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ABSTRACT. In the present paper static and dynamical one-dimensional models for
elastic rods are constructed. The existence and uniqueness of solutions to the cor-
responding boundary and initial boundary value problems are proved, the rate of
approximation of the solutions to the original three-dimensional problems by vector-
functions restored from the solutions of one-dimensional problems is estimated.

1. Introduction

Hierarchic modelling is widely used while constructing the lower-
dimensional models in the theory of elasticity and mathematical physics ([1-3]).
In the paper [4] 1. Vekua proposed a new method of constructing the hierarchic
two-dimensional models of elastic prismatic shells. In the static case the lower-
dimensional model obtained in [4] first was investigated in the papers [5, 6].
More precisely, in [5] the estimate of accuracy was obtained in C* spaces and
existence and uniqueness of solution to the reduced two-dimensional boundary
value problem in Sobolev spaces were studied in [6]. Further, static and
dynamical two-dimensional hierarchical models for prismatic shells constructed
by I. Vekua’s reduction method were investigated using variational approach
and modelling error estimates in Sobolev spaces were obtained in the paper [7].
Various lower-dimensional hierarchical models in mathematical physics were
constructed and investigated in [8—18].

Generalizing an idea of I. Vekua, one-dimensional models for linearly
elastic rods were obtained in [19, 20]. In the paper [19], expanding fields of
displaycements, strains and stresses of the three-dimensional elastic body into
double Fourier-Legendre series, one-dimensional mathematical models of bars
were constructed. Note that in [19] main relations were obtained in the spaces
of classical regular functions. Different approach were used in [20], where a
hierarchy of static one-dimensional models was obtained in Sobolev spaces
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directly from the variational formulation of the three-dimensional problem and
the results of investigation of the constructed hierarchy were announced.

In the present paper we extend the methodology developed in [7] for elastic
rods with variable cross-sections. We construct the one-dimensional models
of the static and dynamical problems for elastic rod, prove existence and
uniqueness of solutions to the corresponding boundary and initial boundary
value problems. Moreover, we establish convergence in suitable spaces of the
sequences of approximate solutions to the exact solutions of the original three-
dimensional problems.

In order to simplify notations throughout the paper we assume that the
indices i, j, p, g take their values in the set {1,2,3}, while the indices o, f vary
in the set {1,2} and the repeated index convention is used in conjunction
with these rules. The partial derivative with respect to the p-th argument
d/0x, we denote by 0,. For any Lipschitz domain D = R®, L?(D) denotes the
space of real-valued square-integrable functions in D in the Lebesgue sense,
H™(D) = W™2(D) denotes the Sobolev space of order m, H"(D) is the closure
of the set of infinitely differentiable functions Cg°(D) with compact support
in D in the space H” (D), and the spaces of vector-functions we denote by
H"(D) = [H"(D)’, Hy'(D) = [Hy'(D)’, 12(D) = [L*(D))*, s,m e N.

Let us consider an elastic rod with initial configuration Q = R?,

Q= {X = (xl,xz,)C3) € R3;/’l;(X3) < Xy < /’l:(X3)7X3 el = (d],dz)}7
hT(X3) > h;(X3), h;(]@) > /15()63), Vx3 € [d],dg], h]i,hZi € Cl([dl,dz}),

where d < dp, Q is a Lipschitz domain ([21]) and Q denotes the closure of the
set Q = R®. The upper surface of the rod {x e Q;x; =d>} we denote by I
and the rest part of the boundary dQ\I, is denoted by I.

We suppose that the material constituting the rod is linearly elastic,
homogeneous and isotropic with Lamé constants A, . The rod is clamped
along the upper surface 75. The density of the applied body forces acting
on the rod we denote by f = (f;): 2 x (0,T) — R* and applied surface force
density is denoted by g = (g;) : I x [0, T] — R®. The linear three-dimensional
model of the rod has the following form:

ﬁzui 3 0
(11) o2 - E a_x/{j'epp(loélj—’—z:uelj(”)} :ff(xa [)7 (X, t) € Qr,
J=1 "

ou

(1.2) u(x,0) = p(x), E(X’ 0) = w(x), xXeQ,

u=0, on I, x [0, T],
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(1.3) (Aeyp ()0 + 2ue;(w))v; = gi, on I' x [0, T,

1

3
=
where Q7 = Q x (0, T), u = (u;) : Qr — R is the unknown displacement vector
function, ¢,y : 2 — R? are the initial displacement and velocity vector fields of
the rod, v = (v;) denotes the outward unit normal to the boundary I, J; is the

Kronecker delta and e(u) = {e;(u)} is the deformation tensor

64‘/(”):%(2—2+2—§z>, i,j:l,2,3.

In Section 2 we consider the static case of problem (1.1)—(1.3), construct
one-dimensional model of the rod and investigate convergence of the sequence
of vector functions restored from the solutions of the corresponding boundary
value problems to the solution of the original three-dimensional problem.
Section 3 is devoted to study of dynamical problem (1.1)—(1.3), where we
construct and investigate a hierarchy of dynamical one-dimensional models for
the elastic rod.

