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Abstract. We find a characteristic-free algebraic condition for developability of

uniruled varieties. As an application, we study developable varieties over positive

characteristic fields. In particular, we generalize classification theorem of one pa-

rameter developable ruled varieties to arbitrary characteristic.

1. Introduction

In classical di¤erential geometry, a ruled surface whose tangent planes

are constant on each line is called developable ([7, Section 3.7]). We study

developable varieties in the context of projective (algebraic) geometry.

There are at least two di¤erent definitions of developable varieties in

algebraic geometry:

(A) The varieties with degenerate Gauss maps ([3, p. 142], [9]), and

(B) The ruled varieties whose tangent spaces are constant on each leaf

([2]).

These two definitions are equivalent in characteristic zero, at least for a suitable

choice of the ruling in (B) (Remark 7.1). Recently, developable varieties of

type (A) has been classified in characteristic zero ([1], [8], [9], [10]). When the

characteristic is positive, (B) still implies (A), but (A) does not necessarily imply

(B). In fact, we give an example of a non-ruled surface with the degenerate

Gauss map (Example 7.2).

In this paper, we concentrate on the developable varieties of type (B). In

the following, ‘‘developable’’ means developable of type (B). Our main results

are a developability criterion in any characteristic, and a generalization of

classification theorem of one parameter developable varieties of type (B).

If the ground field K is C then we have an analytic developability criterion

([2, p. 65]) and if char K ¼ 0, an algebraic criterion ([8, Theorem 0.2]). (The

paper [8] does not use the word ‘developable’.) We establish the following

algebraic developability criterion which is valid over any algebraically closed
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field. Below, a ruling is called uniruling if the projection from the incidence

correspondence to the ruled variety is generically finite (Definition 2.1).

Theorem 1.1. Let BHGðk;NÞ be a closed variety of dimension r, IB the

incidence correspondence of B and let X ¼6
E AB EHPN be uniruled by B.

(1) If the uniruling is developable then for any local parameter system

u1; . . . ; ur at x A Bsm and any local basis v0; . . . ; vk : V ! ANþ1, there

exists an open subset V 0HV (x may be outside V 0) such that the rank

of the ðN þ 1Þ � ððk þ 1Þ þ rðk þ 1ÞÞ-matrix satisfies

rank viðsÞ;
qvi

quj
ðsÞ

� �
i; j

a k þ rþ 1 ð*Þ

for any point s A V 0.

(2) Assume that the projection IB ! X is generically étale. Then, the

uniruling is developable if and only if the equality holds in ð*Þ, namely,

rank viðsÞ;
qvi

quj
ðsÞ

� �
i; j

¼ k þ rþ 1 ð**Þ:

Remark 1.2. Using the notation of Theorem 1.1,

(1) If char K ¼ 0 or dim B ¼ 1 then the projection IB ! X is always ge-

nerically étale (Lemma 4.1). In particular, developability is equivalent

to the condition ð**Þ for any local parameter system fuig and any local

basis fvig.
(2) If dim B ¼ 2, the condition ð**Þ implies the generically étaleness, hence

the developability follows (Lemma 5.1), but when char K > 0, we give

examples of developable varieties without ð**Þ (Examples 5.2 and 6.1).

If dim Bb 3, we also construct non-developable unirulings with ð**Þ
(Example 6.2).

By Remark 1.2(1), we get the following classification theorem of one

parameter developable ruled varieties by the analysis of focal locus.

Theorem 1.3. Let BHGðk;NÞ be a 1-dimensional closed subvariety giving

developable uniruling, IB the incidence correspondence of B with the projections

f : IB ! PN and g : IB ! B, and let X ¼ f ðIBÞ. Define the focal subscheme

F H IB to be the locus where rank df < dim IB. Let F H IB be the closure of

Fnfðx;EÞ jE is a singular point of B or a focal leaf g, and F 0 ¼ f ðF Þ the focal

variety. (See Definition 2.5). Then:

(0) For a general element E A B, f ðF V g�1ðEÞÞHF 0 is a linear subspace

of dimension k � 1, and we have a rational map h : BaGðk � 1;NÞ,
E 7! f ðF V g�1ðEÞÞ.

(1) Assume that h is a constant, then F 0 is a linear subspace of dimension
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k � 1. In this case, there exists a curve CHX which is contained in a

linear subspace disjoint from F 0, such that X is the join variety of C

and F 0.

(2) Assume that h is not a constant. Let B 0 be the closure of the image of

h, then F 0 is uniruled by B 0. Let g : F 0aGðk;NÞ be the Gauss map

of F 0, then the following conditions are equivalent:

(a) f jF : F ! F 0 is generically étale.

(b) f jF : F ! F 0 is birational.

(c) h : BaB 0 is generically étale.

(d) h : BaB 0 is birational.

(e) B ¼ gðF 0Þ and the diagram

F ���!gjF
B

f jF

???y g

F 0
� �
� !

commutes.

It is known that if K ¼ C then one parameter developable ruled varieties

are osculating scrolls (use (2)) or join varieties of osculating scrolls and linear

subspaces (use (1)) ([2, p. 77], Corollary 4.2). Our theorem is a generalization

of this fact.

