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ABSTRACT. The Dirichlet problem and the construction of superharmonic functions with
point harmonic singularities are two of the basic problems in potential theory. In this
article, we study these problems in the context of discrete potential theory, which leads
to the consideration of Green’s formulas and flux on a Cartier tree.

1. Introduction

In the study of potential theory, classical as well as axiomatic, two of the
basic problems are the Dirichlet problem and the construction of potentials
with point harmonic support. In this note, we consider these two problems in
the context of a Cartier tree (which is an infinite connected graph, locally finite
and without loops).

Then we present a version of the Green’s formula in a tree, which
corresponds to the equality

[ r-saie= (152

where Q is a bounded open set in R?> with smooth boundary Q2 of class C',
/ and ¢ are C>-functions on a neighbourhood of @, and % denotes the outer
normal derivative. Such formulas are known in the context of discrete analysis
on graphs (see H. Urakawa [6]). To conclude, we derive some consequences
from this formula in a tree (as in the classical potential theory), including the
role of flux.

2. Preliminaries

By a Cartier tree 7 [3, p. 208], we mean a countably infinite set of vertices,
some of which are pairwise joined by edges (7T is an infinite graph); if two
vertices x and y are joined by an edge, x and y are said to be neighbours,
denoted by x ~ y; a vertex can have only a finite number of neighbours (7'
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is locally finite); if u and v are any two vertices, either they are neighbours
or there exist a finite number of vertices xi,...,x,_; such that in the path
{u=x0,x1,.. ., Xu_1, %, =0}, Xi~Xx;p; for 0<i<mn—1 (T is connected);
finally, if x and y are neighbours, there is no path {x = so,s1,... 81,8 = ¥},
n > 2, with distinct vertices such that s; ~ s for 1 <i<n—1 (T has no
loops); a vertex xo is said to be terminal if it has only one neighbour in 7.

Given a set E of vertices in 7, x € E is said to be an interior point of E if
x is not a terminal vertex and if all the neighbours of x in 7 are also in E;
we denote by E, the collection of all the interior points of E. Let us put
OE = E\E". On a tree T, a transition probability is assumed to be given: that
is, with any two vertices x and y is associated a real number p(x,y) >0
such that (i) p(x,y) >0 if and only if x and y are neighbours; and (ii)
>~y P(x,y) =1 for any x in T.

Finally, if u is any real-valued function on T, the Laplacian Au of u at a
vertex x is defined as Au(x) = > p(x,x;)u(x;) — u(x); since p(x,x;) =0 if x

X~ X

and x; are not neighbours, we simply write du(x) = > p(x, y)[u(y) — u(x)].
yeT

The function u is said to be harmonic (respectively superharmonic) at a vertex
x, if x is not terminal and if Au(x) =0 (respectively Au(x) < 0).

THEOREM 1. Let e be a vertex in T. Then there exists a function g,(x) on
T such that Ag.(x) = —0.(x), the Dirac measure O,.

Proor. For any x in 7, we shall denote by |x| = d(e,x) the number of
edges in the unique geodesic path from e to x.

Define a function u with values u(e) = 1 and for x satisfying |x| = 1, take
u(x) = 0 if there is some nonterminal vertex y ~ x with |y| = 2, otherwise take
u(x) = 1. Let y be a vertex with |y| =2. Let x ~ y for which |[x| = 1. Now
x can have neighbours other than y and e; denote them by yi,...,y;. In the
set A={y,»1,...,»:i}, some may be terminal vertices; denote this subset of
terminal vertices by 4;. Let Ay = A\A,. If Ay # ¢, define u =0 on A4; and
u = a constant o on A, such that du(x) = 0. For this to happen, we have to
choose o so that p(x,e) +o > p(x,z) =0. If Ay =¢, take u=1 on 4| = 4,

zeAy
so that u(x) =1 and Adu(x) =0.

Suppose z is a vertex such that |z| =2 and z is different from y, yi,..., y:.
Then the above method can be repeated to define u(z), so that if x’ ~z and
|x'| =1, then Au(x’) = 0. Thus proceeding, we extend the definition of u(x) to
all |x] =2 in such a way that Au(x) =0 for all |x| =1.

Continuing this process, we define a function u on T such that du(x) =0
for all |x| > 1; moreover, if u(x) =1 for all |x| =1, there can not be any
vertex y such that |y| > 3, which is a contradiction. Hence u(x) = 0 for some
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|x| = 1, which means that u(e) < 0. Define g.(x) = 7';(;?@.
superharmonic on T, 4g.(x) = 0 if x # e and 4g.(e) = —1. Hence the theorem

is proved. [

Then g.(x) is

REMARK. g¢.(x) may or may not be lower bounded on T.