2. Static boundary value problem

As we referred in the introduction in this section, we study the static case
of problem (1.1)—(1.3), which admits the following variational formulation: find
a vector function e V(Q) = {v = (v;) e H'(Q);v =0 on I}, such that

(2.1) B (u,v) = L2%(v), Yve V(Q),

where

B2(u,v) = Jg(zep,,(u)eq,,(v) + ey (e (v))dx,

LQ(U) :J fivi dx—i—J~ givi dT.
Q r

The variational method of investigation of static problem (2.1) in the
theory of linear elasticity is based on Korn’s inequality first proved in [22].
Later on, many interesting papers were devoted to proof of Korn’s type
inequalities in various domains ([23-26]). Note that Korn’s inequlaity directly
follows from lemma of J.-L. Lions, which was proved for Lipschitz domains
in [27, 28]. According to Korn’s inequality, there exists a positive constant
¢ = const > 0 such that

3 3
ZJ vv; dx + Z J e;j(v)e;(v)dx > chHf_ll(Q), Vo e H(Q).
—1 1o Q
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Applying this inequality, it can be proved that for Lamé constants 4, u
satisfying conditions g >0, 2u+ 34 >0, the bilinear form B“(.,.) is co-
ercive in V(Q), ie. B?(v,v) 2CQHUH§11<Q>, co = const > 0, for all ve V(Q).
Consequently, from Lax-Milgram theorem ([29]) it follows that three-
dimensional problem (2.1) has a unique solution if x>0, 2u+ 34> 0,
fel?(Q), geL*(I), which is also a unique solution of the following min-
imization problem: find u € V(Q2) such that

1
J9w) = inf J90W), J% ) ==B%0,v)— L%D), Yo e V(Q).
veV(Q) 2
In order to reduce three-dimensional problem (2.1) to one-dimensional
problem, let us consider equation (2.1) on the subspace of V' (Q), which consists
of polynomials of degree N;, N, with respect to the variables x; and x»,
ie.

N Ny
ik
ovN, = D Zalaz <k1 + ) (kz + ) v Pi, (a1x1 — b1) Py, (@22 — ba),
=0 ier—
kiky  kiks — — 2 _hi+hy

where v = ( U; ) GHI(]), kl ZO,Nl, kz :O,Nz, ady, =

R
o =1,2, and Py is the Legendre polynomial of order k € NU {0} ([30]). Hence
we obtain the following problem

(22) BQ(WNlNz’UNlNz) = LQ(UNlNz)v valNz € VNINZ(Q)7
b X kiky
Viin, (2) = owmw, = Z Zalaz <k1 + )(kz + ) v P (1) Pr, (@2);
=0 k=l
kllgcz € Hl(l), klljcz =0 for X3 = dz,kl = O,Nl,kz = O,Nz},

Wy = ayXy — by, 0 =1,2. In problem (2.2) the unknown is the vector function
wnN, € Vi, (2),

N M
kiky
W N, = Z Z ayaz <k1 + ) (kz + > W P, (@1)Pr, (@2).

k1=0 kp—
Therefore we have to find the vector function

00 NiN> = N 00 NN,

N kik
WNINZZ(W,..., w )EVN1N2(1)={0N1N22(0,~~, v ) v

o' (v =0

for X3 = dg,kl = O,Nl,kz = O,Nz},
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which satisfies the following equation

(2'3) B][\TQINZ(WNlsz ENINZ) = LglNz(ﬁNlNz)a VBNlNz € VNlNz(I)v

where BY ., LY 5, are the forms B?(wy,n,, vy n,) and L?(vy,y,), which are
written in terms of the components w’ and "»  of Wy,y, and By,

Thus, three-dimensional problem (2.1) have been reduced to one-
dimensional problem, for which the following theorem is true.

THEOREM 2.1. Assume that Lamé constants satisfy conditions u >0,
2u+3.>0 and fel?(Q), geL*(I), then reduced one-dimensional problem
(2.3) has a unique solution, which is also a unique solution of the following
minimization problem

leNz € I;'NINZ(I)7 JNlNz(leNz) = Hlf JN1N2(5N1N2)7
Uy v, € Vv vy (1)
- Lo o0 o Q (z - %
JNINz(UNINZ) = EBNINZ(UN]NZ7UNIN2) - LNINZ(UN|N2>7 VUNINZ € VNINZ(I)‘

Proor. In order to prove the theorem first let us show that Viy,n,(Q) is
a closed subset of V(2). Let {vg\l)l N, }i21 be a Cauchy sequence in the space
VN]N:(Q), ie.

/
(2.4) 10, — ol — 0. as Lm — oo,

Consequently, {1)5\1,)1 N, }io1 is a Cauchy sequence in the space L*(Q) and the

o__
orthogonality of the Legendre polynomials imply that {k]vkZ o, 0<k <Ny,
0 < ky < N,, are Cauchy sequences in the space L2(1 ). Moreover,

Ny N 2
L & kiky
Zzalaz(kﬁ- >(k2+ )( ) Pr, (1) Pr, (02)
=0 k= L*(Q)
2
M N 1 Kk
Z Z 03| apan | Ky + k> + Pkl (wl)sz(wZ) v
=0 ko= L} (Q)
6vN,N2 2
+ || , Yon,n, € Vn, (2),
0X3 LZ(Q)

where the prime denotes differentiation with respect to the argument. Ap-

klkz

plying the last inequality, we obtain that {("v~ )'};, are Cauchy sequences in

the space L*(I) (0 <k < N1,0 < ks < Ns).



370 Mariam AVALISHVILI

0
Therefore {klvk2 };2, are Cauchy sequences in the space H'(I) and

fals D ke .
v o g in H'(I), as I — oo,

Kk,
v =0, for x3=dp, 0 <k; <N, 0<k; <N,

from which it immediately follows that
vg\lf)ﬂvz - zN]NZ in V(Q), as l—} 0,

where zy,n, € Vi, (Q) is defined by

N N,
kik
IN|N, = Z Zala2 (kl + ) (k2 + ) lzzpkl(wl)sz(wz)

k1=0 ko=

So, the space Va,n,(Q) is closed and taking into account that V() is com-
plete, we obtain that Vy,y,(€2) and Vy,n,(I) are Hilbert spaces.