The plan of this paper is as follows. In Section 2 we introduce the notion

of focal loci for families of linear subspaces and recall di¤erential of rational

functions. In Section 3 we prove our developability criterion Theorem 1.1.

In Section 4 we prove the characteristic-free classification theorem of one

parameter developable varieties. In Section 5 we study two parameter ruled

varieties. In Section 6 we consider higher dimensional parameter. In Section

7 we study the fibers of the Gauss maps.

Notation

The base field K is an arbitrary characteristic algebraically closed field

throughout this paper. Varieties are integral algebraic schemes over K .

Points mean closed points. Gðk;NÞ is the Grassmann manifold whose points

are the k-dimensional linear subspaces in PN . When X is a variety, KðXÞ is
the function field of X . For a variety X and a point x A X , TxX is the Zariski

tangent space ðmx=m
2
xÞ
� at x A X . If a local parameter system u1; . . . ; ur A mx

is given then u1
�; . . . ; ur

� A ðmx=m
2
xÞ
� ¼ TxX are the dual basis for u1; . . . ;

ur A ðmx=m
2
xÞ. For a variety X we write the smooth locus of X by Xsm. For

a projective variety X HPN and a point p A Xsm, TpX HPN is the projective
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embedded tangent space of X at p A X . ½v� A PN denotes the point of PN

corresponding to the equivalence class of v A ANþ1n0. Given a linear subspace

V HANþ1, PðVÞHPN means the linear subspace of PN corresponding to V .

2. Preliminaries

Let BHGðk;NÞ be a closed subvariety of dimension r, and IB ¼ fðx;EÞ A
PN � B j x A Eg with the natural projections:

B  ���p1
B� PN ���!p2 PN

U

B  ���g
IB ���!f PN :

We call IB the incidence correspondence of B. Let X :¼ f ðIBÞ ¼
6

E AB EHPN . Then X is a closed variety of dimensiona k þ r.

Definition 2.1. We say that X is uniruled by B, or B determines the

uniruling of X if dim X ¼ k þ r. Then we call B the base and an element

E A B a leaf. We say that the uniruling is developable if TpX ¼ TqX for any

E A B and any points p; q A E VXsm.

We can identify this Grassmannian with the Grassmannian of linear sub-

spaces of dimension k þ 1 of ANþ1. We construct another incidence corre-

spondence bIBIB HB� ANþ1 and the projections as follows:

B  ���q1
B� ANþ1 ���!q2 ANþ1

U

B  ���g 0 bIBIB ���!f 0 ANþ1:

Let X̂X HANþ1 be the a‰ne cone corresponding to X . Then X̂X ¼ f 0ð bIBIBÞ.
Definition 2.2. We say that a family v0; . . . ; vk : V ! ANþ1 of regular

morphisms on some open set V of B is a local basis for B if the linear subspace

of ANþ1 generated by v0ðsÞ; . . . ; vkðsÞ is equal to the ðk þ 1Þ-dimensional linear

subspace given by s for any s A V .

Remark 2.3. We can always take a local basis for any base BHGðk;NÞ.
To explain this, we recall some basic properties of Gðk;NÞ ([6]). Let L :¼
fI H f0; . . . ;Ng j#I ¼ k þ 1g where #I is the cardinality of I . Let Gðk;NÞ be
embedded in PM where M ¼ Nþ1

kþ1

� �
� 1 by Plücker embedding and ð� � � : pI : � � �Þ

be its coordinate. For each I A L, UI ¼ Gðk;NÞV fð� � � : pJ : � � �Þ A PM j pI 00g
is isomorphic to the a‰ne space AðN�kÞðkþ1Þ. Hence fUIgI AL is an a‰ne cover

of Gðk;NÞ. On each UI , we can take a ðk þ 1Þ-dimensional base v0; . . . ; vk in
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ANþ1 represented by coordinate functions on UI . For example, if I ¼ f0; . . . ; kg
then we can write

v0 ¼ ð1 0 � � � 0 pkþ1;1;...;k � � � pN;1;...;kÞ

..

.

vk ¼ ð0 0 � � � 1 p0;...;k�1;kþ1 � � � p0;...;k�1;NÞ:

Hence, for any variety BHGðk;NÞ, by restricting these to BVUI , we have a

local basis v0; . . . ; vk : BVUI ! ANþ1. We call this the standard local basis

for B.

Remark 2.4. We assume V HUI for some I A L. If we have a local

basis v0; . . . ; vk : V ! ANþ1, then we have natural isomorphisms V � Akþ1 !
ðg 0Þ�1ðVÞ : ðs; t0; . . . ; tkÞ 7! ðs;

Pk
i¼0 tiviðsÞÞ and V�Pk!g�1ðVÞ :ðsÞ�ðt0 : � � � : tkÞ

7! ðs; ½
Pk

i¼0 tiviðsÞ�Þ. We call these morphisms local trivializations.

Let U ¼ g�1ðBsmÞ. This is the smooth locus of IB. Let W ¼ ðg 0Þ�1ðBsmÞ.
This is the smooth locus of bIBIB.

