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Abstract. The Dirichlet problem and the construction of superharmonic functions with

point harmonic singularities are two of the basic problems in potential theory. In this

article, we study these problems in the context of discrete potential theory, which leads

to the consideration of Green’s formulas and flux on a Cartier tree.

1. Introduction

In the study of potential theory, classical as well as axiomatic, two of the

basic problems are the Dirichlet problem and the construction of potentials

with point harmonic support. In this note, we consider these two problems in

the context of a Cartier tree (which is an infinite connected graph, locally finite

and without loops).

Then we present a version of the Green’s formula in a tree, which

corresponds to the equalityð ð
W

ð fDg� gDf Þds ¼
ð
qW

f
qg

qn
� g

qf

qn

� �
dS;

where W is a bounded open set in R2 with smooth boundary qW of class C1,

f and g are C2-functions on a neighbourhood of W, and q
qn

denotes the outer

normal derivative. Such formulas are known in the context of discrete analysis

on graphs (see H. Urakawa [6]). To conclude, we derive some consequences

from this formula in a tree (as in the classical potential theory), including the

rôle of flux.

2. Preliminaries

By a Cartier tree T [3, p. 208], we mean a countably infinite set of vertices,

some of which are pairwise joined by edges (T is an infinite graph); if two

vertices x and y are joined by an edge, x and y are said to be neighbours,

denoted by x@ y; a vertex can have only a finite number of neighbours (T
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is locally finite); if u and v are any two vertices, either they are neighbours

or there exist a finite number of vertices x1; . . . ; xn�1 such that in the path

fu ¼ x0; x1; . . . ; xn�1; xn ¼ vg, xi @ xiþ1 for 0a ia n� 1 (T is connected );

finally, if x and y are neighbours, there is no path fx ¼ s0; s1; . . . ; sn�1; sn ¼ yg,
nb 2, with distinct vertices such that si @ siþ1 for 1a ia n� 1 (T has no

loops); a vertex x0 is said to be terminal if it has only one neighbour in T .

Given a set E of vertices in T , x A E is said to be an interior point of E if

x is not a terminal vertex and if all the neighbours of x in T are also in E;

we denote by E̊, the collection of all the interior points of E. Let us put

qE ¼ EnE̊. On a tree T , a transition probability is assumed to be given: that

is, with any two vertices x and y is associated a real number pðx; yÞb 0

such that (i) pðx; yÞ > 0 if and only if x and y are neighbours; and (ii)P
x@y pðx; yÞ ¼ 1 for any x in T .

Finally, if u is any real-valued function on T , the Laplacian Du of u at a

vertex x is defined as DuðxÞ ¼
P
x@xi

pðx; xiÞuðxiÞ � uðxÞ; since pðx; xiÞ ¼ 0 if x

and xi are not neighbours, we simply write DuðxÞ ¼
P
y AT

pðx; yÞ½uðyÞ � uðxÞ�.

The function u is said to be harmonic (respectively superharmonic) at a vertex

x, if x is not terminal and if DuðxÞ ¼ 0 (respectively DuðxÞa 0).

Theorem 1. Let e be a vertex in T. Then there exists a function geðxÞ on
T such that DgeðxÞ ¼ �deðxÞ, the Dirac measure de.

Proof. For any x in T , we shall denote by jxj ¼ dðe; xÞ the number of

edges in the unique geodesic path from e to x.

Define a function u with values uðeÞ ¼ 1 and for x satisfying jxj ¼ 1, take

uðxÞ ¼ 0 if there is some nonterminal vertex y@ x with jyj ¼ 2, otherwise take

uðxÞ ¼ 1. Let y be a vertex with jyj ¼ 2. Let x@ y for which jxj ¼ 1. Now

x can have neighbours other than y and e; denote them by y1; . . . ; yi. In the

set A ¼ fy; y1; . . . ; yig, some may be terminal vertices; denote this subset of

terminal vertices by A1. Let A2 ¼ AnA1. If A2 0 f, define u ¼ 0 on A1 and

u ¼ a constant a on A2, such that DuðxÞ ¼ 0. For this to happen, we have to

choose a so that pðx; eÞ þ a
P
z AA2

pðx; zÞ ¼ 0. If A2 ¼ f, take u ¼ 1 on A1 ¼ A,

so that uðxÞ ¼ 1 and DuðxÞ ¼ 0.