Since B¢ is coercive in V(Q2), we have that it is coercive in the subspace
Vi, (R) = V(). Hence the bilinear form Bg v (.,.) is coercive in Vi, (1)
and applying Lax-Milgram theorem we obtain that problem (2.3) has a unique
solution, which is a unique solution of energy functional Jy,y, minimization
problem. []

So, we have investigated the well-posedness of the obtained one-
dimensional problems. Now, let us prove the following approximation the-
orem.

THEOREM 2.2. If conditions of Theorem 2.1 hold, then the vector function

N N
wan, = > > aiax(ky +3) (ko +3) k{t])QPkl (1) P, (w2) corresponding to  the

/61:0/(2:0
A 00 NiN _
solution Wy,n, = (W,..., W) of reduced problem (2.3) tends to the solution

u of three-dimensional problem (2.1) wyy, — u in the space H'(Q), as
min{N;,N,} — co. Moreover, if ue H*'(Q) = {ve H'(Q); v e H'(Q),0 <
k<s—1,a=1,2}, s>2, then the following estimate is valid

1 1

2

e = wrn, o) < (WJFst 3>51(h1+7h2 N1, N2),
i

where 51 (hli,h;—“,Nl,Nz) — 0, as min{N,N,} — oo. In addition, if ||”||ill(g)

= Z Z ||6ku\|H < ¢, where c is independent of hy = max(h{ (x3) — hy (x3)),
k=0 o=1 x3el

hy = max(h3 (x3) — hs (x3)), then the following estimate holds

X}EI
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2(s—1 2(s—1
””_W/VlNzH?S(Q < L)_FM
) N12373 N22s73

where 9,(N1,Ny) — 0, as min{Ny, No} — o0, [|o]|50) = B%(v,0), ve V(Q).

ProoF. From Theorem 2.1 we have that Wwy,u, is a solution of the mini-
mization problem of energy functional Jy,y,, 1.€.,

(2’5) JNlNz(leNz) = JN1N2(5N1N2)7 vz_leNz € I_/‘1\/11\72(1)'

Since

B]!\721N2(EN1N275N1N2) = BQ(levaNlNz)v Vi 7 (])
UNIN, € VNN, (L),
LglNz(UNlNz) = LQ(DNlNz)v

NN Kk .
where oy y, = Y. S aiaa (ki +3) (ko +3) 0 Py (01)Piy (w2), then applying
(2.5), we have f1=0k=0

BQ(" —WN N, U — leNz) = BQ("? ll) - ZLQ(DNlNz) + BQ(UNlNza leNz)'
From the last inequality we obtain, that for all vy,n, € Vi,n,(Q),

(2.6) B (u — WN Ny B — W N,) < B (u — DN, Ny — DN N, )-

By the trace theorems for Sobolev spaces ([21]), for any ve H'(Q), v =0
on I, there exists continuation » € H)(€2;) of the vector function », where
Qo2 Q, 02, o I,. From the density of C°(£;) in H(l)(Ql), we obtain that
the set of infinitely differentiable functions in ©, which are equal to zero on I,
is dense in V(Q). The relations, which we obtain below to prove the esti-

mates of the theorem, imply that () Vy,n,(R) is dense in V() and thus
Ni,N2=0
wn,N, — u in the space Hl(.Q), as min{N;, N} — 0.
Now let us estimate the rate of approximation of u by wy,y,, if
*ueH'(Q), 0<k<s—1, s>2. Denote by

N N>

1 1\ k&
ENN, = U — Uy N, = U — kz: > wa (kl + 5) (kz +§> 1’ Py, (1) Pr, (2),

1=0 k=0

where ‘4> = b]“,f,; f,f’j uPy, (1) Py, (w3)dx1dxy, 0 <ky <Ny, 0 <k, < N,
2 1

Applying the following recurrence relations for the Legendre polynomials

((30])
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o) PO =5 (Pl — PO, r>1,
20 = Pa)— - DPAD, 10,

we infer, that for almost all x3 €1,

kiks - il] ki—1,ky ki+1,ky _ i;lz ki, ky—1 ki, ky+1
(2.8) u = GTan 1( oiw — O )= s § l( Oou — Oru )
1 1k 1 kik: _ kik - k ks ki+1,ky
29) o (T"d ) — (a;,i+ () ovu + (hl)’(;"d‘ + o )
h1h2 hlhz hl

_  kik - ki, ky+1
¥ () Dot + () (iff"if@ ou ))
2

where h, =1 (h7 —h)), h,=L1(hi +h;), «=1,2. Applying the formulas
(2.7)-(2.9), we obtain

G _ lem: k + 3 +1 &1y (00) Pro(02)
6xl = 1 2 UL (O] ) Ff, (02

=0 ky=

> i L (ke )
- ky + )01"1’2 _(@1) Pry(2),
=R, 20 2 2 '

5”N1Nz_§':NfL k +1 k +1 CaiPe, (1) P (@2)
6)62 = il ilz 1 2 UL (O] ) L, (D2

>3 i (3
_ ki + >62MP1,(71(@2)Pk (wl)a
k1=0 ka=N> 2h h2 2 _ 1

ou N 1 ki
%;VZ—ZZOCH- )(kz-F )53< A 12>Pk1(wl)Pk2(w2)