THEOREM 2 (Dirichlet problem). Let B be a finite set of connected vertices
in T. Suppose f(x) is a function defined on 0B. Then there exists a unique
Sunction h(x) on B such that h(x) is harmonic on B and h(x) = f(x) for x € 0B.

ProoF. Since we can consider the functions f and f~ separately and solve
the Dirichlet problem, we shall assume that f > 0, without any loss of generality.
Choose two constants o and £ such that 0 < f < f(x) < a for x € 0B. Let

{oc if xeB
s(x) =9, . .
f(x) if xedB,

and

l(x):{ﬂ %f xeB
f(x) if xedB.

Then, s(x) and #(x) are defined on B, s(x) is superharmonic on B, t(x) is
subharmonic on B, and #(x) < s(x) for x € B.

Let & be the family of all subharmonic functions u on B such that
u(x) <s(x) on B. Note that & is an increasingly filtered family. Let
h(x) = sup u(x). Since #(x) < h(x) <s(x) on 0B, h(x)= f(x) on 0B. We
shall pgg\';je that /(x) is harmonic on B.

Let ze B. Let {z} be the complete set of neighbours of z. Let ue 7.
Then u(z) < > p(z,z))u(z;) < > p(z,z)s(z;) < s(z). Define

z~z; Z~z;

u

—~

X) if x#zand xeB

ur(x) = plzyziu(z;) if x=z.

]

14
)

Then u; is subharmonic on B, u(x) < uj(x) < s(x) on B and u(x) is harmonic
at x =z. Hence u; € #. This modification is possible with respect to each
ue#, for a fixed z. Let us put for each ue #, and for a fixed z, the
modified function u; as indicated above in a subclass #'. Clearly ' < #.
Hence sup u > sup u;. But at z, we have u(z) = u;(z). Consequently A(z) =

7 7! . .. . . .
sup u(z) = sup u;(z). Since Z is increasingly filtered, / is harmonic at the
ueF w eF’
vertex z.

Since z is an arbitrary vertex with the sole restriction that z € B, h(x) is
harmonic on B; also, since h(x) = f(x) for x € 0B, h is the desired Dirichlet
solution on B.
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Uniqueness of the solution: To prove the uniqueness of /, it is enough to show
that if H(x) is defined on B, harmonic on B, and H(x) =0 if x € dB, then
H =0. This follows immediately from the maximum principle for harmonic
functions, since B is connected. []

REMARKS.

1. The above proof is based on potential theoretic methods. An alternate
method of solving the Dirichlet problem for a special type of finite subset
of T is given in Berenstein et al. [1, p. 461], using the hitting distribution
of the stochastic process generated by the transition probability structure
of T.

2. The above proof of the Dirichlet solution goes through in unbounded

sets also. For example:
Let E be a (not necessarily finite) set of vertices. Let f be a bounded
function on J0E. Then there exists a bounded function /4 on E such
that 4 is harmonic on E and h = f on OE. However, to prove the
uniqueness of & we need E to be finite, E is connected and a vertex on
OF has a neighbour in E.

Now we shall define the notions of the outer and the inner normal
derivatives in 7. Let E be a set of vertices in 7 Let E* = E | ) (neighbours of
vertices in E); that is, x € E* if and only if either x € E or x is a neighbour of a
vertex in E; let JE = E\E.

Let xe 0E. Let {xi,...,x;} be the neighbours of x in E and {y,...,y;}
be the neighbours of x outside E.

DerFINITION 1. Suppose u is defined on E*. Then the outer normal de-
rivative of u at a point x € OF is

a%(x): > s ya)u(ys) — u(x)).

Yu~X, Yy ¢ E

DEerFINITION 2. Suppose v is defined on E. Then the inner normal de-
rivative of v at a point x € 0E is

6(%()() - Z p(x,xp)[v(xp) — v(x)].

Xp~X,xp€E
NotE. If u is defined on E* and if x € 0F, then

)+ () = 3 ple2fuz) — ()]

Z~X

= Zp(x, 2)u(z) — u(x) = Au(x).

Z~X
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3. Green’s formulas

We shall prove now a version of the Green’s first formula for a tree,
motivated by a result of Duffin [4, Lemma 1] in the discrete situation of
lattice points in R?, of the form (a,b,c) where a, b, and ¢ take on the values
0,F1,F2,...; for a real-valued function u on the lattice points, Duffin intro-
duces the Laplace operator D by defining

Du(a,b,c) =ula+1,b,¢c) +u(a—1,b,¢) +u(a,b+1,c) +ula,b—1,c)
+u(a,b,c+ 1)+ u(a,b,c— 1) — 6u(a,b,c).

