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ABSTRACT. Let ¢ be a faithful irreducible character of the cyclic group C, of order p”,
where p is an odd prime. We study the p-group G containing C, such that the induced
character ¢¢ is also irreducible. The purpose of this paper is to determine the
subgroups Ng(Ng(Cy)) and Ng(Ng(Ng(C,))) of G in the case when [Ng(C,); C,] = p.

1. Introduction

Let G be a finite group. We denote by Irr(G) the set of complex irre-
ducible characters of G and by Flrr(G) (<Irr(G)) the set of faithful irreduc-
ible characters of G.

Let p be a prime. For a non-negative integer n, we denote by C, the
cyclic group of order p”. A finite group G is called an M-group, if every
¢ € Irr(G) is induced from a linear character of a subgroup of G.

It is well-known that every nilpotent group is an M-group. Hence, when
G is a p-group, for any y € Irr(G), there exists a subgroup H of G and a linear
character ¢ of H such that ¢% =y. If we set N = Ker ¢, then N <\H and
¢ is a faithful irreducible character of H/N =~ C,, for some non-negative
integer n. In this paper, we will consider the case when N =1, that is, ¢ is a
faithful linear character of H = C,.

We consider the following:

PROBLEM 1. Let p be an odd prime, and ¢ be a faithful irreducible
character of C,. Determine the p-group G such that C, = G and the induced
character ¢ is also irreducible.

Since all the faithful irreducible characters of C, are algebraically con-
jugate to each other, the irreducibility of ¢¢ (¢ e FIrr(C,)) is independent of
the choice of ¢, and depends only on n.
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This problem has been solved in each of the following cases:

(1) GG (2),

(2) G has a subgroup H containing C, such that C, < H and [G: H| =p
(6)).
On the other hand, when p =2, Yamada and lida [4] proved the following
interesting result:

Let Q denote the rational field. Let G be a 2-group and y a complex
irreducible character of G. Then there exist subgroups H > N in G and a
complex irreducible character ¢ of H such that y = ¢° Q(y) = Q(¢), N =
Ker ¢ and

H/N~Q, n>2), or D, (n>2), or SD, (n=3), or C, (n=0).

Here, Q,, D, and SD, denote the generalized quaternion group, the dihedral
group of order 2"*! (n > 2) and the semidihedral group of order 2"*! (n > 3),
respectively, and Q(y) = Q(x(9),g € G).

They considered the following:

PrROBLEM 2. Let ¢ be a faithful irreducible character of H, where H = Q,
or D, or SD,. Determine the 2-group G such that H < G and the induced
character ¢ is also irreducible.

Yamada and Tida [3] solved this problem in the case when [G; H] =2 or 4
and we have solved it when [G;H] =28 ([5]) for all H = Q, or D, or SD,.

Moreover, we have recently solved Problem 2 completely ([7]). In [7], we
showed that

G=Ng(H) or Ng(Ng(H)),

for all H = Q, or D, or SD,, if G satisfies the conditions of Problem 2. Here,
as usual, Ng(H) and Ng(Ng(H)) are the normalizers of H and Ng(H) in G,
respectively. This means that, if we define subgroups of G by

M, 2]\7(;(1‘1)7 and Mi+1 ZNc;(M,'), for i > 1,
then
HCMICM2:M3:M4:"':G7

for all H= Q, or D, or SD,.
In this paper, we consider Problem 1. We also define subgroups of G by

N, = Ng(cn), and Ny = Nc;(N,'), for i > 1.

The purpose of this paper is to determine the groups N, = Ng(Ng(C,)) and
N3 = NGg(NG(Ng(C,))) in the case where [Ng(C,); C,] =p and [G;C,] > p>.
As a consequence of the results, we will see that
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Ci e N & N2 & N3,

in this case.

Throughout this paper, Z and N denote the set of rational integers and the
natural numbers, respectively. We will frequently use the word “‘respectively”
so it is abbreviated to “resp.”.

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime. First, we
introduce the following groups:
(i) G(n,m) = <a,by,y with a?" =b?" =1, byab,! =a'™?"", (m<n-1).
(ii)  G(n,m, 1) =<a,by,v) (>G(n,m)=<a,by,y) witha?" = b?" =1, b,ab,! =
a """ par! = a””"*mqb{;m*], vP = by, vhyv ' =b, (2m<n-1).
(i) G(n,1,1,1) =<a,br,v,x) (>G(n,1,1) =<a,by,v)) with o =bl =1,
biaby! = a " pavt = @by, vl = by, vbiv! = by, xax ! = @'y,
V=0, xbix ' =b; (7<n).
We can see that G(n,m,1) (resp. G(n,1,1,1)) is an extension group of
G(n,m) (resp. G(n,1,1)) by using Proposition 1 below:

xP =v, xvx~

PROPOSITION 1. Let N be a finite group such that G > N and G/N = {uN) is
a cyclic group of order m. Then u™ =ce N. If we put o(x) =uxu™', xe N,
then o € Aut(N) and (i) ¢"(x) = cxc™!, (xe N) (i) a(c) =c.

