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Adiabatic transition probability for a tangential crossing
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ABSTRACT. We consider a time-dependent Schrodinger equation whose Hamiltonian is
a 2 x 2 real symmetric matrix. We study, using an exact WKB method, the adiabatic
limit of the transition probability in the case where several complex eigenvalue crossing
points accumulate to one real point.

1. Introduction

We consider the time-dependent Schrédinger equation:

g = oo, o =("0 0 (1
on R, where ¢ and & are small positive parameters and V() is a real-valued
function. () is a vector-valued function with complex components. This
equation (1) describes the adiabatic time evolution associated to the Hamil-
tonian #(e,h). This 2 x 2 real symmetric and trace-free matrix #(e,h)
has two real eigenvalues E,(1,¢) = +1/V(1)> +¢2. The difference of these
eigenvalues

E.—E_ =2\/V(1)*+¢&

is strictly positive for all € R and has its minimum 2¢ at the zeros of V(7).

From the physical point of view, the two different unperturbed energy
levels V(¢) and —V(f) cross each other at the zeros of V(¢f) and ¢ is the
interaction at the intersection. Because of this interaction, E. (¢,¢) and E_(t,¢)
do not cross (avoided crossing), but the transition occurs by the quantum effect.
The parameter /2 is the adiabatic parameter and the quantum effect becomes
small in the adiabatic limit. On the other hand, ¢ is the gap at the avoided
crossing. One expects, then, that the transition probability P(e /) is small
when £ is small while it is large when ¢ is small. It is an interesting problem
to study its asymptotic behavior as both ¢ and & go to 0.
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The study of the transition probability P has its origin at the works by
L. D. Landau [L] and C. Zener [Z]. In 1932, they studied the case V' (¢) = at,
where a is a positive constant, and derived the following explicit formula:

e’
P =exp {— E}
for all positive ¢ and h. This is the so-called Landau-Zener formula.

There have been many studies about the transition probability in the
adiabatic limit s — 0 (see the summaries [BT], [HJ], [T]). Among those, we
refer to a series of studies by A. Joye, H. Kunz and C.-E. Pfister ([J1], [JKP],
[JP1], [JP2]). They studied the real symmetric matrix-valued Hamiltonian:

V(1) W(l)>
W) —V()

( )
where the difference of the eigenvalues 21/ V' (¢)> + W (1)* does not vanish for
teR. They express the adiabatic limit of the transition probability in terms
of actions between complex eigenvalue crossing points:

{teC;V()* + W(t)* =0},

H(t) = (

which we call turning points in this paper.

In this paper we consider V' (¢) which vanishes at one point of order n, and
compute the asymptotic behavior of P(e, i) as (g,h) — (0,0) under the con-
dition A/e"+*D/" — 0. 1In case n = 1, this problem is studied in more general
settings by [CLP] and [Ro].

Recently new approaches of an exact WKB method have been studied.
These approaches give the rigorous argument to the divergent power series
solution on the singular perturbation 4. [AKT] studied the Hamiltonian,
which is a 3 x 3 real symmetric matrix with polynomial elements, by the exact
WKB method based on the Borel resummation. In this paper we apply the
exact WKB method developed by C. Gérard and A. Grigis [GG], and S. Fujiié,
C. Lasser and L. Nedelec [FLN] to this adiabatic transition problem. This
method enables us to express the Wronskian of two exact WKB solutions as
a convergent series defined inductively by integrations along a path. Careful
observations of the phase function on the path give us the asymptotic behavior
of the Wronskian as (g,/) — (0,0) with A/e"+D/" — 0.

Finally we remark that this is similar to the scattering problem for
Schrodinger operator over the maximum of the potential. See [Ra], [FR] for a
non-degenerate maximum case and [BM] for a degenerate maximum case.

This paper is organized as follows: In §2 we define the transition pro-
bability and state the results. In §3 we review the exact WKB method for a
family of 2 x 2 systems used in [FLN] and express the Jost solutions as exact



Adiabatic transition probability 445

WKB solutions. In §4 we calculate the scattering matrix using the Wronskian
of the exact WKB solutions and finally in §5, we compute the asymptotic
expansion of the action with respect to e.

2. Definitions and results

We first define the scattering matrix and the transition probability for the
equation (1) under the following assumptions on V(¢):

(A) V(z) is real-valued on R and there exist two real numbers
0 <6y <mn/2 and p > 0 such that V(¢) is analytic in the complex domain:

S ={teC;|Im1 < |Re ¢ tan O} U {|Im 7] < p}.
(B) There exist two real non-zero constants E,, E; and ¢ > | such that

V() = E, +0(t°) asRet— 4o in &,
" LE+0(f%) asRet— —ow in 7.