Suppose z is a vertex such that jzj ¼ 2 and z is di¤erent from y; y1; . . . ; yi.

Then the above method can be repeated to define uðzÞ, so that if x 0 @ z and

jx 0j ¼ 1, then Duðx 0Þ ¼ 0. Thus proceeding, we extend the definition of uðxÞ to
all jxj ¼ 2 in such a way that DuðxÞ ¼ 0 for all jxj ¼ 1.

Continuing this process, we define a function u on T such that DuðxÞ ¼ 0

for all jxjb 1; moreover, if uðxÞ ¼ 1 for all jxj ¼ 1, there can not be any

vertex y such that jyjb 3, which is a contradiction. Hence uðxÞ ¼ 0 for some
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jxj ¼ 1, which means that uðeÞ < 0. Define geðxÞ ¼ uðxÞ
�DuðeÞ . Then geðxÞ is

superharmonic on T , DgeðxÞ ¼ 0 if x0 e and DgeðeÞ ¼ �1. Hence the theorem

is proved. r

Remark. geðxÞ may or may not be lower bounded on T .

Theorem 2 (Dirichlet problem). Let B be a finite set of connected vertices

in T. Suppose f ðxÞ is a function defined on qB. Then there exists a unique

function hðxÞ on B such that hðxÞ is harmonic on B̊ and hðxÞ ¼ f ðxÞ for x A qB.

Proof. Since we can consider the functions f þ and f � separately and solve

the Dirichlet problem, we shall assume that f b 0, without any loss of generality.

Choose two constants a and b such that 0a ba f ðxÞa a for x A qB. Let

sðxÞ ¼ a if x A B̊

f ðxÞ if x A qB;

�
and

tðxÞ ¼ b if x A B̊

f ðxÞ if x A qB:

�

Then, sðxÞ and tðxÞ are defined on B, sðxÞ is superharmonic on B̊, tðxÞ is

subharmonic on B̊, and tðxÞa sðxÞ for x A B.

Let F be the family of all subharmonic functions u on B̊ such that

uðxÞa sðxÞ on B. Note that F is an increasingly filtered family. Let

hðxÞ ¼ sup
u AF

uðxÞ. Since tðxÞa hðxÞa sðxÞ on qB, hðxÞ ¼ f ðxÞ on qB. We

shall prove that hðxÞ is harmonic on B̊.

Let z A B̊. Let fzig be the complete set of neighbours of z. Let u A F.

Then uðzÞa
P
z@zi

pðz; ziÞuðziÞa
P
z@zi

pðz; ziÞsðziÞa sðzÞ. Define

u1ðxÞ ¼
uðxÞ if x0 z and x A BP
z@zi

pðz; ziÞuðziÞ if x ¼ z:

8<
:

Then u1 is subharmonic on B̊, uðxÞa u1ðxÞa sðxÞ on B and u1ðxÞ is harmonic

at x ¼ z. Hence u1 A F. This modification is possible with respect to each

u A F, for a fixed z. Let us put for each u A F, and for a fixed z, the

modified function u1 as indicated above in a subclass F 0. Clearly F 0 HF.

Hence sup
F

ub sup
F 0

u1. But at z, we have uðzÞ ¼ u1ðzÞ. Consequently hðzÞ ¼
sup
u AF

uðzÞ ¼ sup
u1 AF

0
u1ðzÞ. Since F is increasingly filtered, h is harmonic at the

vertex z.

Since z is an arbitrary vertex with the sole restriction that z A B̊, hðxÞ is

harmonic on B̊; also, since hðxÞ ¼ f ðxÞ for x A qB, h is the desired Dirichlet

solution on B.
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Uniqueness of the solution: To prove the uniqueness of h, it is enough to show

that if HðxÞ is defined on B, harmonic on B̊, and HðxÞ ¼ 0 if x A qB, then

H1 0. This follows immediately from the maximum principle for harmonic

functions, since B is connected. r

Remarks.