Conversely, if o € Aut(N) and c € N satisfy (i) and (ii), then there exists one
and only one extension group G of N such that G/N = {uN) is a cyclic group of
order m and o(x) = vxv™' (xe N) and v = c.

Proor. For instance, see [8, 111, §7].

THEOREM 0.1 (lida [2]). Let G be a p-group which contains C, as a normal
subgroup of index p™. Let ¢eFIrr(C,). Suppose that ¢° € lrr(G). Then
m<n-—1, and G = G(n,m).

In particular, when C, = G and [G:C,]=p, C, is always a normal
subgroup of G. Hence we have:

CoROLLARY 0.1. Let ¢ € Flrr(C,). Suppose that a group G containing C,
satisfies |G : C,] =p and ¢° € Irr(G). Then G = G(n,1).

THEOREM 0.2 ([6]). Let G be a p-group which contains C,, and let ¢ €
Flrr(C,). Suppose that [G: C,) =p™*', ¢¢ elrr(G), and n—3 >2m. Fur-
ther, suppose that there exists a subgroup H of G such that H > C, and
(G:H|=p. Then

(1) G=G(n,m+1) if C, is a normal subgroup of G.

(2) G=G(n,m, ) if C, is not a normal subgroup of G.
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CorOLLARY 0.2. Let G be a p-group which contains C, and let ¢ €
Flrr(C,). Suppose that [G: C,) = p? ¢® elir(G) and n>5. Then

(1) G=G(n?2) if C,is a normal subgroup of G.

(2) G=G(nm1,1) if C, is not a normal subgroup of G.

Our main theorem is the following:

THEOREM. Let p be an odd prime. Let G be a p-group which contains
C, = <ay. We assume that [G: C,| = p>. Define the subgroups of G by

Ni = Ng(Cyp), and Niy1 = Ng(Ny), for i=1,2.

Let ¢ eFIrr(C,) and 7<n. Suppose that ¢° eTrr(G), and [N;:C,] = p.
Then

(1) Nz/Nl ~ () and N, =~ G(l’l, 1, 1),

(2) N3/N2 ~ and Ny =~ G(I’l, 1, 1, 1)

ReEMark 1. Conversely, it is easy to see that the groups G(m,1,1) and
G(n,1,1,1) satisfy the condition (EX, C), which is defined in section 3 of this
paper. Hence these groups satisfy the conditions of Problem 1.

REMARK 2. By results of lida ([2], see Theorem 0.1. in this paper), we
can see that Ny = G(n,1).

3. Some preleminary results

In this section, we state some results concerning the criterion of the irre-
ducibilities of induced characters and others, which we need in section 4.

We denote by { = {,» a primitive p"th root of unity. It is known that,
for C, = {a), there are p" irreducible characters ¢, (1 <v <p") of Cy:

gla)=C" (I<is<p").
The irreducible character ¢, is faithful if and only if (v, p) =1. It is well-
known that
Autla) = (Z/p"2)" = C, x C,_;
where (Z/p"Z)" is the unit group of the factor ring Z/p"Z and C, is the cyclic
group of order p — 1. Further, C, | is generated by the element 1+ p in

Z/p"Z.
First, we state the following result of Shoda (cf [1, p. 329]):

PropPOSITION 2. Let G be a group and H be a subgroup of G. Let ¢ be
a linear character of H. Then the induced character ¢¢ of G is irreducible if
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and only if, for each xe G— H ={ge G|g ¢ H}, there exists he xHx 'NH
such that ¢(h) # ¢(xhx~"). (Note that, when ¢ is faithful, the condition ¢(h) #
d(xhxY) holds if and only if h # xhx™").

Using this result, we have the following:

ProposITION 3. Let {(a) = C, = G, and ¢ be a faithful irreducible char-
acter of C,. Then the following conditions are equivalent:

(1) ¢ is irreducible,

(2) For each xeG— C,, there exists ye<{ayNx{a)x™" such that
xyx’1 # ).

DEerFINITION.  When the condition (2) of Proposition 3 holds, we say that G
satisfies (EX,C).