Definition 2.5. Let TU and TPN be the tangent sheaves. The morphism

df : TU ! f �ðTPN Þ of sheaves on U is induced from f jU : U ! PN . The

condition

rank dfðE;xÞ < k þ r ¼ dim IB

defines a closed subscheme of U . This is called the focal subscheme of B. And

the closure of the image of the focal subscheme under f in X is called the focal

locus of B.

We call an element E A B a focal leaf if g�1ðEÞ is contained in the focal

subscheme in IB. If f : IB ! X is generically étale then there exists a nonempty

open set V HBsm such that each element E A V is not a focal leaf. Then, the

closure of f ðF V g�1ðVÞÞHX is called the focal variety of B.

Let TW and TANþ1 be the tangent sheaves. The morphism of sheaves on W

df 0 : TW ! ð f 0Þ�ðTANþ1Þ is induced from f 0jW : W ! ANþ1. The condition

rank df 0ðE;xÞ < k þ rþ 1 ¼ dim bIBIB
defines a closed subscheme of W . This is called the a‰ne focal subscheme of B.

Remark 2.6. The focal subscheme F and the a‰ne focal subscheme F̂F is

given by locally same equations, more precisely, for each s A Bsm there exists

an a‰ne open neighbourhood V ¼ SpecRHB at s such that the defining ideal

of F V g�1ðVÞH g�1ðVÞGV � Pk GProjR½x0; . . . ; xk� is equal to the defining

ideal of F̂F V ðg 0Þ�1ðVÞH ðg 0Þ�1ðVÞGV � Akþ1 GSpecR½x0; . . . ; xk�.
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To describe the focal subscheme, we recall the notion of di¤erential of

rational functions.

Lemma 2.7. Let B be a variety of dimension r and u1; . . . ; ur A OB;x a local

parameter system at a point x A Bsm. Then, for each j there exists a unique

K-derivation
q

quj
: KðBÞ ! KðBÞ such that

q

quj
ðuiÞ ¼ di; j where di; j is Kronecker’s

delta. Furthermore, they have the following usual properties:

(a)
q

quj
ðOB;xÞHOB;x.

(b) If fs1; . . . ; srg is another local parameter system at x then

q

quj
¼

Xr

i¼1

q

qsi

qsi

quj

as K-derivations from KðBÞ to itself.

(c) There exists a nonempty open set V HB such that for any point y A V,

the set of functions u1 � u1ðyÞ; . . . ; ur � urðyÞ A my is also a local

parameter system at y A V . If y is a point in this open set then

q

quj
¼ q

qðuj � ujðyÞÞ
.

(d) Let f A OB;x and dx f the homomorphism between tangent spaces

TxB! Tf ðxÞA
1 ¼ A1 induced from the local function f : U ! A1.

Then, dx f ðuj �Þ ¼
qf

quj
ðxÞ A K .

Proof. Existence and uniqueness of
q

quj
are proven by separability of

the field extension KðBÞ=Kðu1; . . . ; urÞ. If ÔO is the completion of OB;x by mx

then we have KðBÞV ÔO ¼ OB;x in the quotient field of ÔO. This implies (a).

(b), (c), (d) are easily proven. r

Let BHGðk;NÞ be a closed variety of dimension r, v0; . . . ; vk : V ! ANþ1

a local basis for B, and let F : V � Akþ1 ! ANþ1 be the composition of the

local trivialization map in the sense of Remark 2.4 and the natural projection

f 0 : bIBIB ! ANþ1.

Definition 2.8. Let X̂X ¼ f 0ð bIBIBÞ. We call F an adapted parameterization

of X̂X .

Lemma 2.9. Let T0; . . . ;Tk be coordinates on Akþ1. For any local pa-

rameter system u1; . . . ; ur at any point s A Vsm and any ðt0; . . . ; tkÞ A Akþ1, the

functions u1; . . . ; ur, T0 � t0; . . . ;Tk � tk form a system of local parameter at

ðs; t0; . . . ; tkÞ. Let dðs; tÞF : Tðs; tÞðB� Akþ1Þ ! TFðs; tÞA
Nþ1¼ANþ1 be the homo-
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morphism between tangent spaces induced from F : V � Akþ1 ! ANþ1. Then,

dðs; tÞFðui �Þ ¼
Xk
l¼0

tl
qvl

qui
ðsÞ; i ¼ 1; . . . ; r

dðs; tÞFðTj � tj
�Þ ¼ vjðsÞ; j ¼ 0; . . . ; k:

Proof. Let vl ¼ ðv0l ; . . . ; vNl Þ for l ¼ 0; . . . ; k and Y0; . . . ;YN be coor-

dinates of ANþ1. We have

dðs; tÞFðu1�ÞðY0 � ðt0v00ðsÞ þ � � � þ tkv
0
kðsÞÞÞ ¼

Xk

l¼0
tldsvlðu1�ÞðY0 � v0l ðsÞÞ;

dðs; tÞFðTj � tj
�ÞðY0 � ðt0v00ðsÞ þ � � � þ tkv

0
kðsÞÞÞ ¼ v0j ðsÞ:

By Lemma 2.7 (d), we have the result. r

3. Developability criterion

In this section we prove Theorem 1.1. First we note the rank conditions

in Theorem 1.1.