0 k=0

i N
=N — (k1+ ><k2+ > ((h1)' P} ()

=1 o= $ i hy

+ () (ki P, (1) + Py, (1)) Pry (02)
kil

Sy L (m;) <k2+%>ﬁl<<ﬁz>’l’,;<wz>

=0 =t by 2

+ (hy)' (ko Py () + Py (@2))) Pr (1)
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- ﬁ: ﬁ: ! <k1 + 1) <k2+ )glskfthl (1) P, (w2)

P o V31
1\ k1N
+Z% il) (k +2> <N2+ )alzqul(wl)PNz(wz)
N> 7. \/
X (h 1 1\ Mika
+ kzz::o illlh)z <k2 +2> (Nl + 2) ﬁluPNl (wl)sz(Cl)z)
Ni+1 N 1 )
PPN (Fa )W) Pl ) + () Py ) P
k1=N1 k=0 1722

N>+1 Ny 1 kiky B
Y — (kl +—>02"((h2)/1’1121(w2)+(h2)'P;/Q(w2))Pkl(w1)-
K=y k=0 2hihy 2

Hence, taking into account the expressions for derivatives of the Legendre
polynomials

P =Y (k43)a -0 m, e,

0

>
I

-1
and f AR = Z(k+%)(l — (=D)*")? =r(r+1), reN, we have
k=0

1 kik
||£N]N2||i2(g> = Z JI aray (kl + ) (kz + >|| ]ll2||deX3,

(kl,kz)GKNIH.NZH

1 1
= Z J ajan (k] + ><k2 + >||(71u||deX3

Q) (ki.ka) €Ky vy ]

2
581\/] N,
6x1

Ni+1 N, k kiks )
+ Z ZJ aya (kz + )Z(k D)[|01u|gsdx3,
/C]:N] k2:0 I
den,, || 1
Lv2 = Z J ayay (kl + —) (kz + >||02"||R3dx3
0xy ||y2 I 2
LYQ) (ki k) eKnys1m,

No+1 Ny

k>
+ Z Z Lalaz <k1 + > Z(kz - 1)||02H||R3d)€3,

ka=N> k=0
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2

1
<5 Z J aas <k1 + > <k2 + )||63u||deX3
L@ (k1. ka) € Ky 1wyt 01

Ni+1 N,
I\ N +1 L
’ ko +5 2ky — Ny)(h
/ﬂz;v];;)Lamz( : 2) 7 (ki = Ny(h)

oe N1 N>

A

0X3

+ (3N1 — 2ki +2)(h ))||61”||R‘dx3

M+l N
1\ N, +1 ~
+ Z ZJ ayay <k1 +§> 24 ((2/(2 — Nz)(h;)z

k=N k=01

(3N2 —2ky + 2)( ) )||62u||deX3 s

where Ky, n, = {(k1,k2) e N x N; ki = N; or ky = N>}, ||.||gs denotes the norm
in Euclidean space R>.
Therefore applying (2.8), we infer that

1 1

2

lenn NItz ) < (]\]25+N25>5(h1+’h2+’N1’N2)
i

681\/1 N,

2
1 1
o < (+>5(h1i,h2i,N1,N2),

L*(2) les : szs :

where i = 1,2,3, 6(hi", hif, Ny, N2) — 0, as min{N;, No} — oo.
From (2.6) and coerciveness of the bilinear form B“(.,.) we obtain

1 1
e = Wyl ) < <W+J\,223,3>51(h1i’h§7N17N2)7

where (51(h1i,h2i,N1,N2) — 0, as min{Ny, N,} — o0.
In addition, if Z Z |0k U1 () < ¢, where ¢ is independent of /y, Ay, then

k=0 o=1
from (2.8) we have

hZA hZS _
lewoms g ( n 2,)6<N1,N2>,

N2s N22x
agNlNz 2 h]Z(sfl) h;(sfl) _
SN <[22 |5(Ny, ),
ox; L2(Q) N]Z‘Y_3 +N22S_3 ( ! 2>

where i = 1,3, 3(Ny, N;) — 0, as min{N;, N} — oo. From the latter inequal-
ities, taking into account (2.6), we obtain the second estimate of the theorem
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2(s—1 2(s—1
””_WMNZH?S(Q < L)_FM
) N12573 N22s73

where 9>(Ni, N2) — 0, as min{Ny, No} — oo, [[v]lgo = /B%(v,v). O

3. Dynamical initial boundary value problem

In the present section we construct a hierarchy of dynamical one-
dimensional models of elastic rod and investigate the corresponding initial
boundary value problems. In addition, we prove, that the sequence of vector
functions restored from the solutions of the reduced problems converges to the
solution of the original three-dimensional problem.

Let us consider initial boundary value problem (1.1)—(1.3), the weak for-
mulation of which is of the following form: Find the unknown vector function
ue C'[0,T); V(RQ)), o' e C°([0, T];L*(R2)), which satisfies the equation

d
(3.1) 7 (', 0)20) + B (u,0) = L2(v),  YoeV(Q),
in the sense of distributions in (0, 7) together with the following initial con-
ditions

(3.2) u0)=9, W' (0)=y,

where p € V(Q), w e L>(Q) and C°([0, T]; H) is a space of continuous vector
functions from [0, 7] to a Banach space H. Note that each { e C°([0,T]; H)
can be identified with distribution in (0, 7’) with values in H and its generalized
derivative we denote by (’.

