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ABSTRACT. We investigate relationships between the set B” of all infinite “biconvex”
sets in the positive root system A, of an arbitrary untwisted affine Lie algebra g and the
set #'* of all infinite “reduced word” of the Weyl group of g. The study is applied to
the classification of “convex orders” on A, ([5]), which is indispensable to construct
“convex bases” of Poincaré-Birkhoff-Witt type of the strictly upper triangular sub-
algebra Uq+ of the quantized universal enveloping algebra U,(g). We construct a set
2 by using data of the underlying finite-dimensional simple Lie algebra, and bijective
mappings V:%2 — B and y:2 — W® such that V=®" oy, where W* is a
quotient set of % * and ®* : W* — B* is a natural injective mapping.

1. Introduction

Let 4 be the root system of a Kac-Moody Lie algebra g, 4, (resp. 4_) the
set of all positive (resp. negative) roots relative to the root basis IT = {o;|i € I},
and W = (s;|iel) the Weyl group of g, where s; is the reflection associated
with o;. Then (W,S) is a Coxeter system with S = {s;|i eI} ([6]). We call
an infinite sequence s = (s(p)),.n € S N an infinite reduced word of (W, S) if the
length of the element [s|,] := s(1)---s(p) € W is p for each peN, and call a
subset B < A, a biconvex set if it satisfies the following conditions:

C(i) p,yeB, f+yed,=f+yeB;

C(ii) p,yed\B, f+yed,=f+yed\B.

If, in addition, B is a subset of the set A4’¢ of all positive real roots, then B is
called a real biconvex set. The purpose of this article is to investigate in detail
relationships between infinite reduced words and infinite real biconvex sets in
the case where g is an arbitrary untwisted affine Lie algebra.

Before explaining the detail of our work, we will explain the background
of the theory of infinite reduced words and infinite real biconvex sets. The
motive of this study is related to the construction of convex bases of the strictly
upper triangular subalgebra U; of the quantized universal enveloping algebra
U,(g). Convex bases are Poincaré-Birkhoff-Witt type bases with a convex
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property concerning the “g-commutator” of two “g-root vectors” of Uq+ . The
convex property is useful for calculating values of the standard Hopf pairing
between U; and the strictly lower triangular subalgebra U, , and is applied to
explicit calculations of the universal R-matrix of U,(g) ([7], [8]). By the way,
each convex basis of U, is formed by monomials in certain g-root vectors of
U; multiplied in a predetermined total order with a convex property on 4.
Such a total order on A4, is called a convex order.

In the case where g is an arbitrary finite-dimensional simple Lie algebra,
it is known that there exists a natural bijective mapping from the set of all
convex orders on 4, to the set of all reduced expressions of the longest element
of W ([10]), and G. Lusztig constructed convex bases of U, associated with all
reduced expressions of the longest element of W by using a braid group action
on Uy(g) ([9]). Therefore all convex bases of U, was constructed in the finite
case.

In the case where g is an arbitrary untwisted affine Lie algebra, convex
orders on 4, are closely related to infinite reduced words of (W,S). More
precisely, each infinite reduced word naturally corresponds to a “I-row type”
convex order on an infinite real biconvex set. In [5], we showed that each
convex order on 4, is made from each couple of “maximal” (infinite) real
biconvex sets with convex orders which divides 4'° into two parts. To analyze
convex orders on maximal real biconvex sets, it is important to consider the
following two problems: (1) classify all infinite real biconvex sets; (2) describe
in detail relationships between the set of all infinite reduced words and the set
of all infinite real biconvex sets. In this article, we concentrate on the two
problems above for the untwisted affine case. Applying results in this article to
[5], we classified all convex orders on 4., and then gave a general method of
constructing convex orders on A, for the untwisted affine case. On the other
hand, in [1], J. Beck constructed convex bases of U;r associated with convex
orders on A4, arisen from a certain couple of maximal real biconvex sets with
l-row type convex orders which divides 4’ into two parts. However, we seem
that it is possible to generalize Beck’s construction, since we find in [5] that
there exist several types of convex orders called “n-row types” on each maximal
real biconvex set which are not used in Beck’s construction. We are preparing
an article concerning to construct all convex bases of U associated with all
convex order on 4, by generalizing Beck’s construction for the untwisted affine
Lie algebra.

This paper is organized as follows. In Section 2, we first give the def-
inition of biconvex sets for a class of root systems with Coxeter group actions,
and then state several fundamental results. We next define infinite reduced
words for each Coxeter system (W,.S) and an equivalence relation ~ on the set
"~ of all infinite reduced words, and then define W* to be the quotient set of
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W relative to ~. We next define an injective mapping @ : W* — B”,
where B” is the set of all infinite real biconvex sets. At the end of Section
2, we define a left action of W on W* which plays an important role in the
proof of the main theorem. In Section 3, we introduce some notation for the
untwisted affine cases. In Section 4, we give preliminary results for classical
root systems. From Section 5 to Section 7, we treat only the untwisted affine
case. In Section 5, we give several methods of constructing biconvex sets. In
Section 6, we give a parametrization of real biconvex sets. In Section 7, we
give the following main results.

MAaIN THEOREM. If g is an arbitrary untwisted affine Lie algebra, there exist
parametrizations (bijective mappings) V : 22 — B” and y : P — W* such that
the following diagram is commutative:

%OO
7 N
We —r 0 — P
x
where the set &P is defined by using data of the underlying finite-dimensional
simple Lie algebra § (see Definition 6.5). In particular, @ is bijective.
Moreover, W decomposes into the direct finite sum of orbits relative to a left
action of W.

Note that P. Cellini and P. Papi showed in [11] that if B is an infinite
real biconvex set, then there exist v,z € W such that 7 is a translation, /(vt) =
/(v)+7(1), and B =, P(vi"), where ®(z) = {fed,|z""(f)ed }.

2. Definitions and several results

Let R, Q, Z, and N be the set of the real numbers, the rational numbers,
the integers, and the positive integers, respectively. We denote by N, the set
{meN|m < n} for each n e N, and set N, := N and N, := N 1T {0}, where oo
is a symbol. We extend the usual order < on N to a total order on N, by
setting n < oo for each ne N. We also set o0 +n=n-+ 00 = con = noo =
for each ne N,. We denote by #U the cardinality of a set U, and write
#U = oo if U is an infinite set. When A4 and B are subsets of U, we write
A& Bor B5 A if #(A\B) < oo, and write A = B if both 4 < B and 4 S B.
Then =is an equivalence relation on the power set of U. For each F < R
and aeR, we set Fs,:={beF|b>a} and F.,:={be F|b > a}.

Let F be a subfield of R, W a group generated by a set S of involutive
generators (ie., s#1, s2=1, VseS), and (V,4,1I) a triplet satisfying the
following conditions gR(i)—pR(iv).
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rR(i) It consists of a representation space V' of W over F, a W-
invariant subset 4 = V\{0} which is symmetric (i.e., 4 = —4), and a subset
II ={o|se S} c 4.

rR(ii) Each element of 4 can be written as ) _g a0, with either a, € F5
for all se€ .S or a; € F< for all s € S, but not in both ways. Accordingly, we
write o >0 or a <0, and set 4, :={axed|a>0} and 4_ :={oed|a<0}.

rR(iii) For each se S, s(os) = —ay and s(A4\{o}) = 44 \{ois}-

FR(v) If we W and s,s' € S satisfy w(oy) = o, then ws'w™! =s.

DEFINITION 2.1, Define subsets 47, 4™, A, and 47" of A by setting
A" = {w(a) |[we W,se S}, A" = A\A™,
A =A"NAy, A7 :=4"N4,.
Note that W stabilizes 4" and 47". For each ye W, we set

P(y) = {fed |y (B <0}
Note that @(y) < 4’

THEOREM 2.2 ([4]). The pair (W,S) is a Coxeter system, i.e., it satisfies the
exchange condition. Moreover, if y = s15,---5, with ne N and s1,53,...,8, €S
is a reduced expression of an element y € W\{1}, then

d)(y) = {“Snsl (Ocsz)v RN '-~S,1_1(OCSH)}

and the elements of ®(y) displayed above are distinct from each other. In
particular, #®(y) = /(y), where { : W — Zx is the length function of (W,S).