Such a formula in the context of discrete analysis on graphs is also known, see
Urakawa [6]. Here is a version of this formula in the framework of a tree.

Fix a vertex e in T. For a vertex x, let {e,x;,...,x,,x} be a path joining
e and x. Write ¢(x) = p?fce;l))p[zi):lx:zz)p L“(”w*z), take ¢(e) = 1. Since T has no
loops, it is easy to see that ¢(x) is independent of the path chosen to join e and
x. If x and y are neighbours, then ¢(y) = qﬁ(x)%; that is, ¢(x)p(x,y) =
#(y)p(y,x). Clearly this equality holds even when x and y are not neigh-
bours. Thus, for any pair of vertices x and y in 7T, if we define ¥(x,y) =
#(x)p(x, y), then Y(x, y) =y (y,x) =0, and ¥(x, y) =0 if and only if x and y
are not neighbours. Let now E be a (not necessarily finite) set of vertices
in T. Let u and v be two real-valued functions defined on E, such that

S y(x, y)u(x)[v(y) — v(x)] is absolutely convergent. Then write
E

X,y€

(w0)g =D ¥(x, y)ux)p(y) - o(x)].
x,yeE
In this sum, corresponding to a pair of points x and y in E, we have
two terms Y(x, y)u(x)[v(y) — v(x)] and ¥(y,x)u(y)[v(x) —v(y)]. Their sum
is =y (x, y)u(y) —u(x)][v(y) —v(x)], since ¥(x, ) =(y,x). Consequently,
rearranging the terms in (u,v), we have

(00) = —5 32 b luy) — ule(y) — o)

x,yeE

This implies that whenever (u,v), and (v,u); are defined, they are equal.
Remark that in the case of E being a finite set, for any real functions u and v
on E, (u,v); is always well-defined in the above form.

THEOREM 3. Let E be a finite set of vertices. Suppose u and v are two
real-valued functions defined on E. Then

D pu(x)Av(x) = (u,0)p ==Y ¢(S)u(S)£l—v,(S)-

xek sedE
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Proor. Extend u and v arbitrarily outside E. Then,

Y dxu(x)Av(x) =Y px)u(x) Y p(x, y)[o(y) = o(x)]

= 30 g Mu)[e(y) - o))
xeEyeT
=303 v nu)[e(y) - o)
xeEyeE*
= 303 0 Pul)[e(r) — v(x))
xeEyeE
+ 36 S ple »le(y) - o(x)]
xXeE yEE*\E

(using the fact that y(x,y) >0 only if x ~y in the third equality). The
first double sum on the right side is (u,v);; the second sum reduces to

EE¢(X>u(X) Z\ p(x, y)[p(y) —v(x)], since p(x,y) =0 if yeE*\E and
X€eo YeE*\E

xekE. Hence,

Z¢(x)u(x)Av (u,v) + Z d(x 011* (x)

xeE xedE

— w0+ Y Hu() [Av(x) !

xedE

A cancellation of the term > ¢(x)u(x)dv(x) on both sides leads to the
theorem. [] xeok

REMARK.

1. The above proof shows that Theorem 3 is valid on an infinite set £ also,
provided (u,v) is defined and 0E has only a finite number of vertices.

2. Suppose s€dE is a terminal vertex. Then Z(s)=0 or Au(s),
depending on whether the neighbour of s is outside or inside FE.
Hence, in the above Theorem 3, if E = {x:|x|] <m} we have the

following form
> p(x)u(x)dv(x) =3 bs)uls) = (s).
|x|<m |s|=m
A variant of this formula with outer normal derivatives is
3 () 40(3) — (0)g = 3 HsJuls) A ().
x| <m |s|=m

As a consequence of Theorem 3 and its proof we have
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THEOREM 4. Let E be a finite set of vertices on T.
1) Suppose u and v are defined on E. Then

> () [u(x)Av(x) — v(x) du(x)

XEE
= 3000 |ul9) 3 5) — 05) 3 0
sedE
i) Suppose u and v are defined on E*. Then
30 A0(3) o)) = 3 0 |ul) 5 0) = ot 3756 |

4. Some consequences
In this section, we derive some consequences of Theorem 4.

CONSEQUENCE 1. Let E be a finite set of vertices.
i) Suppose u is defined on E. Then Y ¢(x)du(x) = — 3 ¢(s) 2L (s).
: OE

E
ii) Suppose u is defined on E*. Then Y ¢(x)Au(x) = ¢(s) 2 (s).
E 0E
Proor. In Theorem 4, take v =1. Note that 4v =0, and for se JE,
B =f(5)=0. O

REMARK. Apparently the above results depend on the choice of e which is
used to define ¢(x). But in reality the choice of e does not play any role here.
For, if ¢'(x) denotes the value corresponding to another choice e’, we have
#(x) = ¢ ().