Remark 3.1. The rank conditions in Theorem 1.1 do not depend on choices

of local parameter systems nor local bases. The reasons are as follows:

(1) If we have two local parameter system u1; . . . ; ur and s1; . . . ; sr at some

point P and a local basis v0; . . . ; vk on some open set, then we have

hfvi; qvi=quj j i; jgi ¼ hfvi; qvi=qsj j i; jgi

near P.

(2) If we have a local parameter system u1; . . . ; ur and two local bases

v0; . . . ; vk and w0; . . . ;wk on some open sets, then we have

hfvi; qvi=quj j i; jgi ¼ hfwi; qwi=quj j i; jgi

on some nonempty open subset of V .

Now, we prove the developability criterion.

Proof of Theorem 1.1. (1). Let X̂X be the a‰ne cone of X , v0; . . . ; vk :

V ! ANþ1 a local basis for B and let F : V � Akþ1 ! X̂X be the adapted

parameterization of X̂X . There exists an open subset V 0HV such that for

any s A V 0 there exists a point t A Akþ1 such that Fðs; tÞ A X̂Xsm. Let u1; . . . ; ur
be a local parameter system at s0 A Vsm. We take an open subset V 00HV 0

on which qvi=quj can be defined for any i, j. Let s A V 00. Let qiðsÞ ¼
ðs; 0; . . . ; 0; 1; 0; . . . ; 0Þ A V � Akþ1 whose 1 is at the ði þ 2Þ-nd place for
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i ¼ 0; . . . ; k. By developability, we have a unique tangent space on a linear

subspace corresponding to s. We write it Ts HANþ1. Let Ts; i ¼
D
v0ðsÞ; . . . ;

vkðsÞ;
qvi

qu1
ðsÞ; . . . ; qvi

qur
ðsÞ

E
for i ¼ 0; . . . ; k. We have only to prove Ts;0 þ � � � þ

Ts;k HTs.

First, we consider the case that FðqiðsÞÞ A X̂Xsm for any i. Then Ts; i ¼
ImðdqiðsÞFÞHTs. Hence Ts;0 þ � � � þ Ts;k HTs.

Next, we consider the general case. We can take another local basis

w0; . . . ;wk : V 00 ! ANþ1 with the adapted parameterization C : V 00 � Akþ1 !
ANþ1 satisfying that CðqiðsÞÞ A X̂Xsm, as follows. Let t ¼ ðt0; . . . ; tkÞ A Akþ1 such

that Fðs; tÞ A X̂Xsm. Then there exist e0; . . . ; ek A Kn0 such that

FðpiðsÞÞ A X̂Xsm, where piðsÞ ¼ ðs; t0; . . . ; ti þ ei
zfflffl}|fflffl{ðiþ2Þ-nd

; . . . ; tkÞ, i ¼ 0; . . . ; k. Let A be

the matrix

A :¼

t0 þ e0 t1 � � � tk

t0 t1 þ e1 � � � tk

..

. ..
. . .

. ..
.

t0 t1 � � � tk þ ek

0
BBBB@

1
CCCCA:

Then the matrix A maps ð0; . . . ; 1; . . . ; 0Þ to ðt0; . . . ; ti þ ei; . . . ; tkÞ for any

i. Let aij be the ði; jÞ element of A and w0 ¼
Pk

j¼0 a0jvj; . . . ;wk ¼
Pk

j¼0 akjvj.

Then w0; . . . ;wk is a local basis on V 00 which we required. Now CðqiðsÞÞ ¼
FðpiðsÞÞ for any i. Then we have

Xk

i¼0
Ts; i ¼ w0ðsÞ; . . . ;wkðsÞ;

qw0

qu1
ðsÞ; . . . ; qw0

qur
ðsÞ; . . . ; qwk

qu1
ðsÞ; . . . ; qwk

qur
ðsÞ

� �
:

We apply the fact in the particular case to w0; . . . ;wk, so that we havePk
i¼0 Ts; i HTs. We complete the proof of (1).

(2) ð)Þ Follows from (1) and the assumption. ð(Þ Let u1; . . . ; ur be

a local parameter system and v0; . . . ; vk : V ! ANþ1 a local basis. For any

s A V , let

Ts ¼ v0ðsÞ; . . . ; vkðsÞ;
qv0

qu1
ðsÞ; . . . ; qv0

qur
ðsÞ; . . . ; qvk

qu1
ðsÞ; . . . ; qvk

qur
ðsÞ

� �
:

For the adapted parameterization F : V � Akþ1 ! X̂X induced by the local

basis, by Lemma 2.9, Imðdðs; tÞFÞHTs for any ðs; tÞ A Vsm � Akþ1. By ge-

nerically étaleness of IB ! X , we have an open subset V 0HV such that

for any s A V 0 there exists t A Akþ1 such that dim Imðdðs; tÞFÞ ¼ k þ rþ 1.