The formulated three-dimensional dynamical problem (3.1), (3.2) has
a unique solution u if 2u+31>0, u>0, fel*(Qx(0,7)), g, %e

L*(I" x (0, T)), which satisfies the following energy equality: for all € [0, T,
(u' (), ' (1)) 120 + BE (u(2), u(1)) = (w,9)12(0) + B (9, 0) + L% () (1),
where

L2 (u)(1) =2 Jo(f(fL u'(7))120) 4T+ 2(g(0), u(0)) 2

—2(g(0),u(0)) 27 — 2 Jo (% (1), u(r))Lz(f)dr, Vee[0,T].

As in the case of static problem, to reduce three-dimensional problem (3.1),
(3.2) to a hierarchy of one-dimensional problems, let us consider equation (3.1)
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on the subspace Vy,n,(Q) (Vy,n,(R2) is defined in Section 2) and take ¢, w
from the subspaces Vi, n,(Q2) and Hy,n,(Q), respectively, where

N M
ko
Hyn, (Q) = {UNlNZ = Z Z a\ar (k1 + > <k2 + > v Py, (1) Pr, (02);

k1=0 k=0

e LA, w0, = ayxy — by, a= 1,2,k = 0, Ny, k» = O,Nz}.

Thus, we obtain the following problem: Find wy,y, € C°([0, T;
Vunm,(Q)), wy v, € C°([0, T); Hy,n,(2)), which satisfies the equation

(33) (w;leﬁ leNz)Lz(_Q) + BQ(WNlNza vnN,) = LQ(DNlNz)a

d
dt
for all vy, N, € VN, (), in the sense of distributions in (0, T'), together with the
following initial conditions

(3'4) WN|N> (0) = @N|N,» w],VJNz (O) = VYN N>

where 9NN, € Vi, (9), Yy, € Hy,n,(Q).

Note, that problem (3.3), (3.4) is equivalent to the following one: Find a

vector function Wy,y, = ((v)g,...,N]Nz) CO([0, T; Vv, (1), Wy, € CO([0, T7;

IL2(D)] VD™D which satisfies the equation

d, . . . S
(35) E (Mw//VINZ’ UNINZ)[L2(1>](N1+1)(N2+1) + BﬁlNz (WNlNzy UNlNz)
= L]!V)lNz(ﬁNlNz)a vz7‘/\’1/\72 € I_)NlNz(I)’

in the sense of distributions in (0,7), together with the initial conditions

(3~6) W}NINZ(O) = (z/vl/vza WZ/VINZ(O) = ‘//Nlsz
where
5 00 NN, = - 00 NN
(DNINZ = ((07 AR 1¢ ) € VNlNz(I)a l//NINZ = ('//7 R '}/2) € [LZ(I)](N1+1)(N2+1)7

M N kik

152
o= (1 +3) (K +5) ¥ Pt Puon).
k1 =0 kp=

N M
kyks
YN, = Z Zalaz <k1 + ) (kz + ) v P (o)) Py, (w2),

=0ky=
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Mwn, N, = (Moo%), .. ~7MN]N2NiVN2), My, = a1a2 <k1 +%) (kz +%),
ki =0,Ny, ko =0,N, and Bf , , Ly y, are defined in Section 2.

So, we have obtained a hierarchy of dynamical one-dimensional models
of the rod. In order to investigate initial boundary value problem (3.5), (3.6)
let us consider more general variational problem and formulate theorem on
the existence and uniqueness of its solution, from which we obtain the cor-
responding result for reduced problem (3.5), (3.6).

Let V' and H be separable real Hilbert spaces, V' is dense in H and
is continuously imbedded in it. The dual space of ¥V we denote by V' and
H is identified with its dual with respect to the scalar product in H, then
V — H — V' with continuous and dense imbeddings. The duality relation
between the spaces V'’ and V we denote by {.,.).

Assume that 4, B, L are linear continuous operators, such that

B=B +B,, B elV;V'), BeQV:H)NLH; V'), A, Le L(H;H),

B, is self-adjoint and B; + ;1 is coercive for some real number f§,, 4 is self-
adjoint and coercive, i.e.,

bi(u,0) = bi(v,u),  [br(u,v)] < e, [|ully[|ol],
bi(u,u) = Blully = Bllullz, B> 0,

(el il Ve V. oed,
3.7 by(u, )| < - ~ - -
B7) |p(@ )] {cbz||u|H|v||V, Vi H, eV,

Yu,veV,

a(uy,01) = a(vr,w),  a(u,w) = ollur ||z, o> 0,
Vul,vl GH,

|a(uy, v1)| < callur|lgllonll g, 1(ur,00)] < erllull g llonll g

where by (u,v) = {Bu,v), by(u,v) = (Bau,v), l(ur,v1) = (Luy,v1)y, a(ur,v)) =
(Auy,v1)y, b(u,v) = bi(u,v) + ba(u,v), for all u,ve V, uy,v; € H.

Let us consider the following variational problem: Find a vector function
ze CY[0,T); V), 2/ e C°([0, T); H), which satisfies the equation

(3.8) %a(z', )+ b(z,0) + 1(z',v) = (F,v),; + <{F, v, YoeV,

in the sense of distributions in (0, T), together with the following initial con-
ditions

(3.9) z(0) = zy, Z'(0) =z,
where zoe V, zye H, Fe L*>(0,T;H), F,F'e L*(0,T;V").
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For the formulated problem the following theorem is true.

