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ABSTRACT. Our aim in this paper is to propose a form of classical Liouville theorem for

polyharmonic functions which is a direct generalization of our former one for harmonic

functions.

1. Introduction

We denote by R^ the Euclidean space of dimension d > 2. The length \x\
of a point or a vector x = (xi,... ,Xd) e R^ is given by \x\ = (Σf=i xfΫ^2 A
real valued function u(x) is harmonic on Rd if ue C2(Rd) and Δu{x) = 0 o n R ,̂
where Δ is the Laplacian Σt\(8/dχi)2' W e denote by H(Rd) the real linear
space of harmonic functions on Rd. We also denote by HB(Rd) {HP(Rd),
resp.) the class of bounded (nonnegative, resp.) functions ueH(Rd). The
Liouville theorem in the theory of harmonic functions (cf. e.g. Axler et al. [3])
consists of the following two contents: HB(Rd) = R; HP(Rd) = R+, where R
is the real number field and R+ = {t e R : t > 0}. Picard (cf. e.g. [11], [12])
essentially showed that these two statements are equivalent. We proposed ([8])
the following theorem (stated here in a slightly modified fashion beyond the
original presentation) as a form of Liouville theorem for harmonic functions.

THEOREM A. Suppose u e H(Rd) and s is any real number with s > 0.
Then u is a harmonic polynomial of degree less than s if and only if there exists
an increasing divergent sequence ( r ; ) ^ of positive numbers ri (i = 1,2,...) such
that

(1.1) l iminf fmin^^ > 0.
'Too \ j χ | = r / \χ\S J

In fact, if ueHB(Rd) [ueHP{Rd), resp.), then (1.1) is valid for any
0 < s < 1 and for any increasing divergent positive sequence (ri)i>x. Thus
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by the above theorem u is a polynomial of degree less than s so that u is

constant, i.e., Theorem A implies the Liouville theorem for harmonic func-

tions. This is the reason why we viewed Theorem A as a form of classical

Liouville theorem for harmonic functions. The purpose of this paper is to give

a polyharmonic version of Theorem A.

A real valued function u on R^ is polyharmonic of order m on R^, where

m is a positive integer, if u e C2m(Rd) and Amu{x) = 0 on Rd, where Amu =

Am~ι(Au) with the convention that A° being the identity operator. We denote

by Hm(Rd) the real linear space of polyharmonic functions of order m on R^

so that Hι(Rd) = H(Rd). We also denote by HmB{Rd) {HmP{Rd), resp.) the

class of bounded (nonnegative, resp.) functions ue Hm(Rd). A real valued

function u on R^ belongs to Hm(Rd) if and only if

(1.2) u{x) = Σ\x\2p-2hp{x) (hpeH(Rd) (p = 1,... ,m))
p=\

for every x e R ^ (cf. e.g. [2, p. 4]). Here the expression (1.2) is unique in the

sense that Σ™=x \x\2p~2hp(x) = 0 o n R ί / implies that hp(x) =0 (p = 1,.... ,ra)

on R^ (cf. e.g. [2, p. 4]; see also §4 below) and (1.2) is referred to as the Almansi

decomposition of u onRd. Then, as the polyharmonic version of Theorem A,

we have the following result.

THEOREM 1. Suppose that m is any positive integer, u e Hm(Rd), and s

is any real number with s > 2m - 2. Then u is a polyharmonic polynomial of

degree less than s if and only if there exists an increasing divergent sequence

(ri)i>\ of positive numbers r, (/ = 1,2,...) such that

(1.3) liminff m i n ^ f ) > 0.
V ^ /Too \\x\=r, \ X \ S J ~

The m = 1 case of Theorem 1 is nothing but Theorem A so that Theorem

1 is a direct generalization of Theorem A. Theorem 1 may also be viewed as

a form of the Liouville theorem for polyharmonic functions. The first content

of the Liouville theorem HmB(Rd) = R a s the counterpart of HB(Rd) = R is

true (Nicolesco [10], Huilgol [4]). The second content of the Liouville theorem

HmP(Rd) = R+ as the formal counterpart of HP(Rd) = R+ is not true for

m > 2 since e.g. \x\2m~2 e HmP(Rd)\R+; the true form of the second content of

the Liouville theorem corresponding to HP(Rd) = R + is that if u e HmP(Rd),

then u is a polyharmonic polynomial of degree at most 2m —2 (m = 1,2,...)

