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ABSTRACT. We find a characteristic-free algebraic condition for developability of
uniruled varieties. As an application, we study developable varieties over positive
characteristic fields. In particular, we generalize classification theorem of one pa-
rameter developable ruled varieties to arbitrary characteristic.

1. Introduction

In classical differential geometry, a ruled surface whose tangent planes
are constant on each line is called developable ([7, Section 3.7]). We study
developable varieties in the context of projective (algebraic) geometry.

There are at least two different definitions of developable varieties in
algebraic geometry:

(A) The varieties with degenerate Gauss maps ([3, p. 142], [9]), and

(B) The ruled varieties whose tangent spaces are constant on each leaf

(12)).
These two definitions are equivalent in characteristic zero, at least for a suitable
choice of the ruling in (B) (Remark 7.1). Recently, developable varieties of
type (A) has been classified in characteristic zero ([1], [8], [9], [10]). When the
characteristic is positive, (B) still implies (A), but (A) does not necessarily imply
(B). In fact, we give an example of a non-ruled surface with the degenerate
Gauss map (Example 7.2).

In this paper, we concentrate on the developable varieties of type (B). In
the following, “developable” means developable of type (B). Our main results
are a developability criterion in any characteristic, and a generalization of
classification theorem of one parameter developable varieties of type (B).

If the ground field K is C then we have an analytic developability criterion
([2, p. 65]) and if char K = 0, an algebraic criterion ([8, Theorem 0.2]). (The
paper [8] does not use the word ‘developable’.) We establish the following
algebraic developability criterion which is valid over any algebraically closed
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field. Below, a ruling is called uniruling if the projection from the incidence
correspondence to the ruled variety is generically finite (Definition 2.1).

THEOREM 1.1. Let B < G(k,N) be a closed variety of dimension r, Iy the
incidence correspondence of B and let X = () repE < PY be uniruled by B.
(1) If the uniruling is developable then for any local parameter system
u,...,ur at x € By and any local basis v, ... v : V — AN*L there
exists an open subset V' = V (x may be outside V') such that the rank
of the (N +1)x ((k+ 1)+ r(k + 1))-matrix satisfies

5vi

rank (v,-(s), 3
Uj

(s)) <k+r+1 (%
0]
for any point s€ V',
(2) Assume that the projection Ig — X is generically étale. Then, the
uniruling is developable if and only if the equality holds in (x), namely,
61),»

rank(v,»(s),—(s)) =k+r+1 (xx).

(%tj ij

REMARK 1.2. Using the notation of Theorem 1.1,

(1) If char K =0 or dim B =1 then the projection Iz — X is always ge-
nerically étale (Lemma 4.1). In particular, developability is equivalent
to the condition (xx) for any local parameter system {u;} and any local
basis {v;}.

(2) If dim B = 2, the condition (xx) implies the generically étaleness, hence
the developability follows (Lemma 5.1), but when char K > 0, we give
examples of developable varieties without (xx) (Examples 5.2 and 6.1).
If dim B > 3, we also construct non-developable unirulings with (#x)
( Example 6.2).

By Remark 1.2(1), we get the following classification theorem of one
parameter developable ruled varieties by the analysis of focal locus.

THEOREM 1.3. Let B = G(k,N) be a 1-dimensional closed subvariety giving
developable uniruling, I the incidence correspondence of B with the projections
f:Ig—PY and g:Iz3 — B, and let X = f(I3). Define the focal subscheme
F c Iy to be the locus where rank df < dim Iy. Let F < Iy be the closure of
F\{(x,E) | E is a singular point of B or a focal leaf}, and F' = f(F) the focal
variety. (See Definition 2.5). Then:

(0) For a general element E € B, f(FNg~'(E)) = F' is a linear subspace

of dimension k — 1, and we have a rational map h: B --> G(k — 1, N),
Ev f(FNg™(E)).
(1)  Assume that h is a constant, then F' is a linear subspace of dimension
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k — 1. In this case, there exists a curve C = X which is contained in a
linear subspace disjoint from F', such that X is the join variety of C
and F'.