REMARKS. (1) The action of W on V is faithful. Indeed, if y = idy for
ye W, then &(y) = &, and hence y = 1. Therefore we may regards W as a
subgroup of GL(V).

(2) For each Coxeter system (W,S), a triplet (V,4,1I) is called a root
system of (W,S) over F if it satisfies the conditions gR(i)—pR(iv).

(3) Let o: W — GL(V) be the geometric representation of a Coxeter
system (W,S) (cf. [2]), where V" is a real vector space with a basis IT =
{os]|s€S}. Then (V,4,1I) is a root system of (W,S) over R (cf. [4]), where
A={a(w)(as)|we W,seS}. We call it the root system associated with the
geometric representation.

(4) Let g be a Kac-Moody Lie algebra over Q with Iy the Cartan sub-
algebra, 4 = h*\{0} the root system of g, IT = {«;|i eI} a root basis of 4,
and W = (s;|ieI) = GL(h") the Weyl group of g, where h* is the dual vector
space of b and s; is the simple reflection associated with o; (cf. [6]). Set b* :=
spang [T = h* and S := {s;|iel}. Then (W,S) is a Coxeter system and
(b*,4,1) is a root system of (W,S) over Q.
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LemMa 2.3. Let y; and y, be elements of W.
(1) We have @(y1y2)\@(y1) = y1®(»2).

) If nP(y2) = Ay, then D(y1) L y1D(y2) = P(y1)2).
(3) 1f D(y1) = D(y2), then D(y2) = D(y1) Ly1®(y;y'92).
(4) The following two conditions are equivalent:

(i) £(y2)—¢(n) =2(31"y2); (i) @(y1) = D(y2).

ProoOF. (1) Suppose that e @(y1y2)\@(y1). Then we have y;'(B) >0
and y;'(y7'(B)) <0. Thus we get y;'(f) € ®(y,) or fe yi®(y).

(2) If Be y1®(y2) then yy'(B) >0, and hence B¢ &(y;). Thus we get
D(y1) N y1®D(y2) = . Hence, by (1) we have D(y1y2) = @(y1) 1L y1D(y2).
We next prove that @(y;) = &(y1y2). Suppose that fe @(y;) satisfies f ¢
@(y1y2). Then we have y;'(B) <0 and p;'(y;'(B)) >0, which imply
—y71(B) € D(y>). This contradicts the assumption. Thus we get @(yi) <
@D(y1y2). We next prove that y1@(y;) = @(y1y2). If fe yi®@(y,) then
Vil(B e @(3z), and hence y3'(y!(B) <0. Thus we get fe®(yya).
Therefore @(y;) I y1D(y2) = D(y1y2).

(3) We first prove that y;®@(y;'y2) = 4.. Suppose that fe @(y;'y)
satisfies y1(f) <0. Then we have —y;(f) e @(y1) = ®(y2), which implies
y5'p1(B) > 0. This contradicts f € @(y;'y2). Thus we get y1®@(y;ly) = 44,
and hence @(y2) = @(y1) 11 y1®(y7'y2) by (2).

(4)(i) = (i) By Theorem 2.2, we have

/(y2) = (1) < #y; {D (1) \ @ (1)}
< #®(yy'y2) = 2(y7'v2) = £(y2) = (),

where the second inequality follows from (1). Thus we get #y7 ' {@(2)\® (1)}
=/(y2) —£(y1), and hence @(y;) = @(y7).

(i) = (i) By (3) and Theorem 2.2, we get /(y2)=/¢(»1)+¢(y7' ).

O

DerINITION 2.4. For subsets A, B = A, satisfying B< A, we call B a
convex set in A if it satisfies the following condition:

Ci)y p,yeB, f+yeAd=p+yeB.
We also call B a coconvex set in A if it satisfies the following condition:

C(i)y pB,yed\B, f+yeAd=p+yecA\B.
Note that B is a coconvex set in A if and only if A\B is a convex set in A.
Furthermore, we call B a biconvex set in A if B is both a convex set in 4 and a
coconvex set in 4. If, in addition, B < 4’7, then B is said to be a real convex
set in A, a real coconvex set in A, or a real biconvex set in A if B is a convex set
in A, a coconvex set in 4, or a biconvex set in A, respectively.
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We will say simply that B is a convex set, a real convex set, a coconvex set,
a real coconvex set, a biconvex set, or a real biconvex set if B is a convex set
in 4., a real convex set in 4, a coconvex set in 4, a real coconvex set in 4,
a biconvex set in 4., or a real biconvex set in 4., respectively. We denote
C(i)4, and C(ii)4, simply by C(i) and C(ii), respectively. Let B be the set of
all finite biconvex sets and B~ the set of all infinite real biconvex sets. We set
B :=BIB”.

REmMARK. The condition C(ii)4 is equivalent to the following condition:
B.yed,f+yeB=feB or yeB.
For each couple of subsets 4, B < 4, we set
A+ B:={oa+flacAd feBiNA.

LemMma 2.5. Let A, B, and C be subsets of A, satisfying B,C = A, and
{B)},c4 a family of subsets of A.

(1) If B is a biconvex set in A, then A\B is biconvex in A.

(2) If B is a biconvex set in A, then BN C is a biconvex set in C.

(3) Suppose that B < C and C is a convex set in A. Then B is a convex
set in C if and only if B is a convex set in A.

4) If (B, + B;)NA <= \,_, B, for each pair 1,2 € A, then | ),_, B, is a
convex set in A.

(5) If By is a convex set in A for each 1€ A, then ﬂze/l B, is a convex set
in A.

(6) If B, is a biconvex set in A for each J. and =< is a total order on A such
that B, < B;: for each 4 =<2/, then both ), ,B; and (), B, are
biconvex sets in A.

reA

ProOF. (1)—(5) They are obvious.

(6) Set By:=|J,_,B,. By the assumption on the total order =, the
family {B,},., satisfies the sufficient condition in (4). Hence, B is a convex
set in 4. On the other hand, since 4\B; = (),_,(4\B;), A\B is a convex set
in 4 by (1) and (5). Thus B is a biconvex set in 4. Set By :=(),_,B;. Let
<% be the opposite order of <. Then A\B; < A\B,  if A=< }'. Hence,
By :=|J,.,(4\B;) is a biconvex set in 4. Thus B, is a biconvex set in 4
since B, = A\Bs. O

THEOREM 2.6 ([10]). The assignment y — ®(y) defines an injective mapping
from W to B. Moreover, if the root system (V,A,II) over F satisfies the
following two conditions, then @ is surjective:

rR(V) each o€ ANIT can be written as o=+ y with f,ye 4.,

FR(Vi) there exists a mapping ht : Ay — ¥~ such that ht(f +y) = ht(f) +
ht(y) for all B,y e A, satisfying f+ye A..
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ReMARKS. (1) The surjectivity of the mapping follows from the fact that
if C is a non-empty finite coconvex set then C NI # . The conditions R (V)
and pR(vi) are used to prove the fact.

(2) Suppose that the root system (V,4,II) over F satisfies the following
two condition instead of gR(v) and gR(vi):

rR(v)" each a e A, \IT can be written as « = bf + ¢y with b,c € F5; and
ﬂ7 V€ A+;

rR(vi)" there exists a mapping ht: 4, — Fy¢ such that ht(bf + cy) =
b ht(f) + ¢ ht(y) for all b,c e F5y and f5,y € 4, satisfying bf+ ¢y € 4.

Then @ is still surjective if B is replaced by the set of all finite subsets B = 4,
satisfying the following two conditions:

rC(i) p,y€B, b,ceFs, bf+cyed, = bf+cyeB;

rC@i) p,ye 4.\B, b,ceFsg, bf+cyed. = b+ cye A \B.