Under the conditions (A) and (B), there exist four solutions ', y", wi,
and ¥ to (1) uniquely defined by the following asymptotic conditions:

. [ 1/ —sin 6, .
Wl (1) ~ exp +%\/E,42+£2t_ ( cos 0, ), as Ret — 4w in &,
1/ cos 6, .
\/ E? + &%t ( , ), as Ret— 4o in &,
1\ sin 0,
5 2' —sin 0, .
\ Ef + &t , as Ret— —ow0 in &,
1\ cos 0

E
2 2 1/ cos 6 .
\ Ef + et . , as Ret— —o0 in &,
1\ sin 0;
where tan 20, = ¢/E, and tan 26, =¢/E; (0 < 6,,6; <z/2). These solutions
are called Jost solutions to (1). We notice that the principal term of each Jost

solution, for example exp[+%/E? + &21]'(—sin 6, cos 6,), is a solution to the
constant coefficient system:

g = (75 v,

Y (1) ~exp

Yl(1) ~ exp

i
T
WL (1) ~ exp +%
i
T

The pairs of Jost solutions (', ,%") and (wi, ') are orthonormal bases on C>
for any fixed . Moreover they have the following relations:

vi=+( " o JEa wo=+(" e, o



446 Takuya WATANABE

The scattering matrix S is defined as the change of bases of Jost solutions:

s1(eh)  sia(e, h))

WL v =L ¢S h), S(&h):(&l(g,h) s22(e, h)

S is an unitary matrix independent of ¢ and moreover, by (2),
suleh) = sn(eh),  swleh) = —su(eh).
The transition probability P(e, h) is defined by
P(e,h) = |s21(e, )|

Let us assume

(C) V(1)=0 if and only if t=0.

Then the eigenvalues have the so-called avoided crossing at the origin. We
call turning point a complex zero of V(l)2 + &%, and in particular, simple turning
point if it is a simple zero.

Let ne N ={1,2,...} be the number such that V¥ (0) =0 for 0 <k <n
and V™(0)#0. We can assume V™ (0) >0 without loss of generality.
Then there are 2n simple turning points 7j(¢) and % (j=1,...,n) with
O<argT) <---<arg T, <z which converge at the origin as ¢ tends to O.
We define the action integral A4;(e) by,

Ti(2)
A(e) zzj V(0 + 2 d,
0
where the integration path is the complex segment from 0 to Tj(e) and the
branch of the square root is ¢ at t=0. Our main result is the following
asymptotic formula of P(e,#) when ¢ and /& are both small.

THEOREM 2.1.  Assume (A), (B), and (C). If n =1 there exists & > 0 such
that we have

2 Im Al(é‘)

P(e,h) = exp [— h

}(1+0(h)) as h— 0

uniformly for ¢ € (0,e). If n > 2 there exists &y > 0 such that, for all € € (0,¢),

we have
2
h
(1 + 0(6(n+1)/n>>

P(e,h) =

exp 1. 1(6)| + (1) x| 4,0

h
as WHO
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Remark that /2/e"*1)/" appears in an obvious way in the case V() =¢". By a
simple rescaling ¢ = ¢'/"z, (1) is reduced to

. h d n 1
i g2 = (Tl _Tn>¢(f)7

where Y (e!/"7) = ¢(7).
Let us study the asymptotic behavior of

2
P()(S, h) =

exp 1 1(6)| + (=)™ exp| £ 4,0

in case n>2 when both ¢ and & go to 0. We rewrite it as

Im (4, (¢) + An(e))] (exp [Im(z‘h (e) — An(e))]

Py(e,h) = exp {—

h h
+ exp {Im(A”(S)h AI(E)): +(=1)"""2 cos {RC(AI (6)}; A (8))] ) .

Then by computing the asymptotic expansions of the action integrals 4;(¢) and
A,(e) (see §5) we have the following proposition:

ProrosiTiON 2.1.
1) If V2=0(0) =0 for all 1 €N, then

Im A;(e) = Im A4,(¢)

and

Po(e, h) = 2 exp {— MmTA‘(E)] (1 +(=1)"" cos [Re(A‘ <8)h_ A"(g))} )

2) If there exists m e N such that V"+2=D(0) =0 (1=0,...,m—1) and
yt2m=1)(0) £ 0, then for sufficiently small &

Im(A4;(e) — A,(e)) = 2Cap <sin Tn) g2/ o (ent2m+2)/m) (3)
n

where

2my/al (Z)yos2m=0(0) /a1 "/
¥ (0) ’