(Kuran [6]), which reduces to HP{Rd) = R+ for m = 1. Now, if u e HmP(Rd),

then (1.3) is valid for any 2m — 2 < s < 2m — 1 so that Theorem 1 implies that

u is a polynomial of degree less that s, or equivalently, at most 2m — 2. If

ueHmB(Rd), then (1.3) is also valid for any 2m - 2 < s < 2m - 1 so that
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Theorem 1 implies that u is a polynomial of degree at most 2m — 2. However

a polynomial u can be bounded if and only if u is constant. Thus Theorem 1

implies two contents of the Liouville theorem for polyharmonic functions.

The proof of Theorem 1 will be given in §2 by the Fourier expansion

method, one of the most powerful tools in treating objects related to harmonic

functions defined on a domain rotationally invariant about a point such as R^,

which has been constantly our claim (cf. [5], [8], [9], etc.); this proof is essentially

identical with that for Theorem A in [8]. Results in the same category as

Theorem 1 have already been given by Armitage [1] many years ago and also

by Mizuta [7] relatively recently. We compare our condition (1.3) with those

of Armitage [1] and Mizuta [7] in §3. Theorem 1 may be further generalized

for functions not necessarily polyharmonic, which will be discussed in the

final §4.

2. Proof of Theorem 1

We use the polar coordinate x = rζ for points x eRd, where r = \x\ > 0

and ξ = x/\x\ e Sd~ι for x Φ 0 and ξ = (1,0, . . . , 0) e Sd~ι for x = 0 just for

the sake of definiteness. Here Sd~ι is the unit sphere {x eRd : \x\ = 1}. We

choose and then fix an orthonormal basis {£&/ ' j = 1 > >N(k)} of the subspace

of all spherical harmonics of degree k of L2(Sd~ι,dσ), where dσ is the area

element on Sd~ι. Then {Skj : j = 1,..., N(k) k = 0,1,...} is a complete

orthonormal system in L2(Sd~ι,dσ). We have, as the special case of the

addition theorem (cf. [3, 5.11]),

where σd is the surface area σ(Sd~ι) of Sd~ι. Here N(0) = 1 and

N(k) = (2k + d- 2)Γ(k + d- 2)/Γ(k + \)Γ(d - 1)

for k = 1,2,... (cf. [3, 5.17]). For simplicity we set Ak := •s/N(k)/σd so that

\Skj(ξ)\ <Ak (7 = 1,.. ., N(k) k = 0,1,...)

for every ζeSd~ι. Then we have the following Fourier expansion of any

harmonic function h(rξ) on R^ in terms of spherical harmonics {S^ }:

oo /N(k)

where akj (j = 1,..., N(k); k = 0,1,...) are constants. Here the series on



208 Mitsuru NAKAI and Toshimasa TADA

the right hand side of (2.1) converges uniformly in ξ e Sd~ι for any fixed

0 < r < oo.

Since 2m — 2 < s, there is a unique integer n such that

(2.2) 2m-2<n<s<n+\.

We only have to show that any given u e Hm(Rd) is a polyharmonic polynomial

of degree at most n if the condition (1.3) is postulated since the converse is

trivially true. We note as a direct consequence of (1.3) that for an arbitrarily

fixed positive number ε > 0 there exists a positive integer i(ε) such that

(2.3) . u(x) > -ε\x\n+ι (\x\ = n)

for every i>i(ε). In fact, (1.3) assures that for any positive number ε > 0

there exists a positive integer i(ε) such that u{x)/\x\s > —ε (\x\ = rz ) and r, > 1

for every / > ί{ε). By the choice of n in (2.2), |JC|* < \x\n+l for |χ | > 1, which

induces (2.3).

Consider the Almansi decomposition (1.2) of u(x) on R^:

p=\

hp e H(Rd) (p = 1 m )where hp e H(Rd) (p = 1,... ,m). In terms of polar coordinate x = rξ, (2.1)

yields

where apkj (p = 1,.. ., m\ k = 0 , 1 , . . . j = 1,. . ., N(k)) are constants. The

series on the right hand side of the above displayed identity converges uni-

formly in ξ e Sd~ι for any fixed 0 < r < oo. Hence we obtain

m / oo /N(k) \ \

(2.4) u(rξ) = χ ; r^ £ ^ apkj SkJ(ξ)
p=\ \k=O\j=\ ) J

which converges uniformly in ξ e Sd~ι for any fixed 0 < r < oo. This with

(2.3) yields

for any ξeSd~x.
We now claim that (2.5) implies the following relations:

(2.6) apkJ = 0 ( ( 2 / 7 - 2 ) + £ > « + ! ) .
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First we prove that apkj = 0 for (2/7 — 2) -f k > n + 1. Contrary to the

assertion assume that there exist I < p <m, 0 <k < oo, and 1 < j < N(k) such

that (2p — 2)+k>n+\ and yet apkj Φ 0. Let px be the greatest p satisfying

Gpkj Φ 0 so that px = m or apkj = 0 for px < p < m and aPχkj Φ 0. Choose a

real number η with \η\ — 1 such that

(2.7) ηapχkj > 0.