(3) Let (W,S) be a Coxeter system, and (V,4,II) the root system of
(W,S) over R associated with the geometric representation. Then (V,4,1T)
satisfies RR(v)’ and gR(vi)’. The condition gR(v)’ is easily checked by re-
forming the proof of Proposition 2.1 in [3]. Since I7 is linearly independent,
we can define a mapping ht : 4, — R, by setting ht(a) := ) _ a, for each
o€ Ay, where a,’s are non-negative real numbers such that o= )" _ ¢ a0.
Then the mapping ht satisfies the required property in gR(vi)'.

DEerINITION 2.7. For each n e N,, we denote by s = (S(p))peNn a sequence
consisting of elements s(p) € S for peN,, and denote by SN the set of
such sequences. We also denote by (s(1),s(2),...,s(n) a sequence s € SN with
n< . For each se SN and meN,, we define a sequence s|,, € SN by
setting s|,(p) := s(p) for each p e N,,, and call the sequence s|, the initial m-
section of 5. Let {s,},.n be a family of finite sequences of elements of S such
that s, is the initial m,-section of s,,; with m, < m,;; for each p e N. Then
we see that there exists a unique infinite sequence s,, of elements of S such that
s, is the initial m,-section of s,, for each p e N, and denote by lim,_ s, the
infinite sequence s,,. For each s € S™ and s’ € SN with n < 0 and n’ e N,,
we define a sequence ss' = (ss'(p),en, , € SN by setting

/ { s(p) for p <n,
s (p) =4
s'(p—n) for n+1<p.

The product ss’ satisfies the associative law: (ss')s” = s(s's”) for se SN,
s’ e SN, 5" e SN with n,n’ < oo. Therefore, the product sy ---s, s, is de-
fined naturally for each family {si,...,s,_1,s,} of sequences of elements of S
such that s; for i e N,_; are finite sequences. For each finite sequence s € S™
and peN,, we define s* € SN» by setting
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»
N 0 ;
s :=%---§ for p< 0, §% := lim s”’.
p—0

For each se S™ with n < oo, we define an element [s] € W by setting

For each s e SN with ne N,, we define a mapping ¢, : N — 4™ by setting

by(p) == [s], 1] (org( )

for each p e N,, where [s,] := 1. For each s e SN, we define a mapping &~
from SN to the power set of 4’ by setting

D7 (s) := () @([s],).

peN

We call an element s € SN an infinite reduced word of (W, S) if /([s|,]) = p for
all p e N, and denote by % the subset of SN of all infinite reduced words of
(W, S).

LemMmA 2.8.  For a pair (s,s") of elements of #'*, we write s ~s' if for
each (p,q) € N* there exists (po,qo) € Zsp X L=, such that

(s, ) L) =po— oo () W) = 90 — -
Then ~ is an equivalence relation on W '*.

Proor. The reflexive law and the symmetric law are obvious. To prove
the transitive law, suppose that s ~s’, s’ ~s” for some s,s',s" € #'*. For
each p e N, choose py > p and p; > py satisfying /([s|[,]_l[s’\pﬂ]) = po — p and
([s'1,)"'1s",]) = p1 — po. Then we have

pr—p =10, = ¢(@s"LDI < 4(sl,) " [s),.])
< (s, 18,)) + 2871, [s71,])
=(po—p)+ (p1— po) = p1 — P

Thus we get /([s\p]fl[s’ﬂp]]) = p1 — p. Similarly, we see that for each ge N
there exists ¢; € Z>, such that /([s”\q]fl[s|ql]) =g —q. Therefore we get
s~ s". O

DErFINITION 2.9. We denote by W* the quotient set of # ™ relative to the
equivalence relation ~, and by [s] the coset containing se # ™.

PrOPOSITION 2.10. Let s and s’ be elements of SN.
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(1) We have se W™ if and only if ¢,(p) >0 for all peN.

(2) If se W™, then ®@*(s) = {¢,(p)| p € N} and all the elements ¢ (p) of
@ (s) are distinct from each other.

(3) If se W™, then & (s) e B”.

(4)  Suppose that s,s' € W*. Then s ~s' if and only if ®*(s) = D*(s').

Proor. (1) We see that se % if and only if /([s|,_]s(p)) > /([s|,,]) for
all pe N. Hence the assertion follows from the fact that z(e,) > 0 if and only
if /(zs) > /(z) for ze W and s€ S.

(2) This follows from Theorem 2.2.

(3) We see that @*(s) is an infinite set by (2). For each p < ¢, we have
@([s],]) = ®([sl,]). Thus we get ®@*(s) e B” by Lemma 2.5(6) and Theorem
2.6.

(4) By Lemma 2.3(4), we see that the condition s ~ s is equivalent to the
condition that for each (p,q) e N? there exists (po,qo) € 7, x L, such that
@([sl,) = @([s'],,])) and @([s'|,]) = @([s|,,]). Thus s ~ 5" if and only if @ (s) =
D (s). O

DEerFiNiTION 2.11. Thanks to Proposition 2.10(3)(4), we have an injective
mapping

OF W* — B”, [s] — @*([s]) :== D™ (s).

We define a left action of W on W®.

DEeFINITION 2.12. For each xe W and se SN, we set

D (x,5) = {f e A7 |3po € N;¥p = po, (x[sl,)) ' (B) < 0}.

Lemma 2.13. (1) If se W™, then @ (1,s) = @™ (s).

(2) If xe W and se€ W', then there exists an element s' € W'* such that
@*(s') = @*(x,s). More precisely, a required s' can be constructed by ap-
plying the following procedure Steps 1-3.

Step 1. Choose a non-negative integer py such that

D(x"HND*(s) = @([s],,]). (2.1)

Step 2. In the case where X[s|,] =1, set s'(p) := s(po+ p) for each peN.
In the case where X[s|,] # 1, choose a reduced expression xl[s|,] = s'(1)---s'(l)
with Iy € N, and set s'(ly+p) := $(po + p) for each p e N.

Step 3. Set s' = (s'(p)) ) en-

(3) If xe W and se€ W™, then

D (x,5) = {@(x)\(~=4)} L {x&* (s)\4},

where A :=x®*(s)NA4". In particular, if x®*(s) = A’ then
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D (x,5) = D(x) I xP”(s).

(4)  Suppose that s,s' € W and x,ye W.
(i) If @*(s) = ®%(s'), then ®*(x,s) = D*(x,s').
(i) If @*(p,s) = @ (s'), then ®*(xy,s) = d“(x,s').

Proor. (1) Suppose that fe ®*(1,s). Since [s|m]71(ﬂ) < 0 for some
po €N, we have ff e cﬁ“‘([s\m]) c &*(s). Thus we get ®*(1,s) c d“(s). On
the other hand, for each p < ¢, we have

51,7 (4,(p) = —s(q) - s(p + 1)(0ty()) <O,

and hence ¢,(p) € @*(1,s) for each pe N. Thus we get ®*(s) c d*(1,s) by
Proposition 2.10(2).

(2) Let s’ be an element of SN constructed as in (Step 1)—(Step 3). By
the construction, we have x[s|,| = [s'|,] for some unique Iy € Zso. Since
s(po+p) = s'(ly+p) for each pe N, we have

X[S‘pu+p] = [s,‘/oer]? (22)
x¢s(p0 + ]7) = ¢s’(10 +[J)- (23)

By the condition (2.1) and the equality (2.3), we have ¢, (I +p) > 0 for each
p € N since @y(po + p) ¢ ©([s],,]). In addition, by Theorem 2.2 we have ¢ (p) > 0
for each 1 < p </ly. Thus we get s’ € #** by Proposition 2.10(1). Moreover,
by (1) and the equality (2.2), we get &*(x,s) = ®“(s').

(3) Since —4 = ®(x) N (—xD (s)), we have

P()\(~4) = {B e 4| f e D(x), —x ' (B) € 41\D (s)}.

On the other hand, since x®* (s)\4 = x®*(s) N A,

X@F(\A = {f e d|f¢D(x),x" () e D7 (s)}.