Cop = —
P ul (n 4 2m 4 ) (52m) @)

and the asymptotic behavior of Py(e,h) as (g,h) — (0,0) is given by the following
formulae:
(i)  When 2"/ — 0,
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Po(e.h) = 2 exp [_ Im(Ai (¢) + An(s))}

h

(1 e [REDZA] o202

(ii) When h/e+2m/n 0,

P()(E, h)

oo -2 (1 o (2 (s 5) +9) 2 ])) o

for any positive constant 6 if m/n¢N and V2= (0) sin B >0 (ie.
Cop sin 8l < 0) and

P()(E, h)

o[- 2] (1 o (0 (s 2) ) 2 ))

for any positive constant 6 if m/n¢N and V2= (0) sin Br <0 (ie.
Cop sin i > 0).

3. Preliminary
3.1 Review of the exact WKB method

We use as a basic tool the exact WKB method for 2 x 2 systems introduced
in [FLN], which is a natural extension of the method in [GG] for Schrédinger
equations. We first review it.

Let us consider the following 2 x 2 system of first order differential
equations:

hd 0 a(r)
a0 =(_g, 7)o ©)

The functions «(7) and f(¢) are assumed to be holomorphic in a simply con-
nected domain Q2 < C.
First of all we make the change of variables 7+ z

(t: 1) = J: AP dr,

where 7, is a fixed base point of Q. If Q; is a simply connected open subset
of Q in which «(7)f(¢) does not vanish, the mapping z is bijective from €,
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to z(2,) for a given determination of («(r)B(¢))"/.  Zeros of «(¢) and B(¢) are
called turning points. 1If ty is a simple turning point, we get

2(0) = (1) = 5 (OB 1y ¢ = 101+ (e~ 1), ™

where ¢(¢) is holomorphic and ¢(0) = 0.
We put ¢(t) = e**/"p, (z) and reduce (6) to the next equation in the
variable z:

hd ( +i H(2)

N (- TC) ®)

where H(z(1)) = (B(¢) /oc(t))l/ 4. Moreover we change unknown function
9. (z) = My (2)wy(z), where M. (z) is given by

H'(z) H7\(2) )

M(2) = ($iH(z) +iH(2)

Consequently, we obtain the first order differential equation of w(z):

t

0 H'(z)

H(
ARCES PR L (9)
H(z)

t

=

where H'(z) stands for £ H(z). We notice that My (z(r)) and w.(z(r)) are
independent of 7. We define the sequences of functions {wy ,(z;z1)},—, by
the following differential recurrent relations:

wi _1(z) =0, wio(z) =1,

%Wi,zk(z) = Z/((ZZ)) Wi 2%-1(2) (k > 0), (10)
d 2 _ H'(2)

<E t E) Wi 2k11(2) = mwi,Zk(Z) (k>0).

¢ (z(t
The vector-valued functions wy(z(¢)) = (Wi ( ;;) with

wi(z(0) =Y wen(z(0),  wiz(0) =Y wea(2(1),

k>0 k>0

satisfy (9) formally.
H'(z)/H(z) is, in terms of ¢,
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EH((0) _a(0p' (1) — 2 ()B(0) (an
H(z(1)) 4i(a(DB(0))**

From (7) and (11), we see that H'(z)/H(z) has a simple pole at z = z(t).

We fix a point z; = z(¢;) with 7, € Q; and take the initial conditions to
w4 n(z1) =0 for every n e N.  Then the differential recurrent equations (10) are
transformed to the integral recurrent equations:

wio(z;z1) =1,

"(©

A H
Wi t+1(2321) = J eHME) oo (§z1)dl (k= 0),

Q"

wiok(z21) = JZ 1) W ak—1({; 21)dl (k>1).

From these integral representations, we obtain the following proposition on the
convergence of these formal series.

PROPOSITION 3.1.  The elements of the function wi(z;z):
(z;21) Zw+ u(z;21) w(z;21) ZW+ u-1(z;21) (12)
k=0 k>0
converge absolutely and uniformly in a neighborhood of z = z).

Hence wy(z;z;) are exact solutions to the equation (9) and
G (t,h:10,11) = O ML (2(0))we(2(0), B 2(1)). (13)

define exact solutions to (6). We call ¢, (¢, h; 9, 11) exact WKB solutions. (13)
are holomorphic in a neighborhood of 7=, and extended to Q analytically
because (13) satisty (6) with the holomorphic coefficients in Q. We call ¢, the
base point of the phase and f; the base point of the symbol.

The series (12) are also asymptotic expansions as # — 0 in certain do-
mains.