Let H be a group. For a normal subgroup N of H, and any g,he H,
we write

g=h (mod N)

when g~'he N. For an element g € H, we denote by |g| the order of g.

4. Proof of Theorem

Let ¢eFIrr(C,). Since ¢% = (¢")% elrr(G), we must have ¢V e
Irr(Ny). Therefore, by Corollary 0.1, we can take an element b, € Ny — C, =
{ge Ny |g¢ C,} such that

Ny = <a,by @ = b = 1,biab" = a7y = G(n, 1).

PrOOF OF (1). Since G is a p-group and [G : N1] > p?, by our assumption,
we have

N] S Ng(Nl) = N2.

Take an element v € N; — N; = {g € N2 |g ¢ N;} such that v» € N;. Denote by
N} the subgroup of G generated by v and the elements of N;. Then

IN):N{]=p and N} >Nj.
Since C, is not a normal subgroup of N’, we have
N} =<a,b1,v) = G(n,1,1)

by Corollary 0.2. Hence we may assume that the elements «, b, and v satisfy
the following relations:
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n _ n-1 _ n-2
a’ =b" =1, biaby! = a7 vav™' = a' " by,

v = by, Ub]lfl = by. (I)
Hereafter, we write b instead of b; for the sake of simplicity.

REMARK 1. More precisely, in [6], we have shown that there exist an
integer s1,(s1,p) =1 and ve N}, such that the elements a; = a*,b, and v
satisfy the same relations as (I). Since <{a) = {a*'), we can take a; instead of
a, and hence, we may assume that Nl0 =<{a,b,v) and a,b and v satisfy the
same relations as (I).

To prove the theorem, we need the following:

LemMmA 1.  For any integers i, j, the following equalities hold.
(i) ab=ba (modlar" ).

(i) ba’b~! =a’.

(iii) (a'b’)? = a®.

(iv) va”’v!=ar.

V) viav? = a7 i,

(vi) (av/)? = aP'ol = aP'b/ (mod{a?"" D).
(i) (alv/)?" = a?".

ProOF oF LEmmA 1. (i), (ii), (iii) and (iv) can be shown by direct cal-
culations.

(v). Since n>7, by our assumption, we have va?" v~' = a?"”, by (iv).
Hence, v/av” = a'"#"’bJ, for any je Z.

(vi). By (i) and (v),

n—2 n—1

vatvd = (@ ")) = o R (modda?" ).
Using this relation repeatedly, we can get
(a'v/)’ = aPiqip" (14244 (p=1) p i (142++(p=1)) ;i (mod(a”H>)

— gPigiir"(p(p=1)/2) pii(p(p=1)/2) ypi

= glipl — gPipJ (mod(a”H ),

since p is odd.
(vii) follows from (vi).

The assertion (1) follows from the following
Cramm 1. N) = N,.

ProoF ofF Cramm 1. Suppose that N 10 & N,. Take an element we
N, —N?={ge N>|g¢ N} such that w” e N).
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1

Write waw™! = ab/” for some iy, joeZ, 0<ip<p"—1, 0<jo<p—1.

Then
walw! = (ait)bjo)P — gP
by Lemma 1 (iii). Therefore
WP aPw P = Pt

. 2
Since w”” € N;, we must have

2

il =1 (mod p" ).
So,
=1 (mod p"~3).
Hence we can write as ip = 1 + kop” 3, and
waw™ ! = g"tkor" pio
for some integer ky. Since n—3 >4, by our assumption, we have

n-3 _ n—=3
va?" v =@t

by Lemma 1 (iv). Hence

P Iy P — o gl tkep" o —ptio o 1tkop" +(p—jo)p"

)

by Lemma 1 (v). This means that v~ w e Nj, which contradicts the hypoth-
esis that w¢ NY. Hence the proof of Claim I is completed.

PrOOF OF (2). Since G is a p-group and [G : N,] > p, by our assumption,
we have

N2 o Ng(Nz) = N3.

Take an element y € N3 — N, such that y” € N,. Denote by Ny the subgroup
of G generated by y and the elements of N,. Then

[N):N2J=p and N> N,.
First, we show the following
Cram II. We can write as
yay~! = a1+kp”’3vj7
yhy ! =a" b,
yoy ' = a?" b,

for some k,j,d,s € Z, such that (k,p) = (j,p) =1.
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Proor oF CLAM II.  First, we consider the elements yby~!. By Lemma 1
(vi), |a’v/| > p?> when (j,p) =1. So, we must have yby~! =a%b® for some
do,to € Z. But

