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ABSTRACT. M. G. Cowling and J. F. Price showed a kind of uncertainty principle on
Fourier analysis. If v andAw grow very rapidly then the finiteness of [of||, and lwf I,
implies that f = 0, where f denotes the Fourier transform of f. We give an analogue
of this theorem for SU(I,1).

1. Introduction

The Hardy theorem asserts that if a measurable function f on R satisfies
|f(x)] < Ce=* and |f(y)| < Ce™ and ab > then /=0 (ae). Here we
use the Fourier transform defined by f(y) = (1/v27) = f (x)e‘/’_lxy dx. M.
G. Cowling and J. F. Price [4] generalized the Hardy theorem as follows:
Suppose that 1 < p,¢ < co and one of them is finite. If a measurable function
J/ on R satisfies [|exp{ax?}f(x)| ;»g) < o and ||exp{by2}f(y)|\Lq(R) < oo and
ab>1/4 then f =0 (ae.). The case where p=g=o00 and ab>1/4 is
covered by the Hardy theorem. S. C. Bagchi and S. K. Ray [1] showed that if
ab > 1/4, then the Hardy theorem is equivalent to the Cowling-Price theorem.

A. Sitaram and M. Sundari [14] obtained the Hardy theorem in the case of
noncompact semisimple Lie groups with one conjugacy class of Cartan sub-
groups, SL(2,R) and Riemannian symmetric spaces of the noncompact type.
Recently J. Sengupta [12] and M. Ebata et al. [6] obtained the Hardy theorem
for all Lie groups of Harish-Chandra class and all connected semisimple Lie
groups with finite center respectively. Also, M. Cowling, A. Sitaram and M.
Sundari [5] gave another simple proof of the Hardy theorem for connected real
semisimple Lie groups with finite center. On the other hand, S. C. Bagchi and
S. K. Ray [1] obtained the Cowling-Price theorem for some Lie groups and
M. Eguchi, S. Koizumi and K. Kumahara [7] also obtained the Cowling-Price
theorem for motion groups. Further, J. Sengupta [13] obtained the Cowling-
Price theorem on Riemannian symmetric spaces of the noncompact type.

In this paper, we prove the Cowling-Price theorem for SU(1, 1) under the
assumption that 1 < p,g < oo and ab > 1/4.
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2. Notation and preliminaries

The standard symbols Z, R and C shall be used for the sets of the integers,
the real numbers and the complex numbers respectively. For z € C, Rz and 3z
denote its real and imaginary part, respectively. Let Z-, = {ne Z;n >k} for
keZ. If V is a vector space over R, V¢, V* and V¢ denote its complexifi-
cation, its real dual and its complex dual, respectively. For a Lie group L, L
denotes the set of equivalence classes of irreducible unitary representations of
L. As usual, we use lower case German letters to denote the corresponding
Lie algebras.

If # is a complex separable Hilbert space, B(#') denotes the Banach
space comprised of all bounded operators on # with operator norm || -||_.
For T eB(#') and 1 < p < oo, we indicate its Schatten norm by [|T|,, that
is, I, = (te(T*T)"'*)'? | T* being the adjoint operator of T. For a com-
plex separable Hilbert space # and a o-finite measure space (X, u), we denote
by L”(X,B(#)) the Banach space comprised of all B(#)-valued L” functions
on X. Here the L’-norm ||F| .,y ps) of F e L"(X,B(#)) is given by the
following:

1/p
VLo ) = (L ||F<x>||;:du<x>) . l=p<o,

IF L (x, B#)) = ©58. sup [F(x)]] .-
XE

Throughout this paper, G denotes the matrix group SU(1,1), that is,

6={o= (5 D)l - P =r0pec).

eV-16/2 0
K={ky= 0 VT 0<0<4n s,

cosh #/2  sinh ¢/2
A= = ;teR
{a, (sinh /2 cosh t/2>’tE }’

N= {"17 _ <1 J&:/_l_;l/f;/z 1—_\/¢—__1_717£2);,76R},

Let
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oo (R e}

e ()}

Then G=KAN is an Iwasawa decomposition of G (cf. [11]). Each g =

(OE g) € G can be uniquely decomposed as g = kg a,g)ny(y), Where

B
_ +5 _
0(9)—2arg| A t(g) = 2 log|o + f|
_ af—ap
and #5(g) = 7\/—_1|oc+/3|2'

Then we can choose a Haar measure dg so that

JGf(g)dg 1 rn JDO J% S (koasny)e" dOdtdn.