PrOPOSITION 3.2. There exist a positive integer N and a positive constant
ho such that, for all he (0,h), we have

k=0
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uniformly in Q, where Qi = {t € Qy; there exists a curve from t| to t along
which +Re z(t) increases strictly}.

Moreover the Wronskian between two exact WKB solutions % [¢(1), ¢(1)] =

det(4(r) 4(1)) is given by w¢:
PROPOSITION 3.3.  Linearly independent exact WKB solutions ¢ ,(t, h; to, t1)
and ¢_(t,h;ty,t2) satisfy the following Wronskian formula:
W[¢+(tvh; fo, tl)v ¢—(tvh; fo, IZ)} = Zl.Wi(Z(l‘z); Z(tl))'

In particular, if there exists a curve from t| to ty along which Re z(t) increases
strictly,

W, (t,h;to, 1), d_ (2, h; 29, 12)] = 2i(1 + O(h)).

We notice that the Wronskian is independent of the variable ¢ because the
matrix of right-hand side of (6) is trace-free. The latter claim is evident from
Proposition 3.2.

Finally, we introduce the so-called Stokes line.

DErFINITION 3.1 (Stokes line). The Stokes lines passing by t =1ty in Q are
defined as the set:

{te.Q; Rej; WdrzO}.

A Stokes line is a level set of the real part of the WKB phase function
z(t;tp). The turning points are the branch points of z(z; ).

If Re z(7) increases along an oriented curve, then this curve is transversal
to Stokes lines. Such a curve is called canonical curve.

3.2 WKB expression of the Jost solutions
In this subsection, we express the Jost solutions as exact WKB solutions to

1/1 i
(1). By the change of the unknown function y(¢) = Q¢(t), Q = 3 ( ) i), )
is reduced to an equation of the form (6): :

O S a0} (14

t)—e

In this case, the phase function z(#; f)

z(t;to):ijt Vi) +2dr (fge ).

fo
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If p and 6 are small enough, there exists no turning point in . Therefore
z(t; tp) is a single-valued function in such a Riemann surface. Recalling that
we take the branch of /¥ (1)? 4 &2 which is ¢ at =0, we see that Re z(r)
increases as Im 7 decreases, and Im z(#) increases as Re ¢ increases. Similarly

—iV(t)+¢
Hz()) = S — /T ¢©
COI == —
has neither zero nor pole in % and the branch of H(z(z)) is e™* at

t=0.

We construct the exact WKB solutions which have the same behavior
as Jost solutions as |f| — oo as in [Ra]. First, we define unbounded simply
connected domains ¥, and ¥ by

Ir=FN{teC;Ret> R},

Ih=9N{teC;Ret< —R},

where R is a positive constant. For te Sﬁlg"/, we define the phase functions
z"!(¢) with base points at infinity by

t
Z(t) = iJ V()2 +e2 = A)de + it

0

'
Zl(t) = iJ ( V(T)2 + &2 — Jy)dt + iMt,

where 4,; = \/E?,+¢2. Note that these integrals are convergent thanks to the

assumption (B). These are also primitives of i4/ V(l‘)2 + &2 and satisfy for any
rl
Iy € yR"

2"0(1) = 2" (1) + 2(1; 1o).

Next we construct the symbol functions with base points at infinity. One
sees that for all 7€ .7, there exist infinite paths ending at #, ! (7), which are
asymptotic to the line Im7= FoRet (6 >0) as Ret — —oo and meet the
Stokes line transversally (Stokes lines are asymptotic to horizontal lines. See
§4.1 and Figure 1). For ¢ € & one similarly defines the paths y’ (¢) which are
asymptotic to the lines Im 7 = +J Re v as Re 7 — +o0. -

We also denote by I/(z) (resp. I'l(z)) the infinite oriented paths
2" (y(t)) (resp. z/(yL(t))) ending at z'(¢) (resp. z'(¢). We remark that I'" (z)

(resp. I''(z)) is asymptotic to the line Im ¢ =1Re( as Re{ — +w (resp.
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Re { — —o0), and similarly that I'/(z) (resp. I' (z)) is asymptotic to the line
ImC———ReC as Re{ — —oo (resp. Re { — +0).