Therefore, by (1) we get @ (x,s) = {®(x)\(=A)} II {xD* (s)\4}.

(4)(1) This is straightforward from (3).

(4)(ii) By the argument in the proof of (2), there exist an element § € #*
and (o, l) € (Z=o)” satisfying ysl,..,) = [8),.,] for all peN. Then we have
D (5) = d“(y,s) = d“(s'). Hence, by (4)(i) we have &*(x,5) = = (x,s’).
Moreover, since xy[s|, ,,] = x[§,,,] for all p € N, we have ®* (xy,s) = & (x,§).
Thus we get @*(xy,s) = @ (x,§) = *(x,s'). O

we have

DErFINITION 2.14.  Thanks to Proposition 2.10(4) and Lemma 2.13(1)(2)(4),
we have a left action of W on W such that x.[s] = [s'] if xe W and s,s" € #'*
satisfy @ (x,s) = @~ (s').
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ProPOSITION 2.15. If xe W and s e W™, then
&% (x.[s)) = {D(x)\(—A)} 1T {x&* ([s))\ A},
where A := x®*([s|)N 4. In particular, if x®*([s|) = A°Y then
O”(x.[s]) = &(x) L xD([s]).

Proor. This follows from Lemma 2.13(3). O

3. Notation for the untwisted affine cases

In this section, we prepare some notation for the untwisted affine cases
referring to the book [6]. Let A = [ay]; ;.; be a generalized Cartan matrix of
the affine type XY with 1= {0,1,...,r}, where X =A4,B,C,D,E,F,G. We
set I={1,...,r}. Then we may assume that [ai]; ;i is the Cartan matrix
of the finite type X,. Let (,I1,IIV) be a minimal realization of A over Q,
that is, a triplet consisting of a (r+ 2)-dimensional vector space ) over Q
and linearly independent subsets /7 = {«;|i€ I} = b and [TV = {0y |iel} = }
satisfying <{a;,o;» = a; for each i, j eI, where h* is the dual vector space of
h and {,->:hxbh" — Q is the canonical pairing. Let g be the affine Kac-
Moody Lie algebra over Q associated with (b, I7,171V), 4 = h*\{0} the root
system of g, 4" (resp. 4™) the set of all real (resp. imaginary) roots, and
W =<s;|ieI) = GL(h*) the Weyl group of g, where s; =s,, is the reflection
associated with o;. Let 4, (resp. 4_) be the set of all positive (resp. negative)
roots relative to I1, A’ (resp. 4™) the set of all positive (resp. negative) real
roots, Af:” (resp. 4™) the set of all positive (resp. negative) imaginary roots,
and ht: 4, — N the height function on 4,. Set

I = {o]i e}, b= spang, 1, W= (s;|iel), A := W(II).

Note that A is a root system in h* of the finite type X, with IT a root basis and
W the Weyl group. Let A4, (resp. 4_) be the set of all positive (resp. negative)
roots relative to II. Denote by 6 the highest root of 4 and set J := o + 0.
Then

A = {m5+g|meZ,eer}, A™ = {mé|me Z\{0}},
A=A, W {nd+e|neN,eed}, A" ={nd|neN}.

Let (d;);c; be relatively prime positive integers such that [dja;); ;q 1s a
symmetric matrix, and 4y a non-zero element of h* such that h* =h" ® QAo
and <o, o) = J;p, where b := spang /1. Define a non-degenerate symmetric
bilinear form (-|-) : h* x h* — Q by setting
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(o4]A) :=di{o’, Ay (ieL,Aeh”), (Aoldo) := 0.
In particular, («]o;) = dia;. Note that (d|0) =0 and the following direct sum
decomposition is an orthogonal decomposition:
h* =b* @ (QI + Q).

For each 1 ebh*, we denote by 1 the image of A by the orthogonal projection
onto I)*. Each fe A can be uniquely written as md + f with me Z and
BeAI{0}.

For each o€ 4™, we denote by s, the reflection with respect to «. For
each 2eb”, we define an element 1, € GL(H") called a translation by setting

(1) = g+ (ul0)2 = {(ul2) + 3 (212)(ulo) o
for each peb*. In particular, #;(u) = u— (u|4)d for each pebh”.

Lemma 3.1 ([6]). Set a; := o !“’ for each i €1, and set Q¥ := (—DlelZ(x, and

T:={1;,]/e0Q"). ThenTisa normal subgroup of W such that W = W = T.
Each element x € W can be uniquely written as x = Xt, with X € W and

txe€T. The mapping -: W — W, x+ X, is a group homomorphism, which

satisfies that x(1) = ¥(4) and 5, = s; for each xe W, iebh”, and ae 4™.

4. Preliminary results for classical root systems

In this section, we give preliminary results for classical root systems. We
use the notation introduced in Section 3. For each subset J =1, we set

IIy = {0 ] jeJ}, b} := spang 11y,
Wy={si|jedyc W,  dy= W) < 4.

Note that Ay is a root system in BJ with Ty a root basis and Wj the Weyl
group if J # 5. Let Ay, (resp. Ay ) be the set of all positive (resp. negative)
roots relative to /7. For each K = J, we denote by W)X the minimal coset
representatives of the set WJ/WK of all right cosets. If J= =1 we denote it
simply by WX, Note that each element w e Wj can be uniquely written as
Kyx with wK e WK and wg e W, where wX is a unique element of the
smallest length in the right coset wWg. Moreover, we have

WEK = {we Wy|w(x) >0 for all jeK},
and WXWE =Wk if LcKcJ. In addition, we set

w

AX Ak, A% = ¥4

In the case where J =1, we remove J from the symbols above.
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Lemma 4.1. (1) The following equality holds:
Aojﬁr = {g = Zjd mjo; € th(mj € Zxo) |m; >0 for some je J\K}

(2) We have A.Il(i + A}(i c A.Il(i and A‘I](i +dg = A.Il(i

(3) For each ve W, we have vA¥, = AX,.

(4) Let Ky and K, be subsets of J, and let wy and wy be elements of Wy.
Then the following two conditions are equivalent:

(1) wleJ c WQAJ+, (i) Ki oKy, wiewm WKI.

Proor. (1) This is straightforward from the definition.

(2) This follows immediately from (1).

(3) Let & be an element of A}‘+, and write e =}y mjo; with m; € Zg
for all jeJ and m; >0 for some j. € J\K. Since u(ij) €+ D ek Loy for
each jeJ\K, we have v(e) = ZJEJ\K mio; + 3 4ok mkock ed with m}eZ,
which implies that v(e) € AJ+ since m; > 0. Thus vAJ+ c AK for each
ve Wk, and hence UAK _AK

(4) Suppose that Kl o Kz and w; = wyv with v e WKI Then, by (3) w

have w1A sz cwzd Conversely, suppose that WAK‘ CAKZ w1th
W= wzlwl Then we have leAK‘ < A% by (3), and hence wK'( ;) > 0 for
all jeJ\K; since HJ\K c A Moreover wXi(ay) >0 for all k e K, since

wKie W Thus w¥i(a) >0 for all jeJ, and hence w¥ =1 and w=

WK, € WKI. Therefore AK‘ = WAK1 c A}(j, which implies that K; o Kj. O

DerNITION 4.2. Let J be a non-empty subset of I

(1) A subset P < A is called a closed set if it satisfies the condition that
if e,neP, e+nedthen e+neP (cf. [2, §1.7). We call a subset
Pc AOJ a coclosed set in A°J if Z’OJ\P is a closed set, and call a subset
Pc sz a biclosed set in sz if both P and Z'OJ\P are closed sets.

(2) We call a subset P = Ay a parabolic set in Ay if P is a closed set such
that PU(—P) = Ay (cf. [2]).

(3) A subset P < A is called a symmerric set if P=—P (cf. [2)).

(4) We call a subset P < A4 a pointed set if PN (—P) = (.

PropPOSITION 4.3 ([2]). The following three conditions are equivalent:
(i) P is a parabolic set in Ay;
(ii) P is a closed subset of AOJ such that P o onJJr for some w e WJ
(iii) P =w(dy, 11 Ax_) for some K = J and we Wj.