1 :ybpyfl — (adobto)P — adop,
by Lemma 1 (iii). Therefore
dy=0 (mod p"~1).
Hence, we may write dy = p"~'d and
yhy™h =a"" b,
for some d € Z.
Next, consider the element yay~'. Since y ¢ N>, we must have
yay~' = a'v/,

for some Jje€ Z, (], p) =1. By Lemma 1 (Vi), yapy—l _ (aivj)p _ api+mpn—lbj
for some meZ. Since yay'¢<ad, ya’y'¢<ad, and ya? y!
(aP™m" ' pIY = aP* € (ay, we must have

apzl- - apz,
by the condition (EX,C). Therefore
i¢ 14",

where {1+ p"~2) is the subgroup of (Z/p"Z)" generated by 1+ p"~2. But
yPar’yP = a? " and yP € Ny = G(n,1,1). Hence
i? e {1 +p"2.
Thus we may write as i = 1 + kp”~> and
yay’l _ a1+kp"’3vj,

for some integers k, j such that (k,p) = (j,p) = 1.

Since n — 1 > 6, by our assumption, we have,

yapn—]y71 _ (alJrkpn—Svj)pn—l _ ap

n—1

by Lemma 1 (vii). Taking the conjugate of both sides of the equality, bab~! =
a7 by y, we get

(a”" " b) (@ " o) (a?" )T = (@R ) g?

n—1

Hence,

n—3 n—1 P n—-3 n—=1
a(1+kp )(1+10p )U]:alJrkp REA
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Therefore,
h=1  (mod p),
and hence
yby ' = a?" .
Finally, we consider the element yvy~!. Write yvy~! = a%v™. Then
e I (A

for some integer ¢, by Lemma 1 (vi). Therefore

n—1 y n—1
al’ Ay = gbsoter bho’

and, we have
hy=1 (mod p), and so0=0 (mod p"~2).
Write
ho =1+ pl and s =p" s,
for some /,s € Z. Then we have
yoy~! = a?" s = "l
Taking the conjugate of both sides of the equality, vav™! = a'*?"”b by y, we
get

n-2

(@" ') (a" " ) (0"

n-2

sblv)—l _ (a1+kp”’3vj)ap (ap""db),

-1

. n-2 2
since ya?" y~! =a?"". Hence, we have

g\t A e o Nk At R pn T
Therefore,
d=1 (mod p),
Thus the proof of Claim II is completed.

Now, we consider the element y? (eN, = G(n,1,1) =<a,b,v)). Write y? =
a™v". Then
n—-2

o h

ao =y =ty = (@t )yTh = (@) (@ b )"

Therefore
o' =" (mod Ny = {a,b)).

Since (j, p) =1, we have rp =0 (mod p). Hence we can write as ro = pr, and
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yp _ aprvh’

for some reZ.
We show the following:

CLamM III.  There exists an integer ¢ such that (a®y)” = v”"*" for some
integer fyp. Further, (4, p)=1.

Proor oF Cram III. 1t is easy to see that {a”""y is a normal subgroup
of Ny. By Claim II, the following equalities hold:

n-3

U= a/ (mod<a" "),

yay -

yby'=b  (mod{a’"y),

yoy~! = by (mod{a”""y).
Using these relations repeatedly, we can get
yPay™ = ab W+ 244(p=D)ppi — hd(P(P=1)/2) i — 4P — gbt (mod(ap'H)),
since p is odd. Hence we can write as

yay ™ = alJrﬁp”’3bj7
for some feZ. On the other hand, since y” = a”v", we have
ypayfp _ (aprvh)a(aprvh)—l _ a1+hp”’2bh,

by Lemma 1 (v). Thus we have b/ =5b" and, in particular, (h,p)=1.
Define the subgroup H of NY as

H={a""> x {bd.
It is easy to see that Nj > H, and the following equalities hold:

va = av (mod H),

yay~! = av’ (mod H),

yoy = (mod H).
Using these relations repeatedly, we can get
yea™y ¢ = a"™v™9 (mod H),
for any m,c e Z. Using this equality, we have

(amy)p = apmvjm(1+2+<+(p—l))yp _ apmUjm(p(pfl)/z)aprvh _ ap(er")Uh (mod H),

for any m e Z. Therefore we may write as
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(amy)p _ ap(m+l’)+0p”’3btvh,
for some integers § and z. Note that ¢ and ¢ are not independent of the
choice of m. If we set y; =a "y, then
yf _ aﬁop”*3btouh _ af)()ly”*3l)pt(]+l17

for some integers 0y and #). Further, set ¢ = —0yp"* —r, and

n—4

y=a"""y.

n-4_,

n=ay=a’
Since n —4 > 3, by our assumption, we have

1 n—4

n—4
na’ yp =ad’

Hence,

n-4 —Qop"3
yl)p —a Oop y{? — Upt0+lz.