THEOREM 3.1. If conditions (3.7) are satisfied, then problem (3.8), (3.9)
possesses a unique solution, which satisfies the energy equality

a(z'(6),2'(1)) + b1(z(2), z(¢)) + 2 Jo by(z(7),z'(7))dr + ZJ 1(z'(7),2'(7))dx

0
t

— a(z1,21) + by(z0,20) + 2 L(F(r), 2'(2)) ydt + 2K (1), 2(1)

— 2(F(0),2z0) — 2J; (F'(1),z(t)ydt,  Vtel0,T).

The existence result of Theorem 3.1 can be proved in a standard way
applying Faedo-Galerkin’s method (Chap. 18, sect. 5 of [31]), while the energy
equality can be obtained through the usual regularization and limiting pro-
cedure.

Applying Theorem 3.1 for one-dimensional problem (3.5), (3.6), we obtain
the following theorem.

THEOREM 3.2. Assume that Lamé constants satisfy conditions 2u+ 34 > 0,
n> 0 andf S LZ(Q X (07 T)): 9, 6g/at € Lz(r X (07 T)): ¢N1N2 € VNlNz(I)J l//NlNz
€ [Lz(I)}(N‘H)(Nﬁl), then problem (3.5), (3.6) has a unique solution Wy, n,(t) and
the following energy equality is valid

(310) (w//\’lNz(t)? WZ/VINZ(I))LZ(Q) + BQ(WNlNz(t)’ leNz(t))
= (Wnn Ynmize) T B2 (0w, x,0 O3, ,)
+ L% (wy,3,)(1),  Vtel0,T].

Proor. The formulated theorem is a consequence of Theorem 3.1.
Indeed, it suffices to take V = Py, (1), H = [L*(1)]M D01

Z(t) = 1'_‘;1\711\72(1)’ U= BN1N27 20 = aNlNgv 21 = lesz

bl("_‘;NlszﬁMNz) = BISVQINZ(WNlNNUNlNz)v by =0, =0,
kiks

a(leNwﬁNlNz) = (MWNlszI_leNz)[LZ(j)](Nl“)(Nz“)v F= ( F )a

kiks - phy 1 1
F :J J fala2<k1 +§> (kz+§>Pkl(w1)Pk2(wz)dx1dx2,

hy Jhy
CF,Oniv, > = (9,083 )12y Vo, N, € Viviw, (1).
Note that since the norm H.||[H1(I)](Nl+1>wz+1) in the space Vy,n,(I) is

equivalent to the norm ||.[[, [[¥nn, [l = llomn, i) Where vy, n, € Vivn,(2)
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corresponds to Ty, € P n,(I), then all conditions of Theorem 3.1 are ful-
filled. Therefore problem (3.5), (3.6) has a unique solution, Wy, y, satisfies the
energy equality

(Mwy, v, (1), Wy, v, (t))[Lza)](Nl*‘Wz“) + Bzgvlez (W, w, (1), W v, (1))

= (MY, vy v s ) s BY n, (Brvy P,

t
+2 L(fv W (D)@t + 2(g(8), waws (0) 127y — 2(9(0), oy, v )12 ()

-2 Jr <% (1), leNz(r)) dr, Vte[0,T],

0 LX(F)
which is equivalent to equality (3.10). [

Thus, we have reduced three-dimensional problem (3.1), (3.2) to one-
dimensional problem (3.5), (3.6) and have proved the existence and uniqueness
of its solution. Now we estimate the rate of approximation of the exact
solution u of the three-dimensional problem by the vector functions wy,y,(?)
restored from the solutions Wy, y,(¢) of the reduced problems. For simplicity
of notes we denote by ||.|| and || norms in the spaces V() and L*(Q),
respectively, and the scalar product in L*(Q) we denote by (.,.).

Tueorem 3.3.  If conditions of Theorem 3.2 are fulfilled and ¢y, y,, Wy, N,
corresponding to @y, y, ., 1/7N1 N, tend to ¢, w in the spaces V(Q) and L*(Q),
respectively, then the vector function wy,y,(t) corresponding to the solution
W, (1) = ((v)g(t), e Nisz(t)) of reduced problem (3.5), (3.6) tends to the solution
u(t) of three-dimensional problem (3.1), (3.2) in the space V(Q),

w N, (1) — u(t)  strongly in V(Q),

Wi N, (1) — u'(t)  strongly in L*(Q), as min{Ny, N2} — o0, Vi € [0, T.

Moreover, if components of ¢y, y,. 1/_/’N] N, are moments of ¢, y with respect to the
. . = 00 N N> - 00 NiN,
Legendre polynomials, ie. ¢y, = (@,..., @), Yyn = W,..., ¥),

ok hT h;r ik hfr h;
152 152
» :J J PP (1) Py (w2)dxidxs, :J J WPy, (01) Pr,(w2)dx1dxs,
111* h; lz]* 112*

ki1 =0,Ny, ko =0,N,, and u satisfies additional regularity properties with re-
spect to the spatial variables u e L*(0, T;H**1(Q)), u' e L*(0, T; H**-1(Q)),
u' € L2(0, T;H*>>1(Q)), 5o > 51 > 50 > 1, 51 > 2, then the following estimate is
valid: s = min{s,,s; — 3/2},

1

1
2 2
|u’_w]/\/'1N2| + ||u_wN1N2H < (N125+N—22y>;7(T7h1iah2i7N17N2)7
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where n(T, hif,h3, N1, Ny) — 0, as min{Ny, N>} — oo. If additionally the fol-

lowing conditions are fulfilled ||ul| 2 7.p001(0)) < & [0l 1200, 7.10191:1(0)) < €
u”{| 220, 7. 1221()) < € where ¢ is independent of hy = max (h] (x3) — hy (x3))
and hy = max(hy (x3) — hy (x3)), then el
x3el
1 / 2 2 h12s' hgf -
|” - wN1N2| + ””_ wN1N2||E(Q) = WJerS 77(T7N17N2)7
i 2

where (T, Ny, N;) — 0, as min{N;, N} — o0, § = min{s,,s; — 1}.