PROPOSITION 4.4 ([2]). If P is a pointed closed subset of Ay, then there
exists an element w € WJ such that wP < AOJ,.
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PropPoSITION 4.5. Let P be a subset of A, Then there exist a unique
symmetric subset Py = P and a unique pointed subset P, = P such that P =
P, 11 P,.  Moreover, if P is closed then both P; and P, are closed sets satisfying

P, i P cP, (4.1)

PrOOF. Suppose that there exist a symmetric subset P, = P and a pointed
subset P, = P such that P = P, 11 ;. Then we have

P,={¢eP|—¢ce P}, (4.2)
P,={ecP|—cecd\P}. (4.3)

This proves the uniqueness of the decomposition. On the other hand, it is easy
to see that the above subsets give the desired decomposition of P.

In addition, we suppose that P is closed. Let ¢ and # be elements of
P, such that e+ 7y € A. Then we have ¢+ ne P and —¢,—n e P. Thus we get
—(e+mn) e P, and hence ¢+ e P,. Therefore P is closed.

We next prove (4.1). Suppose that ¢+ # € P, for some ¢ € P, and # € P,.
Then ¢ = (¢ +#)+ (—#) € P, since P is closed and —# € P;. This is a con-
tradiction. Hence, (4.1) is valid.

Suppose that ¢+#n e P for some ¢,n€ P,. Then, since —¢—ne P, we
have —e =5+ (—e —#) € P, by (4.1). This contradicts P, (—P,) = &. Thus
we get ¢ +1 € P, for each ¢,77 € P, satisfying e +-5 € A. Therefore P, is closed.

O

PrROPOSITION 4.6. The following four conditions are equivalent:
P is a pointed biclosed set in Ay,

i)
) P is a pointed coclosed set in AJ
)
)

(i
(ii
G
(

i) P is a subset of AOJ such that sz\P is a parabolic set in ZiJ,'

P =ud¥ for some unique K = J and unique ue WX.

1v

ProoF. (i) = (ii) It is Clear.
(i) = (iii) It is clear that P < 45. By Proposition 4.5, we have

Ay = P, 1L P11 (4,\P), 11 (4)\P),, (4.4)

where P; (resp. (Z’OJ\P)S) is the symmetric part of P (resp. Ay\P) and P, (resp.
(45\P),) is the pointed part of P (resp. Ay\P). Then we have

—P, = (45\P), (4.5)

Indeed, if ¢ € P, then we have —¢e€ Ay\P and —(—¢) € P by (4.2), and hence
—& € (45\P), by (4.3). Thus —P, = (45\P),. Similarly we have —(4;\P), =
P,
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By (4.5), we have —(4;\P) = P, 11 (ZfJ\P)S. Moreover, we have P, = &
since P is pointed. Thus we get Ay = —(4;\P)U (45\P) by (4.4), and hence
Ay\P is a parabolic set in Aj.

(iii) = (iv) By Proposition 4.3, there exist a subset K < J and an element
we Wy such that ZiJ\P = W(AOJ+ I AOK,). Then P = WAO}(_ since P < AOJ, and
hence P = WKAO}ﬂ by Lemma 4.1(3). The uniqueness follows from Lemma
4.1(4).

(iv) = (i) It is clear that uAQ}E is pointed. By Lemma 4.1(2), we have
ud® 1+ ud® < ud¥ | and hence ud¥ is closed. Moreover, by Lemma 4.1(2)

we have ud¥, + ud¥ cud¥ and ud¥ i udg cud¥,. In addition, udy is
closed. Thus A;\ud¥ is closed, since Ay\udX =ud¥ 11udg. O

5. The construction of biconvex sets

In this section, we give several methods of constructing biconvex sets for
the root system of an arbitrary untwisted affine Lie algebra.

DEFINITION 5.1. For each ee 4 and P Ao, we define subsets (&), (P) <
A4’ by setting

ey :={mé+e|lmelso}NAY, (P):= HaeP<6>'

LemMmA 5.2. (1) Let P be a subset of A, and x an element of W. Then
() Py={ped.|fecP) (i) WPycxPs (i) x(P)=(EP).
(2) For subsets P, P’ < A, the following three conditions are equivalent:
() PeP; () <PY=<Py (i) (PP,

Proor. (1) The (i) is straightforward from the definition. To prove
(ii), suppose that f e (P). Then e P by (i), hence x(ff) = X(f) € XP. Thus
(i) is valid. We prove (iii). Write x = ;X with 4e Q¥. Then we have
x(mo+¢) = (m— (Xe|1))0 + X¢ for each meZs, and ¢ P. Thus we get
x(mo +¢) € {xey for all m > (X¢|A), and hence x{e) = <Xe). Thus (iii) is
valid.

(2) It is obvious. O

DErFINITION 5.3. For each subset J = i, we set
A% = (Ayy, Ay = AF T A™,
A:lei = Ajemdi, AJi = AJﬂAi.
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We define W to be the subgroup of W generated by the set {s, | € 45°}. Let
By be the set of all finite biconvex sets in Ay, and %30 the set of all infinite real
biconvex sets in Ay.. We set Bj := B, 11 B} .

For each non-empty subset J < I, let

o cly o
AJ - HC:I AJ“

be the irreducible decomposition of Ay with C(J) the number of the irreducible
components. For each ¢ =1,...,C(J), we denote by 0, the highest root of 4y,
relative to the root basis /1y, and set

o )
Oy =1, {6 - 05}, =[], .
Y := spanq Iy, Sy = {5, | o € IIy}.

For each se S5, we denote by o, a unique element of Iy such that s=-s,,.
Note that

re __ €W re _ ) * Yok
AJ o Hc:l AJ(’ W'J - H(r:l WJ“’ Jg = C_B Qé

We set Q} = @/eJZ&j and Ty:={1|Ae Q}} Then Wy = Wy x Ty (see
Lemma 3.1). For the sake of notational convenience, we also set 1y := (,
Sg =@, Wg:={1} = W, and b := {0} =b".

PROPOSITION 5.4. For each non-empty subset J = 1, the pair (Wy,Sy) is a
Coxeter system and the triplet (b}, Ay, Iy) is a root system of (Wjy, Sy) over Q
with the properties gR(v) and qR(vi).

Proor. Thanks to Theorem 2.2 it suffices to show that the triplet
(by, 4y, IIy) satisfies the six conditions @R(i)-qR(vi). The conditions oR(i),
oR(iv), and the first equality in @R(iii) are obvious. By definition, we have

Ay=Ay WAy, A=Ay, Ay =L i

Hence, to check the condition R(ii), it suffices to show that each element of
Ay can be written as ZzeHJ x,o0 with x, € Zso for all w e [ly,. We have

mo — 0y, = (0 —0y,) + (m—1)0 (5.1)
for each me Z-,, and
mo —e={mo— (e+o;)} +o (5.2)

for each me Z<; and ¢ Ay, \{0y,}, where jeJ, such that e+ oy edy . If
p e Ay \Ij, satisfies ff € 4.4, then we have either
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p=md+[f with m>1 or f=p =e+n with e,nerJﬁ. (5.3)
In addition, we have
0=(5—0y.)+0y, and mé=m—-1)0+0 (5.4)

for each m € Z>,. By (5.1)—(5.4), we see that each element of Ay \I7j, can be
written as 4y with f,y€ 4;... Hence, by induction on values of elements
of A;,. by the height function ht: 4, — N, we see that each element of 4y .
can be written as a Zyo-linear combination of ITy,. Thus oR(ii) and gR(V)
are satisfied, and R(vi) is clear since ht|, satisfies the required property
in gR(vi). Finally, we check the second equality in @R(iii). Suppose that
o, € Iy, with 5o € Sy,. Since Noy, N Ay, = {a,}, each element of Ay \{oy}
can be written as > . 53, Xss with x; € Zy for all se€ .Sy, and x;, > 0 for some
s1 # so. This fact implies that so(4y.4\{o,}) = 454+ \{o}. Thus the second
equality in oR(iii) is valid, since sy fixes pointwise Ay \ Ay . O

COROLLARY 5.5. Let J be an arbitrary non-empty subset of I

(1) The assignment y— ®y(y) := &(y) N Ay, defines a bijective mapping
from Wy to By.