W= @) =@
This completes the proof of Claim III.

Since (pty+h,p) =1, there exists k'€ Z, such that (pty+h)k' =1
(mod p?). Hence

k'p

yy P = p(plo+h)k

"=u.
Therefore
yzvyz’1 =, and yzbygl =b.

Further, we have
yayy = a 0" yay gt

= afr(a”kl””vj)ar
= a7 (@ )
=a"a" " by (m0d<aliu>)
=a"®" bl (mod¢a”" )
— ko™ ypirty

Therefore

_ n—=3_ §,n—2 el T
y2ay21 _ aH—kp +dp Up/r-H’

for some integer . If we set kj = k +Jp, then (k;,p) =1, and

—1 _ 1+kp™3 pir+j
yaayy ' = a' R ppir



176 Katsusuke SEKIGUCHI

Since n — 3 >4, by our assumption, we have

1 n—3

n-3 _
na’ y, =a’

Thus,
ygayz—p — a1+k|p”’zvpj _ a1+k1p"’2bj.
On the other hand, since y§ = v?"*" we have
ygayz—p _ (UptoJrh)a(UptoJrh)*l _ al+(pto+h)p”’2bpto+h _ a1+(pt[)+h)p”’2bh’
by Lemma 1 (v). Therefore we have
ki=pty+h  (mod p?),

and

j=h (mod p).

Summarizing the results, we have

_ n=3 5 ; n-3 ;
yzayzl — gtk i — g Hhap bh’v",

Pk

y2 =0 ]a

—1
nby,” =b,

-1 _
yvy, =u.

There exists an integer /;, such that
Lky=1  (mod p?).
Since

ki (mod p),

If

=

If
~

we have
hki=hLj=1 (mod p).
Hence, we may write as
hj=1+ps,
for some s, € Z. Set y3 :yé]. Then

B _ 3 L
y3ay31 _ yé‘ay2 h _ alﬂn klllvll(JI’rH)

— gt philpr)

n-3 ) .
— a1+p U(p52+1)(pl+1)

n=3 - n—3
_ a1+p vp(l+Sz)+1 _ a1+p br'l),
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where r; =r+s,. Further
W=yt =vhh v st =v,  and  ybys' =0
If we set ag =a' ™" (=a'tP"=P)") then we have
al" =1 and  bagh! = aé”’"?].
Further, we have
vagr™" = va" v = vaa o = (@ b) (@ b)Y

— (al+p”’2b)a(1+ﬁ“’2)(—pr1) — G U=pr)py aéﬂ?"’zb

b

by using Lemma 1 (iii). We also have
ysaoyy' = ysaayy!

= (@ pnv)(a " )

= (a"7" b"v) (@ ph)h (mod{a?""»)

n-3 - _ n-3 s
= (a"P" pv)a P )

Lp" =pn(14p" ), (mod<{a?""»)

a

n—-3

n-3 _ 1
— )y — gl

. _ 1 n=3
Hence we may write as ysaop;' = a,"”
ph=1 =1

' _
ag =a”? ', so

a®" ', for some integer 7. But
1 _ 1+pn—3+ypn—l

Y3aoy; =4y v.

Finally, we set ys = b77y;. Then we have

vi=y=v, ywy'=v, and  yby,' =b.

Further

-1 _ 31—y Ay gy LEp P ppn!
yaaogyy = b"yzagy3 b’ = b7 (a v)b’

_ aél+pn—3+ypn—l)(1+pn—l)*7’v _ aé+pn—3v.
Therefore, the relations of the elements ay,b,v, and y, are the same as that
of G(n,1,1,1). So, the group N3 = <ap,b,v,ys) is clearly isomorphic to
G(n,1,1,1).
We will complete the proof of (2), by showing the following:

CLamM IV. N) = Ns.
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Proor oF Cramm IV. Since the proof of this claim is similar to that of
Claim I, we state only an outline of the proof. Suppose that Ny & N;. Take
an element g € N3 — NY such that g” € N). Then we can write as

gaog™ = ay ™ol
for some integers k» and j;, by the same way as in the proof of Claim I.
Since n —4 > 3, by our assumption, we have
n—4

n—4
Pt o1
Yady Yy =4

Thus

p

2,7 n—4 2_;
—p*+i _ tkep" (P =)
Y4 =4y

2—' —_
Tgacg™"y,

n=3

This means that yffz*j‘ g € Ni, which contradicts the hypothesis that g e
N; — NJ). Hence the proof of Claim IV is completed.
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