1. The above proof is based on potential theoretic methods. An alternate

method of solving the Dirichlet problem for a special type of finite subset

of T is given in Berenstein et al. [1, p. 461], using the hitting distribution

of the stochastic process generated by the transition probability structure

of T .

2. The above proof of the Dirichlet solution goes through in unbounded

sets also. For example:

Let E be a (not necessarily finite) set of vertices. Let f be a bounded

function on qE. Then there exists a bounded function h on E such

that h is harmonic on E̊ and h ¼ f on qE. However, to prove the

uniqueness of h we need E to be finite, E̊ is connected and a vertex on

qE has a neighbour in E̊.

Now we shall define the notions of the outer and the inner normal

derivatives in T . Let E be a set of vertices in T ; Let E ? ¼ E6 (neighbours of

vertices in E); that is, x A E ? if and only if either x A E or x is a neighbour of a

vertex in E; let qE ¼ EnE̊.
Let x A qE. Let fx1; . . . ; xig be the neighbours of x in E and fy1; . . . ; yjg

be the neighbours of x outside E.

Definition 1. Suppose u is defined on E ?. Then the outer normal de-

rivative of u at a point x A qE is

qu

qnþ
ðxÞ ¼

X
ya@x;ya BE

pðx; yaÞ½uðyaÞ � uðxÞ�:

Definition 2. Suppose v is defined on E. Then the inner normal de-

rivative of v at a point x A qE is

qv

qn�
ðxÞ ¼

X
xb@x;xb AE

pðx; xbÞ½vðxbÞ � vðxÞ�:

Note. If u is defined on E ? and if x A qE, then

qu

qnþ
ðxÞ þ qu

qn�
ðxÞ ¼

X
z@x

pðx; zÞ½uðzÞ � uðxÞ�

¼
X
z@x

pðx; zÞuðzÞ � uðxÞ ¼ DuðxÞ:
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3. Green’s formulas

We shall prove now a version of the Green’s first formula for a tree,

motivated by a result of Du‰n [4, Lemma 1] in the discrete situation of

lattice points in R3, of the form ða; b; cÞ where a, b, and c take on the values

0;H1;H2; . . . ; for a real-valued function u on the lattice points, Du‰n intro-

duces the Laplace operator D by defining

Duða; b; cÞ ¼ uðaþ 1; b; cÞ þ uða� 1; b; cÞ þ uða; bþ 1; cÞ þ uða; b� 1; cÞ

þ uða; b; cþ 1Þ þ uða; b; c� 1Þ � 6uða; b; cÞ:

Such a formula in the context of discrete analysis on graphs is also known, see

Urakawa [6]. Here is a version of this formula in the framework of a tree.

Fix a vertex e in T . For a vertex x, let fe; x1; . . . ; xn; xg be a path joining

e and x. Write fðxÞ ¼ pðe;x1Þpðx1;x2Þ...pðxn;xÞ
pðx;xnÞpðxn;xn�1Þ...pðx1; eÞ ; take fðeÞ ¼ 1. Since T has no

loops, it is easy to see that fðxÞ is independent of the path chosen to join e and

x. If x and y are neighbours, then fðyÞ ¼ fðxÞ pðx;yÞ
pðy;xÞ ; that is, fðxÞpðx; yÞ ¼

fðyÞpðy; xÞ. Clearly this equality holds even when x and y are not neigh-

bours. Thus, for any pair of vertices x and y in T , if we define cðx; yÞ ¼
fðxÞpðx; yÞ, then cðx; yÞ ¼ cðy; xÞb 0, and cðx; yÞ ¼ 0 if and only if x and y

are not neighbours. Let now E be a (not necessarily finite) set of vertices

in T . Let u and v be two real-valued functions defined on E, such thatP
x;y AE

cðx; yÞuðxÞ½vðyÞ � vðxÞ� is absolutely convergent. Then write

ðu; vÞE ¼
X
x;y AE

cðx; yÞuðxÞ½vðyÞ � vðxÞ�:

In this sum, corresponding to a pair of points x and y in E, we have

two terms cðx; yÞuðxÞ½vðyÞ � vðxÞ� and cðy; xÞuðyÞ½vðxÞ � vðyÞ�. Their sum

is �cðx; yÞ½uðyÞ � uðxÞ�½vðyÞ � vðxÞ�, since cðx; yÞ ¼ cðy; xÞ. Consequently,

rearranging the terms in ðu; vÞE we have

ðu; vÞE ¼ � 1

2

X
x;y AE

cðx; yÞ½uðyÞ � uðxÞ�½vðyÞ � vðxÞ�:

This implies that whenever ðu; vÞE and ðv; uÞE are defined, they are equal.

Remark that in the case of E being a finite set, for any real functions u and v

on E, ðu; vÞE is always well-defined in the above form.

Theorem 3. Let E be a finite set of vertices. Suppose u and v are two

real-valued functions defined on E. ThenX
x A E̊

fðxÞuðxÞDvðxÞ � ðu; vÞE ¼ �
X
s A qE

fðsÞuðsÞ qv

qn�
ðsÞ:
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Proof. Extend u and v arbitrarily outside E. Then,X
x AE

fðxÞuðxÞDvðxÞ ¼
X
x AE

fðxÞuðxÞ
X
y AT

pðx; yÞ½vðyÞ � vðxÞ�

¼
X
x AE

X
y AT

cðx; yÞuðxÞ½vðyÞ � vðxÞ�

¼
X
x AE

X
y AE ?

cðx; yÞuðxÞ½vðyÞ � vðxÞ�

¼
X
x AE

X
y AE

cðx; yÞuðxÞ½vðyÞ � vðxÞ�

þ
X
x AE

fðxÞuðxÞ
X

y AE ?nE
pðx; yÞ½vðyÞ � vðxÞ�

(using the fact that cðx; yÞ > 0 only if x@ y in the third equality). The

first double sum on the right side is ðu; vÞE ; the second sum reduces toP
x A qE

fðxÞuðxÞ
P

y AE ?nE
pðx; yÞ½vðyÞ � vðxÞ�, since pðx; yÞ ¼ 0 if y A E ?nE and

x A E̊. Hence,X
x AE

fðxÞuðxÞDvðxÞ ¼ ðu; vÞE þ
X
x A qE

fðxÞuðxÞ qv

qnþ
ðxÞ

¼ ðu; vÞE þ
X
x A qE

fðxÞuðxÞ DvðxÞ � qv

qn�
ðxÞ

� �
:

A cancellation of the term
P

x A qE
fðxÞuðxÞDvðxÞ on both sides leads to the

theorem. r

Remark.

1. The above proof shows that Theorem 3 is valid on an infinite set E also,

provided ðu; vÞE is defined and qE has only a finite number of vertices.

2. Suppose s A qE is a terminal vertex. Then qv
qn� ðsÞ ¼ 0 or DvðsÞ,

depending on whether the neighbour of s is outside or inside E.

Hence, in the above Theorem 3, if E ¼ fx : jxjamg we have the

following formX
jxj<m

fðxÞuðxÞDvðxÞ � ðu; vÞE ¼ �
X
jsj¼m

fðsÞuðsÞ qv

qn�
ðsÞ:

A variant of this formula with outer normal derivatives isX
jxjam

fðxÞuðxÞDvðxÞ � ðu; vÞE ¼
X
jsj¼m

fðsÞuðsÞ qv

qnþ
ðsÞ:

As a consequence of Theorem 3 and its proof we have
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Theorem 4. Let E be a finite set of vertices on T.

i) Suppose u and v are defined on E. ThenX
x A E̊

fðxÞ½uðxÞDvðxÞ � vðxÞDuðxÞ�

¼ �
X
s A qE

fðsÞ uðsÞ qv

qn�
ðsÞ � vðsÞ qu

qn�
ðsÞ

� �
:

ii) Suppose u and v are defined on E ?. Then

X
x AE

fðxÞ½uðxÞDvðxÞ � vðxÞDuðxÞ� ¼
X
s A qE

fðsÞ uðsÞ qv

qnþ
ðsÞ � vðsÞ qu

qnþ
ðsÞ

� �
:

4. Some consequences

In this section, we derive some consequences of Theorem 4.