Multiply Ak — ηSkj(ζ) > 0 to both sides of (2.5) and then integrate both sides of

the resulting inequality over Sd~ι with respect to dσ\ present authors have been

using this device frequently (see e.g. [5], [8], [9], etc.). Then we obtain

( m \ p\

°ϊ/2 Σapθ^P~2 + <l - Σnapkjrfp-1)+k > 0 (/ > /(*)).
p=\ J p=\

Let P(r) := σdAk{σ-χ/2ΣP=ιaPo\r2p-2 + srn+ι), which is a polynomial of r of

degree / i + l , and Q(r) := Yfp=x ηapkj^2p~2^k, which is a polynomial of r

of degree (2/?1-2) + A: > Λ + 1 by (2.7). Then d e g P < d e g β , the leading

coefficient of Q is strictly positive by (2.7), and yet (2.8) means that

P(n) > β(r, ) (i>i(ε)). This is clearly absurd and we have proved (2.6) for

(2/7-2)+ k>n+l.

Next we prove that apkj — 0 for (2p — 2) + k = n+l. Again contrary to

the assertion assume that there exist 1 < P\ < m, 0 < k < oo, and 1 < j < N(k)

such that (2px -2)+k = n+l and aPι/g φ 0. Observe that px=m or

px < m. In the latter case, apkj = 0 for px < p < m by what we have shown

above since (2p - 2) + k > (2px - 2) + k = n + 1. Similarly as above choose

a real number η with \η\ = 1 and ^Op̂ y > 0. We now choose ε > 0 so small

and then i(ε) so large accordingly that (2.5) is valid for any / > i(ε) and
(2.9) ηaPλkj - σdAkε > 0.

Multiplying Ak — ηSkj(ζ) > 0 to both sides of (2.5) and then integrate both sides

of the resulting inequality over S^"1 with respect to dσ as we did above. Then

we obtain

m ( p\-\ Λ

(2.10) σJ^^α^-M
p=\ I p=\ )

Set P(r) := oλj2 Akγ^=x apo\r2p~2, which is a polynomial of r of degree at

most 2 m - 2 < « + l , and β(r) := (ηaPιkj - σdAkε)rn+ι + Σ ^ 1 ηapkjr^-2^\
which is a polynomial in r of degree H + 1. Then deg P < deg Q, the leading

coefficient of Q is strictly positive by (2.9), and nevertheless (2.10) means that

P{τi) > Q{ri) (i > i(ε)). This is clearly absurd and we have also shown (2.6)

for (2/7 — 2)+k = n+l. The proof of (2.6) is herewith complete.
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In view of (2.6) we can rewrite (2.4) as

m ( (N{k)

(2.11) u{rξ) = Σl Σ Σ
p=\ \(2p-2)+k<n\j=l

for every ξeSd~K Since Skj(x) :=rkSkj(ξ) (x = rξ) is a homogeneous har-

monic polynomial in x of degree k, (2.11) yields that

( /N(k)

Σ E
p=\ \(2p-2)+k<n\j=l

is a polynomial of x of degree at most n, which was to be shown. •

3. Equivalent conditions

By examining the proof in [8] of Theorem A and also the proof in § 2 of

Theorem 1, we can see that the condition (1.1) in Theorem A or the condition

(1.3) in Theorem 1 can be replaced by any one of the following four conditions:

(3.1) liminffmin^^) =0;
/Too \\x\=ri\x\SJ

(3.2) l i m i n f ^ > 0;
WToo \x\

(3.3) ^ U

(3.4)

Thus the conditions (1.1) ((1.3), resp.), (3.1), (3.2), (3.3) and (3.4) with s > 0

(s > 2m — 2, resp.) are equivalent by pairs for harmonic (polyharmonic, resp.)

functions u on R^, which are thus equivalent to that u(x) is a polynomial in x

of degree less than s. Needless to say the equivalences of these conditions are

only for polyharmonic functions u. For not necessarily polyharmonic func-

tions u, e.g. (3.2) is strictly stronger than (1.3). We denote by Bd the unit open

ball {\x\ < 1} in R^ so that rBd = {\x\ < r] and rSd~ι = {\x\ = r) for r e R + .