4rn 0 —o0 J -0

2\ 1
vi—v(H). Wefix at = {tH;t > 0}. Let AT =expa® and CI(4") denote the
closure of A" in G.
By the Cartan decomposition G = K CI(A47)K, each g € G can be written
as g = kia,ky for ki,ky e K and ¢ >0 (cf. [15]). In relation to this decom-
position, we have

1/0 1
Take H == ( 0) in a and identify a& with C via the correspondence

o0

(2.1) JG f(g)dg = 2n JKJ JK f(ka,k") sinh  dkdtdk’,

0

where dk is the normalized Haar measure (47) 'df on K.
As is well known,

K = {5, (ko) = /""" e 2).
A function f on G is said to be (m,n)-spherical if

f(klgkz) = Xm(kl)f(g)}fn(kz)

for all g e G and ki, k; € K.
Let ¢ and = be the spherical functions defined by Harish-Chandra. In

our case, for g = (; ﬂ) € G,
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2
og) = 2v2 log(l=| + 1), ﬂwziFeéJﬂ%>
o

o

where F denotes the hypergeometric function.

Let U(g,) be the universal enveloping algebras of g,. The elements of
U(g,) act on C*(G) on both sides as differential operators. Following Harish-
Chandra, we write f(D;g; E) for the action of D,E e U(g) on f e C”(G) at
geaG.

3. TIrreducible unitary representations and the Fourier transform on G

We give here a quick review of the Fourier transform on G. For e =0, 1
and veR, let

Hy = {p e L*(K);p(k(£1)) = (£1)°p(k),k € K}.

Let {:,-) denote the usual inner product on .,  We define the action =, ,
on #,, by

(0 (9)0) (k) = VD120 B ey 0.

Then 7., is a unitary representation on ., and is called a principal series
representation. It follows from the Frobenius reciprocity theorem that

77:{:,1!']( = Z Ans
)

nel(e

where Z(¢) = {meZ:;m=¢ (mod2)}. We set e¢;(kg) = eV /2. Then the
set {e/;/ € Z(¢e)} is an orthonormal basis of 7 ,.
Let I, , be the standard intertwining operator defined by Knapp and Stein
(cf. [9]). For each ¢=0,1, it is satisfied that
Ie,vne, v(g) = ns,fv(g)le, v

for all veR and ge G. We take from [16] that
Iz:‘vel' = (71)/6/(‘))6/7

where c¢,(v) is the Harish-Chandra C-function given by

e(v) = J_ e(\/—_lv—l/Z)t(ﬁ)e/(ka(i’))dﬁ
N

B 272V (2/ZTy)
CT(V=Iv+1)2— )2 F(V=Tv+1/2+7£/2)
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Let @ (g) denote the matrix coefficient for 7, , with respect to {e/;/ € Z(e)},
that is,

djjl ;2 (g) = <7T3“’ V(g)e/z 9 e/] >
= [ AT ey e
K

We also need another representation. Let D= {zeC;|z|] <1}. For
L€ Zs», denote by #," (resp. #;”) the Hilbert space of all holomorphic (resp.
anti-holomorphic) functions ¢ on D such that

loll; = J » lo(2)]2(1 = |2%)*2dz < 0.
z|<

We define the action 7] (resp. n;) of G on #;" (resp. #; ) by

(G £))eJo=cnare( 525),
(= (2o - (55)