Consequence 1. Let E be a finite set of vertices.

i) Suppose u is defined on E. Then
P
E̊

fðxÞDuðxÞ ¼ �
P
qE

fðsÞ qu
qn� ðsÞ.

ii) Suppose u is defined on E ?. Then
P
E

fðxÞDuðxÞ ¼
P
qE

fðsÞ qu
qnþ ðsÞ.

Proof. In Theorem 4, take v1 1. Note that Dv1 0, and for s A qE,
qv
qnþ ðsÞ ¼ qv

qn� ðsÞ ¼ 0. r

Remark. Apparently the above results depend on the choice of e which is

used to define fðxÞ. But in reality the choice of e does not play any role here.

For, if f 0ðxÞ denotes the value corresponding to another choice e 0, we have

f 0ðxÞ ¼ f 0ðeÞfðxÞ.
We say that a function u defined on E is superharmonic (respectively

harmonic) on E if DuðxÞa 0 (respectively DuðxÞ ¼ 0) for every x A E̊.

Consequence 2. Let uðxÞ be a superharmonic function on a finite set E.

Then u is harmonic on E if and only if
P
qE

fðsÞ qu
qn� ðsÞ ¼ 0:

Proof. If u is harmonic on E, Du1 0 on E̊ and hence by Theorem 4,P
qE

fðsÞ qu
qn� ðsÞ ¼ 0. Conversely, if this condition is satisfied, then

P
E̊

fðxÞDuðxÞ

¼ 0. Since Dua 0 also on E̊, Du1 0 on E̊. r

Consequence 3. Let f ðxÞ be a function on T such that f ¼ 0 outside a

finite set. Then
P
T

fðxÞDf ðxÞ ¼ 0.
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Proof. Let f ¼ 0 outside a finite set A. Then A? ¼ A6 (neighbours of

vertices in A) is also finite. Consequently, if we measure distances from a fixed

vertex e, then dðe; xÞ ¼ jxjam for some integer m and for every x A A?. Let

E ¼ fx : jxjamþ 1g. Since
P
E

fðxÞDf ðxÞ ¼
P
qE

fðxÞ qf

qnþ ðxÞ, and
qf

qnþ ðxÞ ¼ 0 for

each x on qE,
P
E

fðxÞDf ðxÞ ¼ 0 which implies that
P
T

fðxÞDf ðxÞ ¼ 0. r

Consequence 4 (Local representation of harmonic functions).

1. Let E be a finite set of vertices in T and let u be defined on E, harmonic

on E̊. Let a A E̊ and gaðxÞ be a superharmonic function on T

(Theorem 1) such that DgaðxÞ ¼ �daðxÞ. In Theorem 4(i), take

vðxÞ ¼ gaðxÞ. Then we have

fðaÞuðaÞ ¼
X
qE

fðsÞ u
qga

qn�
� ga

qu

qn�

� �
:

This result can be interpreted as showing that a harmonic function can

be expressed locally by means of a single layer and a double layer

potentials on a boundary. (See Brelot [2, p. 179] and Kellogg [5] for

the corresponding basic result in the Euclidean case Rn, nb 2.)

2. In the above representation, instead of choosing E arbitrarily, let

E ¼ fx : jxjamg where the distance jxj ¼ dðx; eÞ is measured from a

fixed vertex e. Let a be some vertex in E̊. Let hðxÞ be the harmonic

function on E̊, such that hðxÞ ¼ gaðxÞ when x A qE. (For the existence

of this Dirichlet solution h, see Theorem 2.)

Write GE
a ðxÞ ¼ gaðxÞ � hðxÞ. Then GE

a ðxÞ is well defined if

jxjam; GE
a ðxÞ ¼ 0 on qE; DGE

a ðxÞ ¼ �daðxÞ; and the greatest har-

monic minorant of GE
a ðxÞ in E̊ is 0. We can term GE

a ðxÞ as the

Green’s function in the ball jxjam with pole at the vertex a.