Proor. From Theorem 3.2 we have, that the vector function wy,x,(?)
corresponding to the solution Wy, ,(#) of reduced problem (3.5), (3.6) satisfies
energy equality (3.10) and since gy v, — ¢ in V(Q), wy v, — v in L*(Q), for
all 7e[0,T], we have

t
2 2 2
s (O + Iwwiv (07 < e <|‘I/| + ||¢H2+JO LF @) de + llg(0)132z

0g 2
1 (7)

t t
o) + [ det | (W, (P + ||wN,N2<r>|2>dr>.

L*(T)
Applying Gronwall’s lemma ([32]), from the last inequality, we obtain
G11) Wy, OF + Iwwm @))> < e, YN, N2eN, te0,T].

It should be pointed out, that the method of constructing of the ap-
proximate solutions {wy,y,} doesn’t coincide with Faedo—Gka}erkin’s method,
because for each pair (N, N;) the unknown vector functions W (0 <k < Ny,
0 <k, < N,) depend on two variables. However, in order to prove strong
pointwise with respect to the variable ¢ convergence of the sequence of ap-
proximate solutions {wy,y,} it is possible to use the arguments which are
applied to prove the same property when the approximate solutions are con-
structed by Faedo-Galerkin’s method (Chap. 18, sect. 5 of [31]). Therefore we
present only the scheme of the proof.

Since the sequence {wy,n,(#)} satisfies (3.11), it is bounded in the space
L*(0,T; V(Q))NL*0,T; V(Q)), while {wy,n, (1)} belongs to the bounded set
of the space L2(0, T;L*(2))NL*(0,T;L*(Q)). Hence, taking into account
the density of the union () Vywn(R) in V(Q), we obtain that as
min{Ny, N} — oo, N1, V220

wy,n, — u weakly in L?(0, T; V(RQ)), weakly-+ in L*(0,T; V(RQ)),
(3.12)
wh,n, — 4 weakly in L*(0, T;L*(Q)), weakly-+ in L* (0, T;L*(Q)).
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Applying energy equalities for u(7) and wy,y,(¢), we obtain the following
equality for their difference dn,n,(7) = u(t) — wy,n, (1),

(3.13) (O, (1), O, v, (1)) + BE (O (1), v s (1))
= (O, (0): Oy, x, (0)) + B (0,3 (0), O v (0))
+ L2 (0nw) (1) + 20wy, (1),
where
Tniwy (1) = (@'(0), w5, (0)) + B ((0), wy, x,(0)) — B (u(1), wy, v, (1))
— (@' (1), Wy, x, (1)) + L () (0).

Since u and wy,y, are solutions of problems (3.1), (3.2) and (3.3), (3.4),
respectively, from (3.11) we obtain that for any fixed ¢ € [0, T,

wa, N, (1) — u(t)  weakly in V(Q),
— u/

whow () = w(f) weakly in 12(@), 25 min{Ni N} = eo.

Applying the energy equality for # and passing to the limit in Jy,n,(#) as
N; and N, tend to infinity, we get

(3.14) Tyiw (1) = (u'(0),u'(0)) + B2 (u(0),u(0)) + L (u) (1)
— (u'(1),u' (1)) — B (u(t), u(r)) = 0.
Thus, from (3.13) we deduce
(3.15) 10, (0 + 18w v, (DI < e3(2Tnyw, (1) + (B, (0), By, v, (0))
+ BQ(6N|N2(0)75N1N2(0)) + Zg(éNlNz)(t))'

From the conditions of the theorem it follows that dy,x,(0) — 0 strongly in
V() and 8} y,(0) — 0 strongly in L*(Q). Applying (3.12), (3.14), we obtain

(03, 3,(0), 8, v, (0)) + B (3w, (0), 6,3 (0)) + 2Ty, (2) + LE (8w, ) (1) — O,
as min{N;, N,} — oo, and from (3.15) we have
0,3 (O] + [0wna (1)]17 — 0, as min{Ny, N>} — oo.
Therefore, for all ¢ e 0, T],

W 1) — u(t) strongly in V(Q), .
N1N2()_)uf) gy (@) as min{Ni, N2} — co.

w]’\,]Nz(l) (z) strongly in LZ(Q)7
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Now we prove the estimates of the theorem. The solution # of the three-
dimensional problem satisfies equation (3.1) for all v € V() and hence satisfies
it for all vy,n, € Vam,(R) € V(Q), ie

E(ul’leNz) + BQ(”? leNz) = LQ(DNlNz)v Yo, n, € VNlNz(‘Q)'
Since the vector function wy,y, corresponds to the solution wy,y, of problem
(3.5), (3.6) and satisfies equation (3.3), we have

d

E((" - leNz)/’leNz) + BQ(" — WN Ny leNz) =0, vleNz € VNINZ(Q)'