Let I' il(z) be the paths defined above. The system of recurrence
equations

W:—f()(z) = 17
H ! ,
Wil () = Jr”(d) o2/ (=2 H((f)) wih (Ode (k> 0)
r H' r,
wiul?) = Jr;tt(:) T(é?))wi"lz’”@dg (k>1),

define the sequences of functions {w’iln(z)}f: o- We define

W+ eben Z W+ 2k + odd Z W+ 2k— 1

k>0 k>0

rl
rliy k>0 Wi,Zk(Z)
wy(z) = ' .
2 k=0 Wi k1 (2)
The convergence of Y, w;ka(z(t)) and Zkzowi,lqu(z(t)) follows from the
fact that

belongs to L*(I il(z)) thanks to the assumptions (A) and (B). Moreover we
see that

lim w} (1) =0 tlir_n wf_L’n(t) =0 Vn e N. (15)

t—+o0

The corresponding WKB solutions ¢ (¢) and ¢1i(t) written by

910 = exp £ 532 a0t ),

Z/
910 = exp [+ 210 b (0 00,

have the following relations with the Jost solutions.

PROPOSITION 3.4.  For any fixed h > 0, the exact WKB solutions ¢ (t) and
¢f_r(t) have the following asymptotic behaviors as t goes to +oo.
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ie~ 10
$ei"") as t — +oo,

(0 = exp| . G-+ o(1) |
$L(1) exp{i%(lzﬂro(l))} <$62) as { — — o0,

Consequently, we obtain the following relations between the Jost solutions and the
exact WKB solutions:

W) =—0¢" (1), (1) = —iQ¢’ (1),
W =-0¢ (), ' (t)=—i0g ().

Proor. The asymptotic behavior of the phase function z"(z) (resp. z/(¢)) is
evident from the definition. That of the symbol functions is also obvious from
(15) so that we have

1 , 1
tlgrn@ w+(t)—<0>, Bmoc wi (1) = (0)

We consider the asymptotic behaviors of My (z(¢)). When E; > 0, we get

%n—20,>]

i
lim (—iV(t>+8>=lreXp’< g )}

—+000

lim (=iV(t) — &) = A, exp|i

——+o0

lim (—iV () — &) = A exp|i Gn - 20/)]

——00

lim (—iV(t) + &) = A exp _1(—54— 20;)] )

——0

Notice that in case E; < 0 these asymptotic behaviors as ¢ — —oo are the same
as in case E; > 0, so we calculate

lim H(z(1)) = —ie™, lim H(z(1)) = —ie™.

=40 t——0

Therefore we obtain

m1M4<»:<f@ ”ﬁ), mlMA(D=<fZ M@)

f—+00 +et(), iel()r oo Fe iez()/

Hence we calculate the asymptotic behaviors of ¢! (z) and ¢i(t) from above
consideration. In addition, we return ¢! (7) and ¢i(t) to the solutions to

(1)-
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047(1) ~ exp Hm} (_Si“ O )

cos 0,

04" (1 ~zexp[ K“’S@

sin 0,

)
04,0 ~ exp|+ | (1),
)

as t — +oo,

—cos 6,

081 ~ o] -] (<230

as t — —oo. O
sin 0,

4. Connection of the exact WKB solutions

The elements of the scattering matrix can be expressed by Wronskians of
Jost solutions:

o1 <W[¢i,¢r] W[qs’,w]),
WL I\ —iwlg '] wg, 4]

In order to know the asymptotic property of the Wronskian of two exact
WKB solutions there should be a canonical curve between their symbol base
points (see Proposition 3.3). If it is not the case, it is necessary to define some
intermediate exact WKB solutions. First we investigate the geometrical struc-
ture of Stokes lines.

4.1 Stokes geometry

Let us consider the geometrical properties of Stokes lines. In our case the
Stokes line passing by t =ty is the set

t
{tey; ImJ V(r)z—l—szdr:O},

to

that is the level set of z(f;1).
We first state the local properties of Stokes lines near a fixed point

the .

(1) If % is not a turning point, then z(z;#) is conformal near 7= f.

(ii) If 7y is a turning point of order re N, that is V(1)* + &% = (t — 1) V(1)
with 7(0) # 0, then there exist r 4 2 Stokes lines emanating from ¢ = ¢,
and every angle between two closest Stokes lines is 2z/(r+2) at ¢ = .
We illustrate the Stokes lines passing by the turning points in case V' (¢) = ¢"

for £ =0 and for ¢ positive and small.
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Re?

=

&

g

o
XE

(n=1,e=0) (n=2,e=0) (n=3,e=0)

Im¢

_/& L Re!
\ /—

=

(n=1,exk1) (n=2ex1) (n=3,ex1)

AN

From the assumptions (A) and (B), Stokes lines are symmetric with respect
to the real axis and the real axis itself is a Stokes line. At infinity in &% the
Stokes lines are asymptotic to horizontal lines Im ¢ = const..