Fix s A V 0. The set of points ðt0; . . . ; tkÞ such that dim Imðdðs; t0;...; tkÞFÞ ¼
k þ rþ 1 is open in s� Akþ1 FAkþ1. If dim Imðdðs; tÞFÞ ¼ k þ rþ 1 then

Imðdðs; tÞFÞ ¼ Ts. We see projective tangent spaces are constant on each ele-

ment of V 0HB, hence the uniruling is developable. r
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4. One parameter developable ruled varieties

In this section, we describe the focal subscheme by using the standard

local basis when the dimension of a base BHGðk;NÞ is one, and classify one

parameter developable uniruled varieties.

Let BHGðk;NÞ be a closed subvariety of dimension 1, IB the incidence

correspondence of B with the projections f : IB ! PN and g : IB ! B, and let

X ¼ f ðIBÞ be uniruled by B. Let I ¼ f0; . . . ; kg. We can assume BVUI 0
q. We take the standard local basis v0; . . . ; vk : BVUI ! ANþ1. Let u be a

local parameter at some smooth point of B. Let V HB be an open set that

dvi=du can be defined for all i ¼ 0; . . . ; k. Then l-th coordinate of dvi=du is 0 if

0a la k. Hence, the focal subscheme of B is locally isomorphic to the closed

subscheme of V � Pk given byXk
i¼0

ti
dvi

du
ðsÞ ¼ 0:

(The isomorphism is given by the local trivialization map in the sense of

Remark 2.4.)

Lemma 4.1. Let BHGðk;NÞ be a closed subvariety of dimension 1 and

IB the incidence correspondence of B with the projections. Then the focal

subscheme of B is a proper closed subscheme of the smooth locus of IB.

Proof. We have only to prove that dvi=du0 0 for some local parameter

u and some i. But at a smooth point of B, one can choose one of the co-

ordinate function minus constant as a local parameter, then we have vi ¼
ð0; . . . ; 1; . . . ; 0; . . . ; uþ c; . . .Þ for some i with c A K . This implies dvi=du0 0.

r

Proof of Theorem 1.3. (0). Now we describe h : BaGðk � 1;NÞ.

We can assume that
dvk

du
0 0. When B gives developable uniruling, by

Theorem 1.1, there are functions l0; . . . ; lk�1 in the function field KðBÞ such

that
dvi

du
¼ li

dvk

du
for i ¼ 0; . . . ; k � 1. Hence the focal subscheme is locally

given by tk þ
Pk�1

i¼0 tili ¼ 0. Moreover,

f ðF V g�1ðEÞÞ ¼ PðhfviðEÞ � liðEÞvkðEÞ j i ¼ 0; . . . ; k � 1giÞ:

(1) We can take C as the image of the morphism V ! PN , s 7! ½vkðsÞ�.
(2) First, we will prove that ðaÞ ) ðeÞ ) ðcÞ ) ðaÞ. We have the

natural birational morphism f : V � Pk�1 ! F , ðsÞ � ðt0 : � � � : tk�1Þ 7! ðsÞ�
½
Pk�1

i¼0 tiðviðsÞ � liðsÞvkðsÞÞ�. The composition of f : V � Pk�1 ! F and

f : F ! F 0 is given by ðsÞ � ðt0 : � � � : tk�1Þ 7! ½
Pk�1

i¼0 tiðviðsÞ � liðsÞvkðsÞÞ�. We

consider the a‰ne lifting of this, df � ff � f : V � Ak ! ANþ1, ðs; t0; . . . ; tk�1Þ 7!
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Pk�1
i¼0 tiðviðsÞ � liðsÞvkðsÞÞ. The image of the di¤erential of this morphism at

ðs; t0; . . . ; tk�1Þ is
D
v0ðsÞ� l0ðsÞvkðsÞ; . . . ; vk�1ðsÞ� lk�1ðsÞvkðsÞ;

d

du
ð
Pk�1

i¼0 tiðviðsÞ�

liðsÞvkðsÞÞÞ
E
. Here,

ð
Pk�1

i¼0 tiðvi � livkÞÞ0 ¼
Pk�1

i¼0 tiðv 0i � l 0i vk � liv
0
kÞ ¼ �ð

Pk�1
i¼0 til

0
i Þvk

( 0 means di¤erential by u).

When we assume (a), df � ff � f is generically étale, hence,
Pk�1

i¼0 til
0
i is not 0 for

general ðs; t0; . . . ; tk�1Þ. We have (e).

Now, we assume (e). Let IB 0 be the incidence correspondence of B 0 with

projections f̂f : IB 0 ! PN and ĝg : IB 0 ! B 0. We take suitable open sets V HB

and V 0HB 0 which make the following morphisms well defined:

f : V � Pk�1 ! F , ðs; t0; . . . ; tk�1Þ 7! ðs; ½
Pk�1

i¼0 tiðviðsÞ � liðsÞvkðsÞÞ�Þ,
H : V � Pk�1 ! V 0 � Pk�1, ðs; tÞ 7! ðhðsÞ; tÞ,
local trivialization c : V 0 � Pk�1 ! IB 0 by the standard local basis for B 0.