Suppose that we L2(0, T; H**1(Q)), u' e L*(0, T; H**"1(Q)), u" e L*(0,T;
H”’SZ’I(Q)), So =8 =5 >1, sy >2. From the regularity theorems we ob-
tain u € C°([0, T|; H*»1(Q)), u' e C°([0, T]; H>*»!(Q)). Let us consider the
Fourier-Legendre expansion of the vector function # with respect to the vari-
ables xj, x2. We denote by uy,y, the piece of series, consisting of the first
Ny + Ny + 2 terms, while the remainder term is denoted by ypy y,, ie. u=

un,N, + YNIN>»

N N,
ik
uy,N, = Z Z a1z (k1 + ) (kz + ) 1’ Py, (1) Pr, (2),
=0 k=l
ki by phy
u = J J uPy, (1) Pr, (w2)dxdx,, w1 = a1x1 — by, wy = axxy — by,
hy Jhy

ki =0,Ny, ky =0,N;. Let us take initial conditions @y, y,, J)NI n, of the

- 00 N1N2 00 NINZ
problem (3.5), (3.6) such that gy, = (¢,..., @), 1//,\,1,\,2 =(y,..., w),

ok hfr ht Kk h1 h;r

152 1K2

5 :j J 9Py (1) Pio(an)dxidxs, :J j WPy (1) Pio (an)dxrdxa,
h

Ty hy

where k; = 0, Ny, k» = 0, N,. Hence the vector function dy,n, = un,N, — W, N,
is a solution of the following problem:

d
E (AIIVIsz leNz) + BQ(ANle leNz)

= _((y;\/lleleNz) + BQ(J’NIsz leNz))v valNZ € VNlNz('Q)7
ANINZ(O) = uNlNZ(O) —OPNN, = 0’ AIIVINZ(O) = uI,VINz(O) —VYNN, = 0.

Applying Theorem 3.1 to the last problem, we have
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(Ai/VlNz(t)7 AZIVINZ(I)) + BQ(ANlNz(Z)’ ANlNz(t))

~ 2 jo(y;m (0), g, o (0))dT — 2B (e (0, A (1)

t
+ 2J BQ(y]’VlNz(r),ANlNZ(r))dT, 0<t<T.
0

From this equality it follows that for all 7€ [0, T,

t

(316) 145 (0 + L 01y = s [ (s (0P + D () )

t t
# [ WP+ I O + [ by,

where ||v||,2g(9) = B9(v,v), for all ve V() and ¢4 is independent of yy, y,, Ay, N,
and Q. Applying Gronwall’s lemma to (3.16), we have

!
2 2 2 2
Ay, (D1 + 1 n 3, (D) < CS(L 73,3, (D T+ 7y, m, (Ol o)

t
+] |y'N1N2<r>|%<9)dr), Vie 0,7).

Note that ||v||,25(g) < 06H17Hi11<9>, for all ve H'(Q), where ¢ = 3 max{34,u}, 4,
u are Lamé constants and hence ¢4 is independent of v and 2. Therefore, as
in the proof of Theorem 2.2 we can show that

! 1 1 \_
Jo |Y/I<IIN2(T)|2dT < <]\7232+]\,232>’7(T7h1i7hzi,N1,N2)7
i 2

1 1 _
(3.17) H7N1N2(1)||12€(9) =< (W‘*‘W)’?(thﬁhzi’]\’h]vz),
1 2

! 1 1
! 2 7 +
Jo 1733, (D E@)dT < <W+W)’I(T7hl hy N1, Np),

where 7(T, hi", hy, N1, N2) — 0, as min{N;, No} — o0, 0<r<T.
Consequently, taking into account coerciveness of the bilinear form
B%(.,.), we have that for all 7€ [0, T],

1 1\
|Az/vlzv2(t)|2 + Ay w, ()] < <W+W)’7(T7h1+7/1;7N17N2)7
i 2

where (T, hi",hy, N1, N2) — 0, as min{Ny, N2} — oo, s = min{ss,s; — 3/2}.
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In addition, since u’ e C°([0, T]; H>**!(Q)), we have

1
P (D17 < (

> t pt
N12.y2 +N22g2>77(T7h1 ,h2 7N17N2), Vte [0, T],

where #7(T,h{",hy,N1,N2) — 0, as min{Ny, N} — oo. Therefore, for all
te[0,T],

() — why s (O a(t) — (1) < ( L

L LNt Ny N,
NZ fo)"( s N1, o)

where 77(T7h1i,h2i,N1,N2) — 0, as min{N;, N,} — 0.
If ||dku/dtk\|L2(0’T;Hsk.w(g)) < ¢, k=0,1,2, where ¢ is independent of A,
hy, then instead of (3.17) we have

25y 255

! h
" 2 1 2 >
JO |yN1N2(T)‘ dr < <N1252+N2252>771(T7N17N2)7

h12(5171) hi(ﬂ*l)
N123173 + W ’71(T7 NlaNZ),

||7N1N2(f)||125(g) =

t ) h2(s171) hz(sl—l)
L 17 () e < (S +
1

2 —
N22X13>;71(T7N17N2);

where #,(T, Ny, N,) — 0, as min{N;, N>} — oo and hence

25
h 1

2s
N 1

25
h2

2s
N, 2

_|_

s (OF + ()] 20y < ( )m(n NiNa),

where #,(T,Ni,N2) — 0, as min{N, N2} — o0, §=min{sy,s; — 1}.
Similarly, for all 7€ [0, T],

/ 2 h12sz hgsz
‘yNN(t)| =< 2‘,—’_ P ﬁl(TlevNZ)v
1V2 Nl 52 N252

where #,(T, N1, N2) — 0, as min{N|, N>} — oo, from which we obtain the
second estimate of the theorem. [
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