Now replace the function ga in the above representation (1) by the

Green’s function GE
a ðxÞ to conclude

fðaÞuðaÞ ¼
X
x A qE

fðxÞuðxÞ qG
E
a

qn�
ðxÞ:

This equality expresses the mean-value property for harmonic functions.

As an illustration, consider the case of a homogeneous tree T of order

qþ 1 (qb 2 integer); that is, each vertex T has exactly ðqþ 1Þ neigh-

bours and pðx; yÞ ¼ 1
qþ1 if x@ y. Let e be a fixed vertex and measure

distances from e. Notice in this case fðxÞ ¼ 1 for every vertex x. Let

E ¼ fx : jxjamg. In this case, geðxÞ ¼ q1�jxj

q�1 (Cartier [3, P. 264]) so that

GE
e ðxÞ ¼

q1�jxj�q1�m

q�1 and
qGE

e

qn� ðxÞ ¼ q�mþ1

qþ1 when jxj ¼ m. Hence,
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uðeÞ ¼ 1

ðqþ 1Þqm�1

X
jxj¼m

uðxÞ:

Note that on jxj ¼ m, there are ðqþ 1Þqm�1 vertices.

Conversely, let E be a finite set such that E̊ is connected and a vertex in qE

has a neighbour in E̊. For any x A E̊, let GE
x ðyÞ denote the Green’s function

on E. Then, given a finite-valued function f on qE, uðxÞ ¼
P
z A qE

fðzÞ
fðxÞ f ðzÞ

qGE
x

qn� ðzÞ

represents the unique function on E, which is harmonic on E̊ and takes the

value f on the boundary qE.

For, under the conditions given on E, there exists a unique harmonic

function uðxÞ on E̊ such that u ¼ f on qE. Then, as shown above for the case

of a ball, we can prove fðxÞuðxÞ ¼
P
z A qE

fðzÞuðzÞ qG
E
x

qn� ðzÞ. Since uðzÞ ¼ f ðzÞ on

qE, we can write

uðxÞ ¼
X
z A qE

fðzÞ
fðxÞ f ðzÞ

qGE
x

qn�
ðzÞ:

Consequence 5 (flux at infinity). Let Em ¼ fx : jxjamg. Suppose u is

a superharmonic function defined on T . Then from Consequence 1 (i), if we

take E ¼ Em, we obtain

�
X
qEm

fðsÞ qu

qn�
ðsÞ ¼

X
E̊m

fðxÞDuðxÞ:

This can be written as

�
X
jsj¼m

fðsÞ qu

qn�
ðsÞ ¼

X
jxj<m

fðxÞDuðxÞ;

when we realize that qu
qn� ðyÞ ¼ DuðyÞ for any terminal vertex y in Em. Let us

define

Fluxðu;EmÞ ¼ �
X
jsj¼m

fðsÞ qu

qn�
ðsÞ ¼

X
jxj<m

fðxÞDuðxÞ:

Since DuðxÞa 0, Fluxðu;EmÞ is a decreasing sequence in m. Define the flux at

infinity of u as

Fluxy u ¼ lim
m!y

Fluxðu;EmÞ:

Proposition 5. If u is a superharmonic function such that Du ¼ 0 outside a

finite set, then Fluxy u is finite.
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Proof. Suppose uðxÞ is harmonic for jxj > p. For a large integer m > p,

note by Theorem 4 (i),

�
X
jsj¼p

fðsÞ qu

qnþ
ðsÞ þ

X
jsj¼m

fðsÞ qu

qn�
ðsÞ

2
4

3
5¼

X
p<jxj<m

fðxÞDuðxÞ ¼ 0:

Hence Fluxðu;EmÞ ¼ a constant a, for all large m > p. This implies

Fluxy u ¼ a. r

Proposition 6. Let u be a superharmonic function defined outside a finite

set in T. Then there exist two superharmonic functions u1 and u2 on T, u2 being

harmonic outside a finite set, such that u ¼ u1 � u2 outside a finite set.