(2) Assume that h is not a constant. Let B’ be the closure of the image of
h, then F' is uniruled by B'. Let y: F' --> G(k,N) be the Gauss map
of F', then the following conditions are equivalent:

(@) flgp:F — F' is generically étale.
(b) flp:F — F' is birational.
() h:B-->B' is generically étale.

(d) h:B-->B' is birational.

© B-

e) y(F') and the diagram

commultes.

It is known that if K = C then one parameter developable ruled varieties
are osculating scrolls (use (2)) or join varieties of osculating scrolls and linear
subspaces (use (1)) ([2, p. 77], Corollary 4.2). Our theorem is a generalization
of this fact.

The plan of this paper is as follows. In Section 2 we introduce the notion
of focal loci for families of linear subspaces and recall differential of rational
functions. In Section 3 we prove our developability criterion Theorem 1.1.
In Section 4 we prove the characteristic-free classification theorem of one
parameter developable varieties. In Section 5 we study two parameter ruled
varieties. In Section 6 we consider higher dimensional parameter. In Section
7 we study the fibers of the Gauss maps.

Notation

The base field K is an arbitrary characteristic algebraically closed field
throughout this paper. Varieties are integral algebraic schemes over K.
Points mean closed points. G(k,N) is the Grassmann manifold whose points
are the k-dimensional linear subspaces in PY. When X is a variety, K(X) is
the function field of X. For a variety X and a point x € X, T, X is the Zariski
tangent space (mv/mfc)* at xe X. If a local parameter system uy,...,u, € m,
is given then ui*,...,i" € (my/m2)" = TyX are the dual basis for iu,...,
i, € (my /mf) For a variety X we write the smooth locus of X by Xy,. For
a projective variety X < PV and a point p € Xy, T,X c PV is the projective
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embedded tangent space of X at pe X. [v]eP" denotes the point of PV
corresponding to the equivalence class of v € AY™!\0. Given a linear subspace
V <= AN P(V) < PV means the linear subspace of PV corresponding to V.

2. Preliminaries

Let B < G(k,N) be a closed subvariety of dimension r, and Iz = {(x, E) €
PY x B|x e E} with the natural projections:

B BxpV¥ 2., pN
U
B! _ Ip # PV,
We call Iz the incidence correspondence of B. Let X := f(Ig) =
U repE = PY. Then X is a closed variety of dimension < k + r.

DerFINITION 2.1.  We say that X is uniruled by B, or B determines the
uniruling of X if dim X =k +r. Then we call B the base and an element
E e B aleaf. We say that the uniruling is developable if T,X =T, X for any
E € B and any points p,qe EN Xgy.

We can identify this Grassmannian with the Grassmannian of linear sub-
spaces of dimension k +1 of AV™!. We construct another incidence corre-
spondence Iz = B x AV*! and the projections as follows:

B LI B ANHL B AN+
U

B L L AN

Let X = AM! be the affine cone corresponding to X. Then X = f’ (I;).

DEFINITION 2.2. We say that a family vo,...,vc: V — AYT' of regular
morphisms on some open set V of B is a local basis for B if the linear subspace
of AN generated by vy(s), ..., vc(s) is equal to the (k4 1)-dimensional linear
subspace given by s for any se V.

REMARK 2.3.  We can always take a local basis for any base B = G(k, N).
To explain this, we recall some basic properties of G(k,N) ([6]). Let A:=
{I ={0,....,N}|#I =k + 1} where #I is the cardinality of I. Let G(k,N) be
embedded in PM where M = 1,\(’:]1 — 1 by Pliicker embedding and (---: py:---)
be its coordinate. For each I € A, Uy = G(k, N)N{(---: p;:---) e P | p; #0}
is isomorphic to the affine space AN WD Hepce {Ur};c 4 is an affine cover

of G(k,N). On each Uy, we can take a (k + 1)-dimensional base vy, ..., vx in
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ANt represented by coordinate functions on U;.  For example, if I = {0,...,k}

then we can write

vo=(1 0 - 0  pryii.k - DNA.k)

ve=0 0 -+ 1 po_ skttt " PO k-1,N)
Hence, for any variety B < G(k,N), by restricting these to BN Uy, we have a
local basis vo,...,vx : BONU; — AN, We call this the standard local basis
for B.