We have the following commutative diagram:

V � Pk�1 ���!f F ���!gjF
B

f jF

???y
g

H F 0 hx??? f̂f

V 0 � Pk�1 ���!
c

IB 0 ���!
ĝg

B 0

 
���

���
����

 
�
�
�
�
�

������
��!

��
��
!

 ����
����

This implies (c) because ĝg : IB 0 ! B 0 is generically smooth.

If (c) is true, then H : V � Pk�1 ! V 0 � Pk�1; ðs; tÞ 7! ðhðsÞ; tÞ is gener-

ically étale. Therefore the composition f̂f � c �H ¼ f jF � f is generically étale,

this implies (a).

Next we prove that ðeÞ ) ðdÞ and ðdÞ, ðeÞ ) ðbÞ. Now assume (e). We

take a section B 0 ! IB 0 of ĝg so that w : B 0 ! F 0, the composition with f̂f ,

has its image not contained in the singular locus. We prove that g � w gives

the converse of h. Let s A B be a general point. We have ðs;w � hðsÞÞ A F ,

hence s ¼ gð f ðs;w � hðsÞÞÞ ¼ g � w � hðsÞ by (e). Let s 0 A B 0 be a general point.

There is s A B such that hðsÞ ¼ s 0. ðs;wðs 0ÞÞ A F , hence s ¼ gð f ðs;wðs 0ÞÞÞ ¼
g � wðs 0Þ by (e). We have s 0 ¼ hðsÞ ¼ h � g � wðs 0Þ. If we assume (d), then H

is birational. On the other hand, f̂f � c : V � Pk�1 ! F 0 is birational because

B 0 gives developable uniruling by (e). Therefore, the composition f̂f � c �H ¼
f jF � f is birational. r

We denote the l-th osculating scroll of a curve C by TanðlÞC. We can

recover the following well-known classification result in characteristic 0.
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Corollary 4.2. Let BHGðk;NÞ be a closed variety of dimension 1 giving

developable uniruling, and X ¼6
E AB E. If char K ¼ 0 then there is a curve

CHPN, an integer l, and a linear subspace LHPN such that

X ¼ TanðlÞC#L

(where # means the join of the varieties).

Proof. We use Theorem 1.3 inductively. If we have the case (1) in

Theorem 1.3 then we have nothing to prove. If we have the case (2), then

all conditions (a)–(e) are true by the assumption about characteristic, mainly

we use ðeÞ. Then we have X ¼ TanF 0 and F 0 is one parameter developable

uniruled. We apply Theorem 1.3 to F 0. Inductively, we have

X ¼ TanðTanð� � �TanðC#LÞ � � �ÞÞ ¼ TanðTanð� � � ðTanCÞ � � �ÞÞ#L:

We know that TanðTanð� � � ðTanCÞ � � �ÞÞ ¼ TanðlÞC ([4, Corollary 2.3]). r

Remark 4.3. To prove our Corollary, we use mainly ðaÞ ) ðeÞ in (2)

of Theorem 1.3, but the converse is also important. If ðaÞ is false, then our

theorem asserts that the focal variety is not tangent to general leaves at focal

points.

Remark 4.4. We consider the case k ¼ 1. Then, gjF : F ! B is always

birational. Hence, ðeÞ implies that the Gauss map on the focal variety

g : F 0aB is also birational. Then, it is well known that F 0 is ‘‘reflexive’’.

(See [5] for definition.)

Remark 4.5. Let the notation be as in Theorem 1.3. Then f : IB ! X

is birational because this morphism is generically finite and a general fiber is

one point. If X is not a linear subspace, we can prove that the focal locus is

contained in the singular locus of X in the same way of the proof in [8, Theorem

4.1].

We give a strange example that the focal variety is a linear subspace of

codimension one in positive characteristic.

Example 4.6. We set char K ¼ p > 0, N ¼ 3 and k ¼ 1. Let BHGð1; 3Þ
be the closure of the image of the regular map A1 ! Gð1; 3Þ : u 7! ðp01 : p02 :
p03 : p12 : p13 : p23Þ ¼ ð1 : u : 0 : 0 : �up : �upþ1Þ. Then the standard local basis

is represented by

v0 ¼ ð1 0 0 upÞ

v1 ¼ ð0 1 u 0Þ:
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These di¤erentials are

ð0 0 0 0Þ

ð0 0 1 0Þ:
Therefore B gives a developable uniruling by Theorem 1.1 and the focal variety

is the closure of the image of ½v0�. Hence the focal variety is a line.

5. Two parameter ruled varieties

In this section we prove that the rank condition ð**Þ in Theorem 1.1

implies generically étaleness of the projection IB ! X if the dimension of B is 2,

hence ð**Þ is a su‰cient condition for developability in this case. We give an

example of a 2-dimensional B which gives developable uniruling but ð**Þ fails,
hence ð**Þ is not a necessary condition.

Lemma 5.1. Let BHGðk;NÞ be a closed variety of dimension 2, IB the

incidence correspondence of B with the projections f : IB ! PN and g : IB ! B,

and let X ¼ f ðIBÞHPN be uniruled by B. Assume BVUI 0q where I ¼
f0; . . . ; kg. Let v0; . . . ; vk : BVUI ! ANþ1 be the standard local basis for B.