If ¢ is sufficiently small, there exist 2n turning points Tj(¢) and Tj(e)
(j=1,...,n) in a neighborhood of each root of (V™ (0)/n!)*" +¢2=0. It
is possible to take p = p(¢) and 6y properly small, so that % includes only four
turning points Ty, T,, T1, and T,. Moreover the Stokes lines emanating from
these turning points are not connected with those from the other 2n — 4 turning
points. Indeed, by Lemma 5.1, we see that the principal terms of the action
integrals for ¢ small enough have the relation:

max{Im 4, (¢),Im 4,(¢)} < min{Im A>(e),...,Im 4,_;(¢)}.

For sufficiently small &, the Stokes geometry in % is as in Figure 1.

The larger the number 7 is, the more complicated the Stokes geometry
becomes. However, if we restrict ourselves to a properly restricted domain %,
it has always the same structure. Hence we calculate Wronskians between
¢’ (t) and ¢ (¢) defined in .} and ¥} with the exact WKB solutions defined in
a_neighborh_ood of the turning points near the real axis as in Figure 1.
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//s,?_
_(C ) —

Im¢

2
=
o

jg
\;\“‘I

Fig. 1. Stokes geometry

Im ¢

Fig. 2. Symbol base points

4.2 Transition at the avoided crossing

We first reduce our problem to a local connection problem near the avoided
crossing. We introduce four symbol base points r., r_, [,, I_ and make the
branch cuts as in Figure 2. We write, for short, the exact WKB solutions
by

b, Tn) =90 (1), ¢t Thon) = ¢ (1)

We have the following relations between these and qﬁ;’l(t):

9.0 =exp [+ S 801 + o),

(0 = exp[ -] 1

001+ o),
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o0 = exp [+ 22 6003+ o,

(T
¢ 1) = exp | - g1+ 000,

where O(h) is uniform for small ¢. From the above relations, we obtain

LEmMma 4.1.

and O(h) is uniform for small e.

Two Wronskians #[¢\" (r,), ¢ (r_)] and #7[¢\"(r,), #" (I)] can be cal-
culated directly by Proposition 3.3 as follows.

P 00,80 00] = exp - 55 (410) = 6|18 ). 40 )

Therefore we have
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Im¢

+ T:

Fig. 3. Stokes geometry n =1

WO _ T s - g | i)
W o, ¢y 2 e

(A,(e) — A41(g)) wé (z(r_); 2(ry))”

By Proposition 3.2, we can obtain the asymptotic expansions of these Wron-
skians as & — 0 for the reason why there exist canonical curves form r, to
either r_ or /_ (see §4.3).

However we must be careful in calculating the Wronskian
W [¢(+1)(r+),¢(+")(1+)], because there exist remarkable differences on the geo-
metrical structures of the Stokes lines whether n =1 or n > 2. Therefore we
will separately discuss the cases where V(¢) has a simple zero or a zero of
higher order.

(16)

4.2.1 Transition at a simple zero

In the case where n =1, there are two simple turning points 7'(g) and
Ti(¢). The calculation of #~ [¢(+1>(r+),¢(+1>(1+)] is the connection problem at
the turning point of order 1 over the branch cut as in Figure 3. Let /, be the

same point as [, but continued from r, passing by the branch cut from T7j.
ProrosiTiON 4.1. If n =1, we obtain
1 1 v
WY ), 60 (1)) = =208 (2(L, )3 2(r).

Proor of ProposiTiION 4.1. We can not apply Proposition 3.3 to this
calculation directly. Therefore we consider the following lemma, which gives
the relation between exact WKB solutions on the different Riemann surfaces.

LeMMA 4.2. Let T be a simple turning point and t; # T sufficiently close to
T. Then



460 Takuya WATANABE

) . oy [i9:(5 T, f1) (T is a zero of V(r) — i),
¢ (T, T+ (i — T)e )—{_%(I; T.i) (T is a zero of V(1) +ic).

T, is a simple zero of V'(¢) —ie. Since /, is obtained from i+ after turning
clockwise around 77j, one has from Lemma 4.2 ¢(+l)(l+) = ip\V(l). Hence

WP (), 60 (1)) = iw [ (), 6 ().

We apply Proposition 3.3 to this Wronskian then Proposition 4.1 is obtained.
O

Hence the Wronskian of the exact WKB solutions in Lemma 4.1 is given
by

WL (), $ (1)
WP (1), 0V ()]

For the symbol base i+ on another Riemann surface, there exists a canonical
curve from r, to /. passing through the branch cut.