REMARK 2.4. We assume V < U; for some € A. If we have a local
basis vy, ...,vx: V — AN then we have natural isomorphisms V x Al
(@) (V) (5000 16) = (5, g t01(s)) and ¥V xPF— g (V)1 (5) % (10 -+ :14)
— (s, [szzo tivi(s)]).  We call these morphisms local trivializations.

Let U = g !(Bym). This is the smooth locus of Iz. Let W = (¢g")"" (Bm).
This is the smooth locus of Ip.

DErFINITION 2.5. Let 9y and Jpn be the tangent sheaves. The morphism
df : Ty — [*(Tp~) of sheaves on U is induced from f|,:U — PN, The
condition

rank df(g ) < k +r = dim Ip

defines a closed subscheme of U. This is called the focal subscheme of B. And
the closure of the image of the focal subscheme under f in X is called the focal
locus of B.

We call an element E € B a focal leaf if g~'(E) is contained in the focal
subscheme in Ig. If f:Ig — X is generically étale then there exists a nonempty
open set V < By, such that each element E € V is not a focal leaf. Then, the
closure of f(FNg~'(V)) < X is called the focal variety of B.

Let Ty and T+ be the tangent sheaves. The morphism of sheaves on W
df': Tw — (f)(Twn) is induced from f'|,, : W — AN The condition

rank df(; . <k +r+1=dim Iz
defines a closed subscheme of W. This is called the affine focal subscheme of B.

REMARK 2.6. The focal subscheme F and the affine focal subscheme F is
given by locally same equations, more precisely, for each s € Bsy there exists
an affine open neighbourhood V = SpecR < B at s such that the defining ideal
of FNg™'\(V) cg ' (V) = V x P* = ProjR|xq, ..., x| is equal to the defining
ideal of FN(g")'(V) < (¢) (V)= V x A¥*! = SpecR]|xq, . .., x].
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To describe the focal subscheme, we recall the notion of differential of
rational functions.

LemMA 2.7. Let B be a variety of dimension r and uy, ..., u, € Og  a local
parameter system at a point x € Byy. Then, for each j there exists a unique

K-derivation 6i : K(B) — K(B) such that (3i (u;) = 0 ; where 9, ; is Kronecker’s

Y Uj
delta.  Furthermore, they have the following usual properties:
0
a) — (Op Op «.
(a) 6uj(3")c B, >
(b) If {s1,...,s:} is another local parameter system at x then

0 'L 0 0Os;
= 2

as K-derivations from K(B) to itself.
(c) There exists a nonempty open set V < B such that for any point y € V,

the set of functions uy —ui(y),...,u, —u(y) em, is also a local
parameter system at ye€ V. If y is a point in this open set then
0 0

Q0w —wi(y))
(d) Let feUpyx and dyf the homomorphism between tangent spaces
T.B — Tf(x>A1 = Al induced from the local function f:U — Al
of

Then, d.f(u*) = E
di

(x) e K.

. . 0 o
Proor. Existence and uniqueness of i are proven by separability of
Uj

the field extension K(B)/K(ui,...,u,). If O is the completion of Op , by m,
then we have K(B)N (@ = Op in the quotient field of @. This implies (a).
(b), (c), (d) are easily proven. O

Let B < G(k,N) be a closed variety of dimension r, vy,...,vx: V — AN
a local basis for B, and let @ : ¥V x A¥! — AN*! be the composition of the
local trivialization map in the sense of Remark 2.4 and the natural projection
f'/ . I/l; N AN+1.