(2) Suppose that y=s15p---s, with neN and s1,8,...,5, €Sy is a
reduced expression of an element y € Wy\{l}. Then the following equality
holds:

¢J(y) = {aslﬂsl (a‘Yz)v EERERS 'Snfl({x‘\'n)}v

where the elements of ®@y(y) displayed above are distinct from each other. In
particular, #®Dy(y) =l5(y), where (y: Wy — Zso is the length function of
( W:]a SJ)

ProOF. Since @y(y) = {f e 4y, |y () <0}, the part (1) follows from
Theorem 2.6 and Proposition 5.4. The part (2) follows from Theorem 2.2 and
Proposition 5.4. ]

REMARKS. (1) An assertion similar to the part (1) of Corollary 5.5 was
stated by P. Cellini and P. Papi in the proof of Theorem 3.12 in [11] with an
outline of the proof. However, it seems that the detailed proof was not given
in the paper.

(2) By Corollary 5.5(2) and the remark (1) below Theorem 2.2, the action
of Wy on by is faithful, and hence we may regards Wj as a subgroup of
GL(b).

DEFINITION 5.6. For each we Wy and K < J, we set

Aj((w7 +) = <WAO}(i .
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We denote it simply by Ayw,+) if K= &, by A%, +) if J = I, and by A(w,+)
if K= and J=1.

Lemma 5.7. (1) The set A}((w, +) is an infinite set if and only if K < J.
(2) For each ue W) and ve Wy, we have

AY (. +) =AY (u,4), (5.5)
A¥w,—) = @(u) Tudy(1,-), (5.6)
A = AN, —) ud, LAY (u,+). (5.7)

Proor. (1) This follows from the fact that Ac}i is not empty if and only
if K< J. .

(2) By Lemma 4.1(3), we have uvdX, = ud¥, which implies (5.5). By
definition, we have - -

A¥w,—) = (Ay. N uA}(_) II{mo+e|lmeN,ee uA}_}
= (Ao‘Hﬂuzi}E) T ud¥(1,-).

Moreover, since u € W we have udgx_ <= A_, and hence ®(u) = Ay, NudX .

Thus (5.6) is valid. By definition, we have

—>

AY. = <Ay, A = udfy), udg = Cudk).
Thus (5.7) is valid, since Ay = udX 1 udg 1T udX, . ]

Note that Ay, is a convex set and that a subset B — Ay, is a convex set in
Ay, if and only if B is a convex set (see Lemma 2.5(3)).

PrOPOSITION 5.8. Let P be a subset of A°, and J a non-empty subset of I

(1) If P is a closed set, then <P>HAT’ is a convex set.

(2) If P is a pointed closed set, then {P) is a real convex set.

(3) If P is a pointed biclosed set in Ay, then {(P) is a real biconvex set
in AJ+.

ProOF. (1) Suppose that f+ye 4, with f,ye(PyI1A™. Then §,7€
P11 {0} and f+7e A1 {0}. Since P is closed, we have §+7 e PII{0}, and
hence f+ y e {P) HAT by (i) of Lemma 5.2(1). Thus {P) HAT is a convex
set.

(2) It is clear that {(P) = 4’°. Suppose that f+ye 4, with 8,y e (P).
Then 8,5 ePand f+7eA11{0}. Iff+7=0then f=—5ePN(—P). This
contradicts PN (—P) = J. Thus we get f+7 € A. Since P is closed, we have
p+7eP, and hence + y e (P) by (i) of Lemma 5.2(1). Therefore (P} is a
real convex set.
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(3) Since P is a pointed closed set, it follows from (2) that (P) is a real
convex set. Since P is a biclosed set in Ay, the set A5\ P is a closed set. Thus,
by (1), we see that 45, \{(P) is a convex set, since Ay \{P) = {4;\P) HAT.

]

COROLLARY 5.9. Let K be a subset of J, and u an element of WJK. Then
(i) udg, is a convex set; (i) AX@w,+) is a real biconvex set in Ay..

Proor. We have udg, = <uA°K>HAf[”. Since udk is a closed set, (i)
follows from Proposition 5.8(1). It follows from Proposition 4.6 that ud¥, is
a pointed biclosed set in 4y, hence (ii) follows from Proposition 5.8(3). [

LemMmA 5.10. For KcJ and ue WJK, we have A}((u,i) + udg, < A}((u,i).

PrOOF. Suppose that f+ye 4, with ﬂeA}((u,i) and y € udg,. Then
we have ﬁ_eud}(i, 7eudg 11{0}, and f+7e€ A11{0}. Thus we get f+7Je€
ud¥, by Lemma 4.1(2), and hence B+yed¥w+) by (i) of Lemma 5.2(1).

]

ProprosiTION 5.11. Let K be a subset of J, and u an element of WJK.
(1) If C is a convex set in udg,, then C1I A}((u,i) is a convex set in Ay, .
(2) If C is a biconvex set in udx., then C 11 A% (u,+) is a biconvex set in

AJ+.

Proor. (1) It follows from (ii) of Corollary 5.9 that A¥(,+) is a convex
set in Ay.. Thus the assertion follows from Lemma 2.5(4) and Lemma 5.10.
(2) By the equality (5.7), we have

A \N{CTLA¥ @, )} = (udx \C) 1T AX (u, +).

Since both C and udg, \C are convex sets in udg,, we see that both
CU Afu,—) and (udg,\C) Il A¥(u,+) are convex sets in Ay by (1), hence
CHA}((u,—) is a biconvex set in Ay.. To prove of the assertion for CII
AV, +), it suffices to exchange the sign A%(u,—) for A%(u,+). O

6. A parametrization of infinite real biconvex sets

In this section, we give a parametrization of the set B} of all infinite real
biconvex sets in Ay, for each non-empty subset J < L.

LemMmA 6.1. (1) If B is a real coconvex set in Ay, then for each ¢ € Ay we
have either {¢) = B or {e) < A \B.

(2) If B is a real biconvex set in Ay, and a subset P < Ay satisfies
(P> & B, then we have {P) = B and {(—PY>NB= (.
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Proor. (1) Suppose that there exists m € Zxo such that mo + ¢ e A) \B.
Since B = A’ we have 4" = A3, \B. Thus we get (m +1)d + ¢ e A} \B for all
I e N by the convexity of A4y, \B, and hence (&) < A) \B.

(2) By (1), we have {(P) < B. Suppose that {(—P>NB # . Then
there exists an element ¢e P such that md —c¢e B for some m e Zsy.
Moreover, we have 0 4+ ¢ € B since {¢) — B. By the convexity of B, we have
(m+1)0 = (md—e)+ (0+¢) € B. This contradicts B < 4},. Hence we have
{(~P>NB=(. ]

PROPOSITION 6.2. Let B be a real convex set in Ay, and set
B:={B|BeB}, Pg:={cedy|{e)< B}

Then both B and Pg are pointed closed subsets of Z’O_] such that Pp < B.
Moreover, if B is a real biconvex set in Ay, then Pg is a pointed biclosed set
in AJ.

Proor. It is clear that B, P Aj. Suppose that ¢+ € A with e,neB.
By definition, there exist 5,7 € B such that f =¢, 7 =7#. By the convexity of
B, we have f+ye B, and hence ¢+ =f+yeB. Thus B is a closed set.
Suppose that ¢+ e A with &,n € Pg. By definition, we have (&), (3> < B,
and hence there exist m,n € Z( such that (im+ k)0 +ee Band (n+k)d+n€B
for all k€ Z>y. By the convexity of B, we have (m+n+k)o +¢+#ne B for
all k € Z-y. Thus we get (¢ + 7y < B, and hence ¢+ € Pg. Therefore Pg is
a closed set. Suppose that e e BN (—B). Then we have ¢, —¢ € B. Hence we
may assume that ¢ e BN4 J+- Then there exist m e Zsy and n € N such that
md+¢, nd—ee B. By the convexity of B, we have (m+n)d = (md+¢e)+
(nd —¢) € B. This contradicts B = A},. Thus we get BN (—B) = &J. More-
over, by definition, we have Pz = B, and hence P3N (—Pp) = .