Proof. Suppose uðxÞ is defined on T and superharmonic for jxjbm.

Modify uðxÞ by taking the Dirichlet solution on E̊m with boundary values

uðxÞ on Em. Denote thus extended function also by u. Let vðxÞ ¼ uðxÞ�P
jsj¼m

DuðsÞgsðxÞ, gsðxÞ as in Theorem 1. Then, at each nonterminal vertex

x, DvðxÞ ¼ DuðxÞa 0 if jxj > m and DvðxÞ ¼ 0 if jxjam. Hence vðxÞ is

superharmonic on T . We complete the proof of the proposition by remarking

uðxÞ ¼ vðxÞ þ
P
jsj¼m

DuðsÞþgsðxÞ
" #

�
P
jsj¼m

DuðsÞ�gsðxÞ
" #

, when jxj > m. r

We can now use the above two propositions to define without ambiguity

the flux at infinity of a superharmonic function defined outside a finite set

in T .

Suppose u is a superharmonic function defined outside a finite set. Then

there exist (Proposition 6) two superharmonic functions u1 and u2 defined on T ,

with u2 having finite harmonic support, such that u ¼ u1 � u2 outside a finite

set. Note Fluxy u2 is finite (Proposition 5). Define Fluxy u ¼ Fluxy u1 �
Fluxy u2.

Note that there is no ambiguity in this definition; for, if u ¼ v1 � v2 is

another such decomposition, then
P
qEm

fðsÞ qðu1þv2Þ
qn� ðsÞ ¼

P
qEm

fðsÞ qðv1þu2Þ
qn� ðsÞ; if m is

large. Hence

Fluxy u1 þ Fluxy v2 ¼ Fluxyðu1 þ v2Þ

¼ Fluxyðu2 þ v1Þ

¼ Fluxy u2 þ Fluxy v1:

Since Fluxy u2 and Fluxy v2 are finite, we have

Fluxy u1 � Fluxy u2 ¼ Fluxy v1 � Fluxy v2:
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Lemma 7. Let ui be a sequence of superharmonic functions on T, tending

to u at each vertex in T. Then u is superharmonic on T, such that Fluxy u ¼
lim
i

Fluxy ui.

Proof. Since uðxÞ ¼ lim uiðxÞ, at each vertex x we have DuiðxÞ ¼P
y

pðx; yÞ½uiðyÞ � uiðxÞ� !
P
y

pðx; yÞ½uðyÞ � uðxÞ� ¼ DuðxÞ. Since Dui a 0, at

each nonterminal vertex, we have Dua 0, that is u is superharmonic on T .

Now Fluxðui;EmÞ ¼ �
P
jsj¼m

fðsÞ qui
qn� ðsÞ ¼

P
jxj<m

fðxÞDuiðxÞ ¼ aim a 0. Hence

Fluxy u ¼ lim
m

Fluxðu;EmÞ

¼ lim
m

lim
i

aim

¼ lim
i

lim
m

aim

¼ lim
i

Fluxy ui: r

Theorem 8. Let u be a superharmonic function defined outside a finite set

in T. Suppose u has a harmonic minorant outside a finite set. Then Fluxy u is

finite.

Proof. We can write (Proposition 6) u ¼ v� t outside a finite set, where

v and t are superharmonic on T , t having finite harmonic support. By the

assumption, v has a harmonic minorant h in jxjbN, for some N. It is enough

to prove that Fluxy v is finite, thanks to Proposition 5.

Let hm be the Dirichlet solution in E ¼ fx : Na jxjamg with boundary

values v. Define

vm ¼ hm on E̊

v on TnE̊:

�

Then vm is superharmonic on T , such that Fluxy vm ¼ Fluxy v. Note vm is

decreasing, vm b h when jxjbN and vm ¼ v when jxjaN. Hence s ¼ lim
m

vm
is a superharmonic function on T and Fluxy s ¼ lim

m
Fluxy vm (Lemma 7).

Hence Fluxy v ¼ Fluxy s < y; since s is harmonic on jxj > N (Proposition 5).

r

We thank the referee and the editor for their valuable comments.
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