If there exists an open subset V HBVUI such that

rank
qv0

qu1
ðsÞ � � � qvk

qu1
ðsÞ qv0

qu2
ðsÞ � � � qvk

qu2
ðsÞ

� �
¼ 2

for any s A V then the projection f : IB ! X is generically étale.

Proof. We can choose a local parameter system u1, u2 such that some

two coordinate functions are u1 þ d1 and u2 þ d1 ðd1; d2 A KÞ. Therefore,

essentially, the forms of the standard local basis v0; . . . ; vk are 3 types:

v0 ¼ ð1 0 � � � 0 u1 þ d1 u2 þ d2 � � � � �Þ

v1 ¼ ð0 1 � � � 0 � � � � � � �Þ

..

.

vk ¼ ð0 0 � � � 1 � � � � � � �Þ

v0 ¼ ð1 0 � � � 0 u1 þ d1 � � � � � �Þ

v1 ¼ ð0 1 � � � 0 � u2 þ d2 � � � � �Þ

..

.

vk ¼ ð0 0 � � � 1 � � � � � � �Þ
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v0 ¼ ð1 0 � � � 0 u1 þ d1 � � � � � �Þ

v1 ¼ ð0 1 � � � 0 u2 þ d2 � � � � � �Þ

..

.

vk ¼ ð0 0 � � � 1 � � � � � � �Þ

The first type satisfies rank
qv0

qu1

qv0

qu2

� �
¼ 2. This means the di¤erential of

the adapted parameterization F : V � Akþ1 ! X̂X is surjective at a point

ðs; 1; 0; . . . ; 0Þ. Next we consider the second type. If rank
qv0

qu1

qv0

qu2

� �
¼ 2 or

rank
qv1

qu1

qv1

qu2

� �
¼ 2 then we have nothing to prove. Hence we may assume

qv0

qu2
¼ qv1

qu1
¼ 0. Then rank

qv0

qu1

qv1

qu2

� �
¼ 2. This means the di¤erential of

F : V � Akþ1 ! X̂X is surjective at a point ðs; 1; 1; 0; . . . ; 0Þ. Finally, we con-

sider the third type. We may assume
qv0

qu2
¼ qv1

qu1
¼ 0 and

qv0

qu1
¼ qv1

qu2
. If

rank
qv1

qu2

qvi

qu1

� �
¼ 2 or rank

qv0

qu1

qvi

qu2

� �
¼ 2 for some ib 2 then we have the

result. If not, then the rank condition is not satisfied. We complete the

proof. r

Example 5.2. We set char K ¼ 2 and u, v coordinates on A2. Let

BHGð1; 4Þ be the closure of the image of the regular morphism A2 ! UI such

that the standard local basis is written by

v0 ¼ ð1 0 u u3v2 þ u4 0Þ

v1 ¼ ð0 1 v u2v3 v4Þ:

We have the variety X ¼6
E AB EHP4. We can check that B determines the

unique uniruling, the rank condition ð**Þ in Theorem 1.1 is not satisfied and the

projection from the incidence correspondence of B to X is not generically étale.

The defining polynomial F of X is X1X
8
2 þ X 6

0 X1X
2
3 þ X 2

0 X
6
2 X4 þ X 7

1 X
2
4 þ

X 2
0 X

3
1 X

2
2 X

2
4 . Therefore, the Gauss map on X is given by

ðqF=qX0 : qF=qX1 : qF=qX2 : qF=qX3 : qF=qX4Þ

¼ ð0 : X 8
2 þ X 6

0 X
2
3 þ X 6

1 X
2
4 þ X 2

0 X
2
1 X

2
2 X

2
4 : 0 : 0 : X 2

0 X
6
2 Þ

¼ ð0 : s2ðsuþ tvÞ6v4 : 0 : 0 : s2ðsuþ tvÞ6Þ

¼ ð0 : v4 : 0 : 0 : 1Þ
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at ½sv0 þ tv1� A X . Therefore the Gauss map does not depend on s, t. The

uniruling is developable.

6. Cases of higher dimensional bases

In this section we treat higher dimensional bases. We give two examples:

bases giving developable uniruling without ð**Þ, and non-developable uniruling

with ð**Þ.

Example 6.1. We set char K ¼ 2 and u, v, w coordinates on A3. Let

BHGð1; 5Þ be the closure of the image of the regular morphism A3 ! UI such

that the standard local basis is written by

v0 ¼ ð1 0 u v u2 v2Þ

v1 ¼ ð0 1 w w2 0 u4Þ:

We have X ¼6
E AB EHP5. We can check that B determines the unique

developable uniruling, the rank condition ð**Þ in Theorem 1.1 is not satisfied and

the projection from the incidence correspondence of B to X is not generi-

cally étale. The defining polynomial of X is F ¼ X0X
4
2 þ X0X

2
1 X

2
3 þ X 3

0 X
2
4 þ

X 3
1 X

2
4 þ X 2

0 X
2
1 X5. The Gauss map on X is given by

ðqF=qX0 : qF=qX1 : qF=qX2 : qF=qX3 : qF=qX4 : qF=qX5Þ

¼ ðX 4
2 þ X 2

1 X
2
3 þ X 2

0 X
2
4 : X 2

1 X
2
4 : 0 : 0 : 0 : X 2

0 X
2
1 Þ

¼ ðv2 : u4 : 0 : 0 : 0 : 1Þ

at ½sv0 þ tv1� A X . The Gauss map on X does not depend on s, t. Hence, the

uniruling is developable.