Next we prove the second assertion. It suffices to show that Pp is a
coclosed set in Ay. By the definition of Pz and Lemma 6.1(1), we see that

Py={ecdy|<e) = B},  A\Pp={eedy|{e) A \B}.  (6.1)

Suppose that ¢+ 7 € A with &N € AQJ\PB. Then (&), {n) < 4§, \B by (6.1).
By the convexity of 45,\B, we have (¢ +#n) < 4} \B, and hence ¢ + 7 € 45\ P.
Thus Pp is a coclosed set in Aj. O

PropPoOSITION 6.3. Let J be an arbitrary non-empty subset of I

(1) If B is a real convex set in Ay, then there exists an element w e WJ
such that B < Ay(w,-).

(2) The assignment w— Ay(w,—) defines a bijective mapping from Wy to
the set M of all maximal real convex sets in Ay, (relative to the inclusion
relation). Moreover, M coincides with the set of all maximal real biconvex sets
in AJ+.
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Proor. (1) It follows from Proposition 6.2 that B is a pointed closed
subset of 4. Hence, by Proposition 4.4, there exists an element w € W}y such
that B < wdy_. Then the following inclusion relation holds:

B < (B> < (why_> = Ay(w,-).

(2) It follows from Corollary 5.9 that Ay(w,—) is a real biconvex set in
Ay, for each we WJ. In particular, Ay(w,—) is a real convex set in 4y,. To
prove the maximality of Aj(w,—), suppose that Ajy(w,—) = B for some real
convex set B in Ay.. By (1), there exists an element w’ € Wy such that B =
Ayw',—=). Since Ay(w,—) = Ay(w',—), we see that wAhy_ < w’AoJ,, which implies
that w=w’, and hence Ay(w,—) = B. Therefore Aj(w,—) is a maximal real
convex set in Ay,. Moreover, by the argument above, the injectivity of the
mapping is obvious. Finally, we prove the surjectivity of the mapping. Let B
be a maximal real convex set in Ay,. By (1), there exists an element w e W
such that B < Ay(w,—). The maximality of B implies that B = Ay(w,-). [

PrOPOSITION 6.4. Let J be an arbitrary non-empty subset of I, and B a
real biconvex set in Ay.. Then there exist a unique subset K — J and a unique
element u e WJK such that A}((u,—) B and B < A}((u.,—). Moreover, B is an
infinite set if and only if K < J.

Proor. It follows from Proposition 6.2 that P is a pointed biclosed
subset of A;. Hence, by Proposition 4.6, there exist a unique subset K < J and
a unique element u € W) such that Py = udX . By (6.1), we see that (¢) = B
for each ¢e uAO}ﬂ and that {¢) < 4’°\B for each gesz\uzf}ﬂ. Thus we get
A¥@w,~) = B and B <& Afu,—). The second assertion follows from Lemma
5.7(1). O

DEerINITION 6.5. For each non-empty subset J = I, we set
Py = {(K,u, )| KeJ,ue WJK,y € Wk},
Py = {(Ku,y) e 25| K < J},

where Wk is the subgroup of W defined in Definition 5.3. For each
(K,u, y) € 25, we define a subset Vy(K,u,y) = A4), by setting

Vi(K,u,y) i= A%, =) 1T udg ().

Note that Vy(K,u,y) = @5(y) if K=J and that Vy(K,u y) = 45u,-) if K= .
In the case where J =1, we remove J from the symbols above.

LemMA 6.6. (1) For each (K,u,y) € Py, the following equality holds:
VK, u, y) = @(u) T uVy(K,1,y). (6.2)

Moreover, Vy(K,u,y) is an infinite set if and only if (K,u, y) € 2Py.
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(2) Let (Ky,uy, y1) and (Ky,uz, y2) be elements of Py.  Then the following
two conditions are equivalent:

(l) VK, ui, y1) < Vy(Ka,ua, y2); (11) KoKy, ueu Vi/](].
Proor. (1) By the equality (5.6), we have
& (u) TuVy(K, 1,y) = @(u) L udf(1,-) 1L udy(p)
= A5 (u,-) Wudx(y) = Vy(K.u,y).

The second assertion follows from Lemma 5.7(1).
(2) The assertion follows from Lemma 4.1(4) and Lemma 5.2(2), since (i)
is equivalent to the condition: A}(‘ (1, -) < A}(Z(uz,—). O

THEOREM 6.7. The assignment (K,u,y) — Vy(K,u,y) defines a bijective
mapping from Py to By, which maps Py onto By .

Proor. For each (K,u, y) € 2, we see that udg(y) is a biconvex set in
udxy, and hence Vj(K,u, y) is a real biconvex set in Ay, by Proposition 5.11(2).
Thus the mapping Vy is well-defined. Moreover, we have Vy(2) < B} and
Vy(25\?5) < By by the second assertion in Lemma 6.6(1). To prove the
injectivity, suppose that Vy(Ki,u1, y1) = Vy(Kz, w2, 32). By Lemma 6.6(2), we have
K, =K, and u; e up WKI, and hence u; = u, since uy,up € WJK‘. Thus we get
A}(‘ (u,—) = A;(Z(ub—) and @&k, (y1) = Pk, (y2). By Corollary 5.5(1), we get
y1i =y and (Ki,u1, y1) = (Ka,u2, y2). Finally, we prove the surjectivity.
Suppose that Be By I BY. Then B < A},. By Proposition 6.4, there exist a
subset K = J and an element u € WJK such that A}((u,—) c Band Bc A}((m—).
Then BNudg, is a finite biconvex set in udk,, since BNudy, = BNudg,.
By Corollary 5.5(1), there exists an element ye Wy such that BNudy =
u®k(y). Moreover, we have BNAXw,+)= & by Lemma 6.1(2). Thus we
get (K,u, y) € Py and B = AX@w,—) T udk(y) = Vy(K,u,y) by (5.7). ]

7. Main theorem

In this section, we describe in detail relationships between the set #;° of
all infinite reduced words of the Coxeter system (Wj,Sy) and the set B} of
all infinite real biconvex sets in Ay, for each non-empty subset J = I Let
Wy be the quotient set of %7 obtained by applying Definition 2.6 to the
Coxeter system (Wj,Sy), and @F : Wy° — BJ the injective mapping obtained
by applying Definition 2.7(1) to the root system (b}, 4y,1I;) of the Coxeter
system (Wj, Sy).

ProposITION 7.1 ([1]). Let K be a proper subset of J, and . an element of
the lattice QJv (see Definition 5.3) such that (o;|) >0 for all jeJ\K and
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(o0x|A) =0 for all ke K. Choose a reduced expression t) = s(1)s(2)---s(n) with
neN and s(1),s2),...,8n) € Sy, and define an infinite sequence s € S}V by setting
s := (s(1),8(2),...,8n)” (see Definition 2.7). Then the infinite sequence s is an
element of Wy such that @ ([s]) = A5, -).

RemaARrRk. In [1], J. Beck showed the previous proposition in the case
where J =1 and K = (7.

DEFINITION 7.2.  For each proper subset K of J, we denote by zX the
unique element of Wj° such that @5 (zK) = 45(1,-), and define a mapping
2Ly : Py — Wj° by setting for each (K,u,y) € 2y:

23(K,u,y)) = uy.zy.
In the case where J =1, we remove J from the symbols above.

