l)A^2l(λ)
4 ι>ι

+ Σ ( Λ - n - f c + 404U/W

+ 2(n -
.1^1

(5.9) Xg(A) = 0 ,

(5.10) 1 {fc(2A - fc) - 2n + 2m + 4r -

(21 -

*^1

Then from the above expression, it is clear that A\p+l(λ) = A\p(λ) = 0 (p -
0,1,2,...) and the poles of the function λ-*A\p(λ) and λ^A\pJrl(λ) are
contained in

{1, 2,..., p, n - m - 2r + 1,..., (n - m - 2r + 1 - 2p(p + l))/(2p + 1)} .

From (4.8) we have

/ n (n - l)!2^"-1Γ(-A)(-l)μ - n + m + 2r)
(5.11)

-A + n - m + 2\ /-Λ + n + m

Let λ 6 S+. Then since (2p + l)/l - n + m -I- 2r - 1 - 2p(p + 1) / 0 and
,) φ 0, there exists μ>2λ such that the leading characters of Eτ(Tσ9 λ, x)



162 Masaaki EGUCHI, Shin KOIZUMI, Mari MIYAMOTO and Ryoko WADA

are e(~λ~pWoga) and e(λ~p-μWoga\ Therefore, from theorem 5.1, we see that
the norm of Eτ(Tσ, λ, x) is square-integrable. This completes the proof of the
theorem.

REMARK. (1) The above theorem gives information about discrete series,
which is already known to be true in a more general situation (cf. Enright
[3]). Our result implies that the information of discrete series can also be
obtained from the zeros of Harish-Chandra's C-function.

(2) Via the correspondence between the C-function and the intertwining
operators we see that, at the points where the C-function vanishes, the inter-
twining operator has nontrivial kernel, and hence the induced representation
is reducible.
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