These representations #] and z; are unitary and called the discrete series rep-
resentations. Hereafter we write (n;, #;) instead of (n‘sfm,e}’f‘sfﬁr'll) We denote
by (+,-), the inner product on 7. Then {z/;/ € Z} and {z/;/ € Z,} are

orthogonal bases of 4 for /2 >0 and 1 < 0 respectively. Put

g _ (1A= =1l eZs0) (02>0
P A+ 20+ 10 e Zs} ifA<0

Then

nfl'K = Z Xn-

neZl,

Let

b 1/2
— l/ :
Y_aa(2) = <7B(,1/+ 1)> z if 2>0,

> 1/2
— =l :
Voo (2) = (73(_27/4_ 1)) z if 1<0,

where B is the Beta function. We denote by ‘P/f/z(g) the matrix coefficient for
7, with respect to {y,;/ € Z,}, that is,
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YJ/{/Z(Q) = (ma (9, Wy,);-

For /1,/, € Z, it is known that the set of 4 for which ¥/, does not vanish
coincides with

{{ eZ;max{/\,(r} </ < -1} if/i<0and/p <0
L(/],/z): {/eZ;lS/Smin{/l,fz}} if /1 >0and 7, >0
%) otherwise

For f e L'(G), its Fourier transform on G is defined by

(3.1) Fflev) = JGf(g)ns,v(g)dg,
(3.2) FUf(7) = ij<g>m<g>dg.

We write # = (7, 7). If f e CF(G), then the following inversion formula

1 0

(3.3) F9) = 3| S nmnlg D)
e=0
S A e(F ),
1EZN {0}

where p(0,v) = v tanh 7y, u(1,v) = v coth zv and d(2) = ||/ (4n).
For convenience we write 7 (a*) =L’ (a*,B(#,,,), u(e,v)dv) and L (a*) =
LP(a*, p(e, v)dv).

4. Schwartz space and tempered distribution

In this section we review the definitions of the Schwartz spaces 4(G) and
%(G) and prove the pointwise inversion formula of the (m,n)-spherical trans-
form for the very rapidly decreasing functions. To prove the main theorem
in the next section, we need this inversion formula, or Proposition 4.7. For
proving Proposition 4.7, we use the isomorphism between %’(G) and %'(G).
The contents of this section are almost same as the arguments of Baker [2],
but he didn’t give the statement as Proposition 4.7. The Schwartz space on
G is defined by

%(G) = {¢ e C*(G); [|gll, p,p < o0 for all reZ=o,D,E € Ulg)},

where |[4]l, p r = sup (1+0(g))"Z(g)”'$(D;g; E)|.
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As is well known, the system of seminorms |-, , ; makes (G) into a Fréchet
space.
Let %.(G) be the set of operator valued functions F:{0,1} xR —

@.,B(A,,) such that

(i) F(ev)eB(A,,) for each ¢=0,1, veR

(ii) v+ F(gv) is smooth on R
(iii) I, F(e,v) = F(e,—v)I,,, for each e=0,1, veR
(iv)

<%) (F(e,v)er,, e

1v

sup (T+ )" A+ |41+ |/2])" < oo for all

e=0,1,veR
/1‘/262(6)

1,1, 13, r el

The system of seminorms given by (iv) makes %.(G) into a Fréchet space.
Let 64(G) be the set of all F:Z\{0} H@zez\{o} B(#;) such that

(i) F(4) e B(#) for each Ae Z\{0}

(i) sup |(F(Ayy ¥y, ) (L4 1AD (L4142 (1 4 |72])" < oo for all ry,ry,
LeZ\{0}
/1,/26Z,1
r3 e Zz().

The system of seminorms given by (ii) makes %,(G) into a Fréchet space. Put

%(G) = 6.(G) ® %64(G). Then %(G) is a Fréchet space in an obvious manner.
We put <= (7" and 97 = (#%)"". Then they are given by

SF(g) = J:C tr(F(e,v)7, (g~ )u(e,v)dv  for F e %.(G),
SUF(g)= Y dw(FAm(g")  for Fey(G).
AeZ\{0}

ProposITION 4.1 (cf. [8]). The Fourier transform F is a topological iso-
morphism from €(G) onto €(G). And its inverse transform is given by (3.3).