We say that a function u defined on E is superharmonic (respectively
harmonic) on E if Au(x) <0 (respectively Au(x)=0) for every x ¢ E.

CONSEQUENCE 2. Let u(x) be a superharmonic function on a finite set E.
Then u is harmonic on E if and only if Y ¢(s) -2 (s) = 0.
OE

on

Proor. If u is harmonic on E, Au =0 on E and hence by Theorem 4,
S h(s)2 (s) = 0. Conversely, if this condition is satisfied, then Y ¢(x)4u(x)
JE A

on~
E

=0. Since du <0 also on E, Au=0 on E. O

CONSEQUENCE 3. Let f(x) be a function on T such that f =0 outside a
finite set. Then > ¢(x)Af (x) = 0.
T
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Proor. Let f =0 outside a finite set A. Then A* = 4 ) (neighbours of
vertices in A) is also finite. Consequently, if we measure distances from a fixed
vertex e, then d(e,x) = |x| < m for some integer m and for every x € 4*. Let

. J g
E={x:|x| <m+1}. Since XEjgﬁ(x)Af(x) = Z;gb(x)%(x), and a;z_f+(x) =0 for
o

each x on J0E, Y ¢(x)4f(x) =0 which implies that > @(x)4f(x) =0. O
E T

CONSEQUENCE 4 (Local representation of harmonic functions).

1.

Let E be a finite set of vertices in T and let u be defined on E, harmonic
on E. Let acE and gu(x) be a superharmonic function on T
(Theorem 1) such that Ag,(x) = —d,(x). In Theorem 4(i), take
v(x) = gu(x). Then we have

dlanta) = 5 o6) (gl — g,
0E

This result can be interpreted as showing that a harmonic function can
be expressed locally by means of a single layer and a double layer
potentials on a boundary. (See Brelot [2, p. 179] and Kellogg [5] for
the corresponding basic result in the Euclidean case R", n > 2))

In the above representation, instead of choosing E arbitrarily, let
E = {x:|x| < m} where the distance |x| = d(x,e) is measured from a
fixed vertex e. Let a be some vertex in E. Let A(x) be the harmonic
function on E, such that A(x) = g,(x) when x € dE. (For the existence
of this Dirichlet solution /4, see Theorem 2.)

Write GE(x) = g,(x) —h(x). Then GE(x) is well defined if
|x| <m; GE(x) =0 on 0E; AGE(x) = —J,(x); and the greatest har-
monic minorant of GZ(x) in £ is 0. We can term GZ(x) as the
Green’s function in the ball |x| < m with pole at the vertex a.

Now replace the function g, in the above representation (1) by the
Green’s function GZ(x) to conclude

E
Hapu(a) = 37 F0ulx) 2o (x).

xedE

This equality expresses the mean-value property for harmonic functions.
As an illustration, consider the case of a homogeneous tree 7" of order
g+ 1 (¢ = 2 integer); that is, each vertex T has exactly (¢ + 1) neigh-

bours and p(x, y) = qil if x~ y. Lete be a fixed vertex and measure

distances from e. Notice in this case ¢(x) = 1 for every vertex x. Let
1—|x
E = {x:|x| <m}. Inthiscase, g.(x) = i (Cartier 3, P. 264]) so that

- g-1
1-m 0GE —m+1 4

-
GE(x) = qle’ and (si (x) = L7 when |x| =m. Hence,
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1
ule) = G MZ:;" u(x).

Note that on |x| = m, there are (g + 1)¢™~! vertices.
Conversely, let E be a finite set such that £ is connected and a vertex in 0F
has a neighbour in E. For any x € E, let GE(y) denote the Green’s function

on E. Then, given a finite-valued function f on JF, u(x) = . :ﬁéi; f(z) i(n; (2)
zedE "

represents the unique function on E, which is harmonic on E and takes the
value f on the boundary OF.

For, under the conditions given on E, there exists a unique harmonic
function u(x) on E such that u = f on JE. Then as shown above for the case
of a ball, we can prove ¢(x)u(x) = Z d(2)u(z ) (z) Since u(z) = f(z) on
JE, we can write ek

Z i aG X (7).