Example 6.2. Let rb 3, char K ¼ p > 0 and u1; . . . ; ur be coordinates on

Ar. Let BHGðk; k þ rþ 1Þ be the closure of the image of the regular mor-

phism Ar ! UI such that the standard local basis is written by

v0 ¼ ð1 0 0 � � � 0 u1 u2 � � � ur�2 ur�1 0 up
r Þ

v1 ¼ ð0 1 0 � � � 0 ur 0 � � � 0 0 ur�1 up
r Þ

v2 ¼ ð0 0 1 � � � 0 0 0 � � � 0 0 0 up
r Þ

..

.

vk ¼ ð0 0 0 � � � 1 0 0 � � � 0 0 0 up
r Þ:

We have X ¼6
E AB EHPkþrþ1. We can easily check that B determines a

uniruling, the rank condition ð**Þ in Theorem 1.1 is true, and the projection from
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the incidence correspondence of B to X is not generically étale. The defining

polynomial F of X is X0Xkþr � X1Xkþr�1. The Gauss map on X is given by

qF

qX0
: � � � : qF

qXkþrþ1

� �

¼ ðXkþr : �Xkþr�1 : 0 : � � � : 0
zfflfflfflfflffl}|fflfflfflfflffl{2@kþr�2

: �X1 : X0 : 0Þ

¼ ðt1up
r : �t0ur�1 : 0 : � � � : 0 : �t1 : t0 : 0Þ

at ðt0 : t1 : � � � : tk : t0u1þ t1ur : t0u2 : � � � : t0ur�1 : t1ur�1 : t0up
r�1þ � � � þ tku

p
r�1Þ AX .

This map depends on t0, t1. Hence this uniruling is not developable. (But, X is

a cone with the vertex L : X0 ¼ X1 ¼ Xkþr�1 ¼ Xkþr ¼ 0, and with the induced

ðk þ r� 2Þ-dimensional space ruling, X is developable.)

Problem 6.3. Find a condition for developability when the projection

IB ! X is not generically étale.

7. The fibers of the Gauss maps

In characteristic 0, the generic fibers of the Gauss maps are linear sub-

spaces ([3, Corollary 4.4.12]). This is based on the result that the contact locus

is a linear subspace (see [2], [5] for definition). This implies that varieties with

degenerate Gauss maps are ruled by Gauss fibers. We call this Gauss fiber

ruling.

Remark 7.1. Now we give the Gauss fiber ruling if char K ¼ 0. Let

X HPN be a closed subvariety of dimension n, X �HPððANþ1Þ�Þ the dual

variety and let d be the dimension of X �. We have the following rational maps:
� the Gauss map g : X aGðn;NÞGG�ðN � n� 1;NÞ,
� ½v0�; . . . ; ½vN�n�1� : gðXÞaX � given by a local basis

v0; . . . ; vN�n�1 : G
�ðN � n� 1;NÞa ðANþ1Þ�,

� the Gauss map g� : X �aG�ðd;NÞ,
� a local basis w0; . . . ;wd : G

�ðd;NÞa ðANþ1Þ�.
These give the rational maps Vi; j ¼ wj � g� � ½vi� � g : X a ðANþ1Þ� for i ¼
0; . . . ;N � n� 1, j ¼ 0; . . . ; d. The linear subspace hfVi; jj jgiH ðANþ1Þ� gives

the equations of the contact locus of ½vi� A X �. The Gauss fiber of a general

point E A gðXÞ is the intersection of the contact loci of ½v0ðEÞ�; . . . ; ½vN�n�1ðEÞ�.
Hence, let r ¼ dim gðXÞ, then the image of the rational map

X aG�ðN � nþ r� 1;NÞGGðn� r;NÞ

x 7! PðhfVi; jðxÞ j i; jgiÞ

gives the Gauss fiber ruling.
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In positive characteristic, this is not always true. We give an example

which does not admit Gauss fiber ruling.

Example 7.2. Let char K ¼ 3. We consider the hypersurface X in P3

given by F ¼ XZ6 � ðY 6 þ Z6 þW 6ÞW . For a general point ðx : y : z : wÞ A X,

the tangent space given by z6X � ðy6 þ z6 þ w6ÞW ¼ 0. The intersection

of X and this plane is the line X ¼W ¼ 0 and the plane curve z6X �
ðy6 þ z6 þ w6ÞW ¼ ðy2 þ w2ÞZ2 � z2ðY 2 þW 2Þ ¼ 0. If X is uniruled, then

there is a leaf which contains the point ðx : y : z : wÞ and is contained in this

plane. Hence, X can not be uniruled.
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