Let
%.(G) = {$p € 6(G); F'9(4) = 0,2 € Z\{0}},
61(G) = {$ € 6(G); 7 °P(s,v) = 0,6 = 0,1,y R},

and b, . (G) (resp. €4mn(G)) denote the subset of %.(G) (resp. %4(G)) con-
sisting of the (m,n)-spherical functions.

Let mneZ. If m—ne2Z+1, we set G.(G)=F. If m—nell,
we choose ¢ so that m,n e Z(e) and let %,,mn(é) be the set of C* functions
F :R — C such that
(i) F(=v) = cu(v) 'em(v)F(v) for each veR,

(i) sup

supl {1+ )’ (41 0

The system of seminorms given by (i) makes %, ,,(G) into a Fréchet space.

< oo for all r,s € Zxy.
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Let %;.,,(G) be the set of all functions F : Z\{0} — C such that
F(2)=0  for all 1¢ L(m,n).

We equip (éd,mn(é) with the topology induced by the system of seminorms
[1F[l, = Sup; e pomn [ F(A)(1 +]4))" for /€Zwo. Then % ,,(G) becomes a
Fréchet space. It is also known that 4(G) < L*(G) and %.m(G) = L?(a*)
for all pell, o]

For f e L'(G), we define its (m,n)-spherical transforms Z¢ f and Z¢ f
by

(Zf)e) = ij< )b (g)dg,

(L)) = j £(9) P2 (9)dyg.

(Sm#)(9) = JQO PPy (g~ ple, v)dv.

0

For an arbitrary function ¢ : Z\{0} — C, we put

Gah)g) = > AP}, (g7").

AeL(m,n)

ProrosiTiON 4.2 (cf. [8]). The (m,n)-spherical transform .\, (resp.
37,”{1) is a topological isomorphism of €, (G) (resp u, mn(G)) onto ., mn(G)
( resp b, mn(é) ). And the inverse transform of Z,. (resp. ) is given by

S, (resp. , d).

mn

For ¢ € %4(G), we define the wave packets @, € 6.m(G) and ¢, ,, €
(gd,mn(G) by

benl9) = S5 (Fi) (9) = jwu 9 (e ) B (g (e v)d,

0

bam(9) = (T (9) = D AT )W), (97"),

e L(m,n)
and put ¢,,,(9) = b un(9) + b4 mu(9). Then the following proposition is valid.

PrOPOSITION 4.3 (see [2]). For each ¢ € €(G), there is a unique expansion

¢: Z ¢mn: Z ¢c,mn+ Z ¢d,n1n'

m,neZ m,nerl m,ne’l
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The series converges absolutely to ¢ in 6(G), and the mappings ¢ — ., and
¢ — @4y are continuous.

Let ¢'(G) be the set of tempered distributions on G. For a tempered
distribution T € ¢'(G), we define Ty, Ty, n € €'(G) by

T('-,ml’l [¢] = T[¢L’.mn]7 Td.m’l[¢} = T[¢d,mn] (¢ € %(G))
Similarly, we also define T, € ¥'(G) by

Tmn [¢] = T[¢mn]'

PROPOSITION 4.4 (see [2]). Retain the notation above.

T = Z Tmn: Z E,mn+ Z Tcl,mna

m,ne’l m,ne’l m,ne’l

where the series converges absolutely to T in the weak topology of €'(G).

Let @ € 4(G) and write ® = @, + @, for @, € 6.(G) and &, € €,(G). We set
¢c‘,mn(V) = <¢c(£7 V)em €m>,

¢d,ml1(/l) = (éd(l)wm l//m)/"n

where ¢ is chosen so that m,n e Z(¢). Then &, € fgc’mn(é), Dy € %,’mn((ﬁ})

and @ = Zm,neZ Qﬂ‘wmn + Zm,nel ¢d>m’1'
For T € ¢'(G), we define its Fourier transform by

FTO =T[F o], @ecbG).
And also, for S e %'(G), we define its inverse transform of # by
7IS[P = S[F4l,  $e€(G).
Let T € %'(G) and we define its Fourier transforms Z°T and Z9T by