In 1973, Armitage [1] proved the following result.

THEOREM B. Suppose that m is any positive integer, ue Hm(Rd), and s

is any real number with s > 2m — 2. Then u is a polyharmonic polynomial of

degree less than s if and only if



Liouville theorem for polyharmonic functions 211

(3.5) lim

Here w+(x) = max(ιφt),0). Recently Mizuta [7] proved the following

result, which is stated here in a slightly more precise form than the original one.

THEOREM C. Suppose that m is any positive integer, u e Hm(Rd), and s

is any real number with s > 2m — 2. Then u is a polyharmonic polynomial of

degree less than s if and only if

(3.6)

Hence we can make the following conclusion. We are grateful to Pro-

fessor Mizuta for calling our attentions to the polyharmonic Liouville theorem

and especially to the Armitage and Mizuta conditions stated above.

THEOREM 2. The following four conditions for u e Hm(Rd) and s > 2m — 2

are equivalent by pairs: the N.-T. condition (1.3); the Armitage condition (3.5);

the Mizuta condition (3.6); u is a polyharmonic polynomial of degree less than s.

4. A generalization

We consider the class H*(Rd) of real valued function u defined on R^

expressible as

n
(Λ\\ ΊJ(γ\ — V ^ IVI'/JYVΊ

1=0

on Rd, where n is a nonnegative integer determined by u and hi e

H(Rd) (i = 0,...,/i) also determined by u. Then we have \J™={H
m(Rd) c

H*(Rd). First we show the following result.

PROPOSITION 1. The expression (4.1) is uniquely determined by u.

PROOF. We have to show that if Σ"=o !* !%(*) = 0 on R^ for hi e H(Rd)

(/ = 0,. . . , n), then ht{x) = 0 on R^ (/ = 0,.. .,«). This is clear for H = 0.

Assuming it is true for n, we prove that

/i+l

(4 7) \^ M'h'ίx) = 0
ι=0

on R^ for hieH{Rd) (i = 0,. . . ,w+l) implies */(*) = () on R^ (Ϊ = 0, . . . ,AI+1) .

By considering (4.2) on Sd~ι we have Σ?=ohi(x) = ° o n sd~l- BY t h e

maximum principle for harmonic functions, the same is true on Bd. Then
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by virtue of the uniqueness theorem for harmonic functions we must conclude

that

(4.3)
i=0

on R^. Subtract (4.3) from (4.2) and then divide both sides of the resulting

identity by |JC| - 1. Then we obtain ΣΪ=ι(ΣJZl

0 W7>/(*) = 0 on R^ or

(4.4)
i=o \y=i+i

on R^ with E J Ϊ + i hje H(Rd) (Ϊ = 0 , . . . , Λ ) . By the induction hypothesis

applied to (4.4), we have Σ,J=M hj = ° (ι = 0,... ,w) on R^. This with (4.3)

implies that

(4.5)

on R^. The relations (4.5) are equivalent to hx? = 0 (i = 0 , 1 , . . . , n + 1) on R^,

and this completes the induction. •

We state a generalization of Theorem 1 on replacing Hm(Rd) in Theorem

1 by strictly larger class H*(Rd).

THEOREM 3. Suppose that n is any nonnegative integer, u e H*(Rd) is given

by (4.1):

u(x) = Σ \x\ %{x) {hi e H(Rd) (/ = 0,..., /i))
i=0

on Rd, and s is any real number with s > n. Then each A,-(x) in (4.1) is a

harmonic polynomial in x of degree less than s — i (i = 0 , . . . , « ) if and only if

there exists an increasing divergent positive sequence (ry) -> 1 such that

(4.6) liminffmin^^) > 0.
Ά* \\A=rj\x\ )

If u{x) in (4.1) takes the form u{x) = Σ™=1 \x\2p~2hp(x), then each hp(x) is

a harmonic polynomial in x of degree less than s — (2p — 2) (p = 1,. . . , m) by

Theorem 3, which is the case if and only if u(x) is a polyharmonic polynomial

in x of degree less than s. Hence Theorem 3 certainly contains Theorem 1 as

a special case. Since the proof for Theorem 1 can be applied to Theorem 3

mutatis mutandis, we omit here the proof of the above result.
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