LemMa 7.3. For each K< J and y e WKTJ, we have

yA‘lI((L_)iA‘l]((]’_)’ (71)
yA.l]((lv_)\A < A}((17_)7 (72)
{Ps(WN(=)} N4, = Dy(y) N 4K, (7.3)

where A := yAX(1,-) N4y

PROOF. Since je Wx we have 74X = 4% by Lemma 4.1(3). Hence
(7.1) follows from (iii) of Lemma 5.2(1). Moreover, by (ii) of Lemma 5.2(1),
we have

yA¥ (1) = A5 (7.4)
By the definition of A4, we have
yAF (1, \A = pAY .-y N4
Thus (7.2) follows from (7.4). Moreover, by (7.4) we have
—A = (=pAJ (L) NAF < AF ),
and hence (—4)N4y, = . Thus we get
{ Py (=)} N A, = Py () N A, O

THEOREM 7.4. Let J be an arbitrary non-empty subset of I
(1) For each x e Wy and K < J, we have the following equality:

DY (x.2¥) = Vy(K, 5, 2,) 73)
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with a unique element z, € Wx such that
Dy (%)) Nak = Pk (zy). (7.6)

(2) Both @F and yjy are bijective and the following diagram is commutative:

By
N

D
WJw — Py
X3

(3) We have the following orbit decomposition.:
wy = 1] wazy.
KsJ

Proor. (1) Put y = (x¥)"'x. Then ye WxTy. By Proposition 2.15, we
have

®F (v.2§) = {@s(Y)\(~4)} L {y4} 1, -)\1}, (7.7)

where A4 = yAY(1,-)NA4}). Since #4 < oo we have ®F (y.z¥) = 4¥(1,-) by
(7.1). Thus, by Lemma 6.1(2) we get

A5(1.-) = DF (y.zy), (7.8)
Af 1,0 N@f (r.z)) = . (7.9)
By (7.2), (7.3), (7.6), and (7.7), we see that
DY (p.z3) N A, = ®5(y) N A, = Dk(zy). (7.10)
By (7.8)—(7.10) with (5.7), we have
OF (r.zy) = {@F (v.zf) N 41,2} L{DF (y.2f) N4,
= AX01, ) 1T &k (z,) = V5K, 1,2,).
Hence, by Proposition 2.15 and (6.2), we get
O (x.z)) = @7 (x¥.y.2)) = (") T X DT (y.2K) = Vy(K, 55, 2)).
(2) By (1), we have
DF (uy.Zy) = Vs(K,u, y) (7.11)

for each (K,u,y) € 25. Hence ®f o yy =Vy, which implies the surjectivity of
@f since Vy is bijective (see Theorem 6.7). Moreover, since @f is injective,
@7 is bijective, so is yj.
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(3) Since yy is surjective, we have Wy = | Ji_; Wy.z¥. Hence, it suf-
fices to show that this union is disjoint. By (7.5), (7.11), and the injectivity of
@7, we have the following equality:

x.z¥ = x%z,.z% (7.12)

for each x € Wj. Suppose that x.zK = y.z} for some L < J and y e W;. By
(7.12), we have x¥z,.zXK = yplz, z} with a unique z, e Wi. Thus we get
K =L since yj is injective. O

RemMARK. The existence and uniqueness of the element z, € Wk satisfying
(7.6) are guaranteed by Lemma 2.5(2) and Corollary 5.5(1).

Lemma 7.5. If B is a biconvex set in Ay, then we have either B = AY, or
A T’ < B.

Proor. We claim that if BNA" # ¢ then 4”" = B. Indeed, if md € B
for some m € N, then 6 € B by the convexity of 4;,\B, and hence md € B for
all me N by the convexity of B, i.e,, 4™ < B. Thus we have either B < 4 i
or 47" < B. N

COROLLARY 7.6. Let B be a subset of Ay,. Then B is a biconvex set in
Ay if and only if one of the following (a)—(d) holds:

(a) B=®y(z); (b) B=4y\Dy(z); (¢) B=Df(2); (d) B=45.\Df (2),
where z is an element of Wy and Z is an element of Wy°.

Proor. The “if part” is obvious. Let us prove the “only if part”. By
Lemma 7.5, we have either B = A}, or 4™ < B. If B< A}, and #B < o,
then B = @;(z) with z € Wy by Theorem 2.6. If B < AY, and #B = o, then
B = &f(z) with Z € Wj° by Theorem 7.4(2). If B =A™, then 4, \B is a real
biconvex set in 4y.. Hence we have either 4y, \B = ®@;(z) or 4;.\B = &5 (2),
ie., B= A4y, \®5(z) or B= A5, \®y (z), where ze€ Wy and ze Wy". O

REMARK. By the corollary, we see that a subset B < A4y, is a biconvex set
in Ay, if and only if B satisfies the conditions ¢C(i)’ and oC(ii)’ with replacing
A, by Ay, (see the remarks below Theorem 2.6).

ExaMPLE. Suppose that 4 is of the type Agl) and J=1={1,2}. Then

{@,{1},{2}} is the set of all proper subsets of I and the following equalities
hold:

W@ = W = <S1,S2>, W{l} = {1,S2,S1S2}, W{z} = {1,S1,32S1}-

Thus the following set
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P = {(Q,Z/l, 1) |ue <S17S2>}H {({1}71/!7)/) |u€ {17S27S1S2}7y€ <S570£11S1>}
o {({2}7147 y) |u€ {175175'2.5'1},}/ € <S57a2,.§'2>}

parametrizes the set B of all infinite real biconvex set by the following
mapping:
VK uy) =A% ) I udg(y).

In particular, the following three sets are fundamental infinite real biconvex
sets:

Vig,1,1)=491,-) = {mo — oy,mo — oy — oip,md — o | m € N},
vy =4t o) = {mo — oy — oy, md — oy |m e N},
Va1 =4%a,-) = {mo — oy,mo — oy —ap|meN}.

[1] Set Az =03+ a. Then Ay is an element of QV = Zoy @ Zo, such
that (O(]M@) = (OCzM@) =1>0, and hence ¢(l).g) = {5 — o — 0,0 — 0,20 —
ap — 0,0 — o}, Since 2, = sos2s5152 is a reduced expression, the infinite se-
quence sg; := (80,52,51,52) is an infinite reduced word such that ®*([sg]) =
V(@,1,1). For example, set u:=s1s; and s’Q = (81,%2)8z. Then sé is an
infinite reduced word satisfying u.[sz] = [s;] and

D7 ([sz]) = V(D,u, 1) = {md + o + 0, md + 01,n6 — oy | m € Zo,n € N}.

(2] Set A1y := o1 +20p. Then Ay is an element of O such that (er|Agy) =0
and (o2|4(1y) = 3 > 0, and hence &(1;,,) = {mé — oy — a,mé — 0 [m =1,2,3}.
Since Ly, = S05152808152 is a reduced expression, the infinite sequence s} :=
(S0, 51,2)” is an infinite reduced word such that @*([s;;;]) = V({1},1,1). The
group Wiy is isomorphic to the infinite dihedral group and satisfies the
equality:

Wiy = {(55-u51)"s (S5-81) S50 » (8155-) " (8185-,)"s1 |1 € Z0}.

For example, set u:=s; and y := (s5_,,51)", then uy(soslsz)zn = sz(soszslsz)z",
and hence the infinite sequence s"m = (sz)(so,S2,s1,S2)2”s{1} is an infinite
reduced word satisfying uy.[s1;] = [s{;,] and

O” ([siy]) =V({1huy) ={mé—m —ay |1 <m < 2n} AWM (-,

where A, —) = {moé —oy,no+ay|meN,neZsy}. For one more example,
set u' =515 and y' = (s155_4,)", then u’y’(soslsz)znfl = 515251 (soszslsz)znfl, and
hence the infinite sequence sg’l} = (sl,sz,sl)(so,sz,sl,sz)znfls{l} is an infinite
reduced word satisfying u'y".[s;1}] = [s{},] and
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O” ([sf))]) = V{13, y") = {mé+ a3 |0 <m < 2n = 1} I AN (0, ),

where A{l}(u’, y={mo+ oy + oy, mé+ oy |me ZLxy}.
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