W (el )i=(r4))

W ()i 2(rs)

_ iexp[}il ImAl(e)} (17)

4.2.2 Transition at a zero of higher order

In case n > 2, the geometrical structures of the Stokes lines emanating
from four turning points Ty, T,, T; and T, are classified into three cases
Re z(Ty) > Re z(T,), Re z(T}) = Re z(T,) and Re z(T}) < Re z(T,) (Figure 4,
5, 6).

We introduce the two symbol base points § and § on the imaginary axis
such that

max{Re z(T2),Re z(T,-1)} < Re z(d) < min{Re z(T}),Re z(T},)}

. 7 . | "
Reft Reft
0
R T |7

Fig. 4. Rez(T,;T1) <0 Fig. 5. Rez(T,;T1) =0

A
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Im¢

T\/T&

—~_Re’
0

)

el

Fig. 6. Rez(T,;T1) >0

and consider linearly independent intermediate exact WKB solutions
(b, (;T1,0), ¢_(t; T1,0)) and (¢, (t; T,,9), ¢_(t; Tn,0)). Let Iy, 7, be the same
point as /., r, but continued from ¢ passing through the branch cuts as
in Figure 2. Then one sees that [, =T,+ (L ~Te ™ and r, =
T + (i’+ - T1)€2m.

ProposITION 4.2. If n > 2, we obtain

Proor. The exact WKB solutions ¢_ (¢; 71,9), ¢_(t;T1,6), ¢..(t; Tn,5) and
¢_(t; Ty,6) have the well-defined semiclassical asymptotic expansions in the
direction from the symbol base points to the phase base points. Now the
pairs of (¢ (t; T1,9), ¢_(t; T1,9)) and (4. (t; T, 0), ¢_(t; Tn,0)) are fundamental
bases of the space of solutions each other. So ¢, (#;T1,r) and ¢_(f; T, 1)
are written by the linear combinations:

) _wi‘)( D 4VO] 5, WO B 0] 5
Pt = [m )47 (3)] "0+ W{¢$><5>,¢9><5>1 #26)
( S )

[¢+ (0 ),¢ (5)] [¢+ (© ),(/L (5)]



462 Takuya WATANABE

These Wronskian calculations are the same as the connection at the turning
point of order 1. Notice that the turning point 7,(¢) is a zero of V(¢) — ie
when n is odd and that of V(¢) +ie when n is even. By Lemma 4.2, we
have ¢$)(r+) = —igM (7)), ¢(+")(1+) = (=1)""'ig"(I,) and then, by Proposition
3.3,

-
o) = 1;?(22((;5_));;%)))) PO+ v:%((Zz(gg));’zZ(g)) #
_ V:vi ((Zz((_a’))’;zz((lg)))) (AT T/ gD )
ey i‘fvii <é((§));;;((55)))) ATT g0 (5.
From these relations, we have Proposition 4.2. 0

Applying Proposition 4.2, we have

e = iexp -+ )

((—1)”*1 LHGQIEENHCUN LRI {EA (eﬂ
h n

exp {%AI(S)D. (18)
Note that there exists a canonical curve for each Wronskian calculation.

4.3 Asymptotics of the Wronskians as /2 — 0

About the calculations of the asymptotic expansions of the Wronskian
(16), (17), (18) as h — 0, we must pay attention to the distance between the
canonical curve and the turning points on the complex z-plane because z =
z(T;) are simple poles of H'(z)/H(z). We give the figure of the canonical
curve on the complex z-plane, where the phase base point is equal to 0.

For the Wronskian in (16), the canonical curve from z(r,) to z(/_) passes
between z(T7) and z(T}) as in Figure 7. Therefore we get
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% B
Vet
I_L/%?,, / % .
: _

Fig. 7. n>2, Rez(T,) =Re z(T})

h
Re z(T;) — Re z(Ty)

Gl = 1+ 0

By Lemma 5.1, we have

Re z(T}) — Re z(T}) = O(e"+1/) as ¢ — 0.

) as h— 0.
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In case n = 1, for the Wronskian in (17), the canonical curve from z(r;) to

z(I,) through the branch cut passes over z(T}) as in Figure 8.

wi(z(l4);z(ry)) = 1+ O(h) as h— 0.

Therefore we obtain, in case n =1,

Imz




464 Takuya WATANABE

P(e,h) = exp [—}% Im Al(e)} (14 0(h)) as h— 0.