'ELE

CoNSEQUENCE 5 (flux at infinity). Let E, = {x:|x| <m}. Suppose u is
a superharmonic function defined on 7. Then from Consequence 1 (i), if we
take E = E,,, we obtain

=Y hs) () =D (x)du(x)
”E'” érn
This can be written as
Y ) = Y ot
|s|=m |x|<m

when we realize that 2% (y) = Au(y) for any terminal vertex y in E,. Let us
define

Flux(u; E,,) Z é(s) =) $(x)du(x
|x|<m

Since du(x) < 0, Flux(u; E,,) is a decreasing sequence in m. Define the flux at
infinity of u as

Flux,, u = lim Flux(u; E,;).
m— o0

PROPOSITION 5.  If u is a superharmonic function such that Au = 0 outside a
finite set, then Flux, u is finite.
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PrROOF. Suppose u(x) is harmonic for |x| > p. For a large integer m > p,
note by Theorem 4 (i),

| H )+ Y ) = S pdu) =0

|s|=p |s|=m p<|x|<m

Hence Flux(u;E,)= a constant o, for all large m > p. This implies
Flux, u=o. [

PROPOSITION 6. Let u be a superharmonic function defined outside a finite
set in T. Then there exist two superharmonic functions uy and uy on T, uy being
harmonic outside a finite set, such that u = u; — uy outside a finite set.

PrOOF. Suppose u(x) is defined on 7 and superharmonic for |x| > m.
Modify u(x) by taking the Dirichlet solution on E, with boundary values
u(x) on E,. Denote thus extended function also by u. Let v(x) =u(x)—
> Au(s)gs(x), gs(x) as in Theorem 1. Then, at each nonterminal vertex

|s|=m
X, Av(x) = du(x) <0 if |x| >m and Adv(x) =0 if |x| <m. Hence v(x) is
superharmonic on 7. We complete the proof of the proposition by remarking

u(x) =|o(x)+ > Au(s)+gs(x)1 - lz Au(s)_gs(x)], when |x| >m. [

|s|=m |s|=m

We can now use the above two propositions to define without ambiguity
the flux at infinity of a superharmonic function defined outside a finite set
in T.

Suppose u is a superharmonic function defined outside a finite set. Then
there exist (Proposition 6) two superharmonic functions u; and u, defined on T,
with u, having finite harmonic support, such that u = u; — u, outside a finite
set. Note Flux, u is finite (Proposition 5). Define Flux, u = Flux,, u; —
Flux., u,.

Note that there is no ambiguity in this definition; for, if u=uv; — v, is
another such decomposition, then ¢(s)%(s) =3 (s)%(s)7 if m is
large. Hence O L

Flux.,, u; + Flux,, v; = Fluxo, (u; + v2)
= Flux (u; + v1)
= Flux,, uy + Flux,, v;.
Since Flux., #, and Flux, v, are finite, we have

Flux., u; — Flux,, u, = Flux,, v; — Flux,, vs.
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LeEMMA 7. Let u; be a sequence of superharmonic functions on T, tending
to u at each vertex in T. Then u is superharmonic on T, such that Flux, u =
lim Flux,, u;.

1

Proor. Since u(x) =lim u;(x), at each vertex x we have Au;(x)=
2P 0)ui(y) = wi(x)] = 22 p(x, p)[u(y) — u(x)] = du(x). Since Au; <0, at
¥ ¥

each nonterminal vertex, we have Au <0, that is u is superharmonic on 7.
Now Flux(u; Ep) = — > #(s) 55(s) = > ¢(x)du;(x) = o < 0. Hence
|s|=m [x|<m

Flux,, u = lim Flux(u; E,,)
m
= lim lim o,
m 1

= lim lim oy,
1 m

=lim Flux, u;. [
1
THEOREM 8. Let u be a superharmonic function defined outside a finite set
in T. Suppose u has a harmonic minorant outside a finite set. Then Flux., u is

finite.

ProOF. We can write (Proposition 6) u = v — ¢ outside a finite set, where
v and ¢ are superharmonic on 7, ¢ having finite harmonic support. By the
assumption, v has a harmonic minorant / in |x| > N, for some N. It is enough
to prove that Flux,, v is finite, thanks to Proposition 5.

Let A, be the Dirichlet solution in E = {x: N < |x| < m} with boundary
values v. Define

. _{hm on £
" v on T\E.

Then v, is superharmonic on 7, such that Flux, v, = Flux,, v. Note v,, is
decreasing, v,, > # when |x| > N and v,, = v when |x| < N. Hence s = lim v,
is a superharmonic function on 7 and Flux,, s = lim Flux., v, (Lemnﬁl 7).
Hence Flux,, v = Flux., s < 0, since s is harmonic on |x| > N (Proposition 5).

O
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