FT® =TSP, FTD =T[SD

for @ € ¥(G). Following Barker [2], we define the (m,n)-spherical transforms
Z¢T and ZT of T by

m

Fe T[¢] — T[y‘ ¢c‘mn]7

mn mn

7 T[(D] = T[%nidsd,mn]

mn

for ® € 4(G). Here we give some lemmas.
LemMA 4.5 (cf. [2]). Let T € 4'(G). Then
yCTc,mn = gj}nch7 g’dec,mn = 07 chd.mn = 07 g?de,mn = Zﬁ,T

If a function f satisfies ||e“”<~‘/>2f(g)\|L,,(G) <Cfora>0and 1 <p< o0,
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we call that f is very rapidly decreasing. Such functions belong to L!(G).
When f is very rapidly decreasing, we define T, € 4'(G) by

(@.1) 1= | roeods. e
If f is very rapidly decreasing and (m,n)-spherical, then
(T7) .rs = Or,—mOs.~n(T) . ()
(Tf)d,rs = 5’1 *méb‘- *"(Tf)d,(fm)(fn)’
for r,s € Z. From this fact and Proposition 4.4, we see that
Tf = (Tf)c,(—m)(—n) + (Tf)d.(—m)(—n)7
where f is very rapidly decreasing and (m,n)-spherical. Let F e L”(a*) and
fix myneZ(e). If we set

Ty (D] :J Fn)®(w)u(e,v)dv  for @ €%, (G,
then Tr € €’

R 0
c,mn(G)'
For an arbitrary function F:Z\{0} — C, we put

Tr@ = > dWF()@(Z)  for @ bym(G).
AeL(m,n)

Then Tr € 6 ,.,(G).

LemMMA 4.6. Let [ be very rapidly decreasing and (m,n)-spherical, and
FtfelLl(a). Then

mn
-1 . }

f egﬁj(im)(_”) Tf - T(*ngy,)(,m)g'(—ivn)(,m)f>v7
g—1gd _
T o Tr =Tigze, 74

where f(g) = f(g7").

ProoF. For @ € %(G), we have
Zim)(,,7) Tf[(p] = Tf[(‘%im)(fn))‘pc,(7m)(7n)]

| 10| @min 0100l e v

= | i) | 08 (@)t v

0 G
®© ~
=], PmenMF S Wute vy

(=n)(=
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Thus we have, for ¢ € 4(G),

= Tgfﬁ'")(im)f[(‘/ ¢)c, (7m)(7n)]
=Tz 7 Zemem e, cnyi-m)

o ~
= |, Ao 0| b @B @) dante vy

1 * 7 1

= G¢L (m)(-n) (g~ )Jo FE ey P (97 )uale, v)dvdg
= G ¢c (7m)(7n)(g71)( in)(—m)'g;(in)(—m)fv‘) (g)dg
= Tt o 7 e -

Aemm -
Similarly, using the definition of Ty e %,mn(é), we also have
—1 g=d _ B
97 /(—m)(—n) Tf - T('Z—dn)(—m)'gjx)(—m)f)n D

Finally, we conclude section with the following proposition.

ProprOSITION 4.7. Let [ be very rapidly decreasing and (m,n)-spherical,
and Z°f € LN (a*). Then

1(9) = (% Zun)9) + (L7 )9)  (ae).

Proor. From the above lemmas, we have

Thus we have

I = FEonemZEnemI T+ Ky P o) ().

Interchanging f with f, we conclude

19) = (T Z) @) + (o Zin9)  (ae). O
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5. The main theorem
We need the following lemma of Cowling-Price (cf. [4]).

LemMa 5.1. Let 1<p<oo and A>0. Let g be an entire function
such that

lg(x + V=1y)| < 4e™,

(JR 1g(x) P2 dx)l/p <4

Then g is a constant function on C. Moreover, if p < oo then g=0.