In case n>2 and Re z(7,) = Re z(T}), for the Wronskians in (18), the
canonical curve from z(8) to z(5) passes between z(77) and z(T},), the canonical
curve from z(ry) to z(d) passes between z(T;) and z(T;) and the canonical
curve from z(d) to z(#) through the branch cut passes between z(7) and z(75)
as in Figure 7. Therefore we get

h
Im z(7T)) — Im z(T,)

“kextr)
Re z(Ty) — Re z(T)

=)
Re Z(T]) — Re Z(Tg)

we (z(0);2(0)) = 1 + 0( ) as h— 0,

as h— 0,

w0 = 1+ 0

as h— 0.

wt ((7.):0) = 1+ 0

By Lemma 5.1, we have
Im z(T}) — Im z(T;,) = O™/ as e — 0,
Re z(T}) — Re z(T}) = O(e"+1/) as ¢ — 0,

Re z(T)) — Re z(T5) = Oy as ¢ — 0.

JEEED)

Hence we obtain Theorem 2.1 in case n > 2

P(e,h) =

exp 1 6)] + (-1)" expl 4,6

h
as S — 0.

We remark that there exists the canonical curve from /, to 7, in the case
Re z(T,) < Re z(T) as in Figure 9. The Wronskian can be calculated without
intermediate exact WKB solutions as follows:

P ). 8 (1)] = exp 3 (4 <e>—An<e>>}W{¢$><u>,¢$><u>}

= —iexp{zh }w+ 1)).

wi(z(fp);iz(ly) =1+ O(Re T Re P ) as h— 0.
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g
l

+ e,

\

Imz

Rez

Fig. 9. n>2, Rez(T,) <Rez(T))

By Lemma 5.1, we have
Re z(T}) — Re z(T},) = O(e"2™/") a5 & — 0.

The asymptotic expansions (4), (5) in Proposition 2.1 imply that P(e, /) in case
n > 2 can be calculated as in case n = 1 when % goes to 0 faster than g+27)/"
tends to 0 (see Figure 4).

5. Asymptotics of the action integral

To prove Proposition 2.1 we give(t)wo lemmas on the asymptotic behavior
of the action integral. Put V(z) :VT(O)Z"U(Z). Then v(0) = 1.

LemMA 5.1. 4;(e) is an analytic function of ¢'/" at t=0 and has the
following Maclaurin expansion:

Aj(e) =) Crexp {—( / Zn)km] gnth/n,

k=1

vl (3) N
Rk = )T ED <V<"><0>) [dz“ (v(2) )}

Remark that this constant Cj is equivalent to the one in Proposition 2.1.

where Ci =

PROOF.
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V(n) (0)

By the change of variables &s" = -

t"o(t), we get

exp(((2/—1)/2n)mi] dr
Aj(e) = 28J Vs 4 g2 <ds> ds.
0
By the Lagrange’s formula, the Maclaurin expansion of ¢ with respect to s is
given by
o k/n | kfnr gk-1
=3 - I ( (Z- > { 1 (U(Z)_k/")} s~
£~ k! \V"(0) dz .0
and hence

dt & ekl nl o\ gk i .
%ZZ(k—1)1<V<">(0)) [dzk—l("(z) ! )} o

k=1 z=0

Then the formula is obtained by term integrations and the identity

exp[((2/—1)/2n)mi] k. P i
J Skfl \ /s2n +1 ds = 2( ﬁF<2n> ) exp |:(2] 1)k7Tl:| )

0 n+k)I(E 2n

To study the principal term of Im(A4;(¢) — 4,(¢)), we use the following
lemma.

LemmA 5.2, Assume v%~1(0)=0 (j=1,...,m) for any fixed meN.
Then we have for any positive number o

2j-1
@] =0 G=tm (1)

Proor. We shall prove this lemma by mathematical induction with re-
spect to m. In the case where m = 1, the statement (19) is evident. Assume
that there exists k € N such that (19) is true for all m < k + 1.

By the Leibniz formula, we have

)]

2N\ ety AP
= —"[Z (p )v(z" () (02 1)]

p=0 =0

k 2g-1
2k _ d=1 o
= _O-U(2k+1>(0) — O'Z (2(] - 1>v(2k 24+2)(0) [—dzqu (v(2) 1)}

g=1
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The second term is zero from the assumption. If v**1(0) = 0, (19) with m =
k+1 is also true. O

From this proof, if there exists meN such that v D(0)=0 (j
1,...,m—1) and v®"=1(0) # 0, we obtain

|:d2m1 (2 1)
m_<v<z>”>] — o1 (0).
dz2m-1 -0

If there exists meN such that V"+2=1D(0)=0 (/=0,...,m—1) and
pr+2m=1)(0) # 0, we get the following relation between derivatives of V()
and v(¢):

nl (2m— DY)
V' ((0) (n+2m—1)!

U(Zm—l) (0) —

and moreover in the case where m > 2

Therefore we obtain (3).
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