ProoOF. The lemma can be proved as Cowling-Price [4] by a slight
modification. []

ProPOSITION 5.2. Let 1 < p,g<oco. Let f be a (m,n)-spherical mea-
surable function on G such that

e £ (@)l o) < €,

le” (Z ) eVl g0y < €

mn

for C>0,a>0and b>0. If ab>1/4 then f =0 (ae.).

ProOOF. We recall @%"(g) is a holomorphic function of v € C, and satisfies

mn

(5.1) |@% (a,)| < P12,

mn

So (Z,.,f)(e,v) is also holomorphic function. Let p’ denote the conjugate

exponent of p, thatis, 1/p+ 1/p’ = 1. Then the Holder ineqality and the first
assumption of f implies that

(Nt =] f’(g)¢,f;’n”(g)dq’

1/p’

1/p
2 2 ’
<{] e raran) {[ e e )

1/p’

Using similar arguments of [14], we have from (2.1), (5.1) and |sinh 7| < e’
(t€[0,00)) that
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!

o0 1/p
|(‘7n/:nf) (8, V)| < C{J e—2ap/12+p/(|3v|+l/2)t+t dl}
0

‘ 1/p'
< C{JOO e—ap«;2+,;/(\3v\+l/2)t/\/§+r/\/§ dt} ’
0
We choose 0 < a’ < a so that a’b > 1/4 and e='*+('/20i/V2 < Const. e=7'".
Then, for a constant Cj, we obtain

(Zr (e, v)] < Coe™7/6),

Therefore we have
(5.2) "4 (¢ £)(e,v)] < Cpe™) /1)

mn

for ve C and a constant C; > 0. On the other hand, there exist positive
constants B; and B, such that, for e=0,1 and veR,

B (14 )™ <p(ev) < By (14 )7,
and then the Hoélder inequality implies
(53) ”el */4a) (7%1f)(67 V)HLg(a*,vzd\f)

< [I(T+[v))e”

Vz C
)”eb (’%nf)(aa v)HL;’(a*)

where ¢’ denotes the conjugate exponent of ¢. From the second assumption
of ¢ f, a'b>1/4 and (5.4), we can find a constant C, > 0 such that

(5.4) le™/ 4 (Z 1) 130 r2an) < o
for ve R. Therefore Lemma 5.1 implies
(5.5) (oS )(&,v) = 0.

Interchanging f with f, we have from Lemma 4.6 and (5.5) that

FEmy ) (TP [P) = (T 1) [Pe, (- (-m)] = O

mn

for all @ € ¥(G). From Proposition 4.7, we have
5:6) 1(9) = T 7S (9)
= Z ( mnf)( ) mn( ) (a.e.).

e L(m,n)
If f#0 (a.e.), there exists C4 # 0 such that
(5.7) f(a;) = C4e™" + higher order terms  (a.e.).
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On the other hand, the first assumption of f implies that, when 1 < p < o0,
the integral
0

J \e"”(g)zf(g)lf’dgzj J |e“otk19k2)’ £ () akey)|P sinh ¢ didey dies
G KxK JO

0
= J |C4e2” " + ¢ (higher order terms)|” sinh ¢ dt
0

must be finite, and when p = oo,
sup|e*®"f (g)| = sup [e*"f (a)| < o0,
ge@G >0

. 2 . .
However, the function e>* ~' diverges as t — oo, so the integral does not

converge, and similarly, the supremum is infinite. This leads to a contra-
diction. Thus we conclude /=0 (a.e.). [

REmMARK. By using the proof of the discrete series part in Proposition
5.2, that is asymptotic behavior of ?’”fn, we can give another proof of the
Hardy theorem for G proved by A. Sitaram and M. Sundari [14].

The following theorem is an easy consequence of Proposition 5.2.

THEOREM 5.3 (the Cowling-Price theorem for SU(1,1)). Let 1< p,
q < oo. Let f be a measurable function on G such that

2
1“1 (9)ll o) < C

" T £ (e,v)]

r([g‘]<a*) S Cg

for C>0,a>0and b>0. If ab>1/4 then f =0 (ae.).
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