DEFINITION 2.8.  Let X = f'(I5). We call ® an adapted parameterization
of X.

LEmMA 2.9. Let Ty, ..., Ty be coordinates on A**'.  For any local pa-
rameter system uy,...,u, at any point s€ Viy and any (to,..., 1) € A**, the
functions uy,...,u,, To—ty,...,Tx — tx form a system of local parameter at

(8,10, tx). Let digy® : T (B x Ak’q) — T¢(S71)AN+] =AM be the homo-
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morphism between tangent spaces induced from @ :V x A1 — ANt Then,

d(s’,)¢(Tj—lj*) ZUj(S), j=0,...,k.

Proor. Let v, = (v),...,v") for I=0,...,k and Yj,..., Yy be coor-
dinates of AM*!. We have

k
s, o @) (Yo — (100 (s) + - + t00(9))) = Y trdson(@i*) (Yo — v} (5)),
=

dis.y®(T; = 1;7) (Yo = (100 (5) + - + 0y (5))) = 07'(5)-

By Lemma 2.7 (d), we have the result. O

3. Developability criterion

In this section we prove Theorem 1.1. First we note the rank conditions
in Theorem 1.1.

REMARK 3.1.  The rank conditions in Theorem 1.1 do not depend on choices

of local parameter systems nor local bases. The reasons are as follows:
(1) If we have two local parameter system uy,...,u, and s\,...,s, at some
point P and a local basis vy, ...,v; on some open set, then we have

i, 0vi/0u; |1, j} > = {{vi, 0vi/0s; | i, j} >

near P.
(2) If we have a local parameter system uy,...,u, and two local bases
vo,...,0r and wg,...,w; on some open sets, then we have

<{Ui7 aUi/auj ‘ i’ ]}> = <{Wi7 aWl'/auj | iv ]}>
on some nonempty open subset of V.
Now, we prove the developability criterion.

ProOF OF THEOREM 1.1. (1). Let X be the affine cone of X, vp,..., v :
V — AY1 a local basis for B and let @: V x A¥! — X be the adapted
parameterization of X. There exists an open subset ¥’ = V such that for
any s € V' there exists a point ¢ € A1 such that D(s,1) € Xem. Let ur,....u,
be a local parameter system at so € Vy,. We take an open subset V" < V'’
on which dv;/du; can be defined for any i, j. Let se V”. Let g(s) =
(5,0,...,0,1,0,...,0) € ¥ x AK*! whose 1 is at the (i+2)-nd place for
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i=0,...,k. By developability, we have a unique tangent space on a linear

subspace corresponding to s. We write it T, « AN Let T, si=(vo(8),...,
op; Ov:

vk(s),ﬂ(s),...,ﬂ(s» for i=0,...,k. We have only to prove T;o+---+
ouy u, ’

Ts,k c T

First, we consider the case that ®(g(s)) € Xyn for any i. Then T, =
Im(d,,®) = Ts. Hence Ty +---+ Tyx = Ty

Next, we consider the general case. We can take another local basis
Wos o wi s V7 — AN with the adapted parameterization ¥ : V" x AFt! —
ANT! satisfying that ¥(g;(s)) € Xem, as follows. Let 7 = (fo, ..., %) € A¥"! such

that  &(s,7) € Xym. Then  there (exist €,--.,& € K\O such that
i+2)-nd

N ——
D(pi(s)) € Xem, Where p;(s) = (s,fo,..., ti+¢&,...,t), i=0,....,k. Let A be
the matrix

o + & 151 e 173
fo h+e - Tk
A:=
lo 151 R
Then the matrix 4 maps (0,...,1,...,0) to (¢o,...,ti +¢&,...,t) for any
i. Let a; be the (i, ) element of 4 and wy = Zjl.;o agjVj, . .., Wi = Z]/-C:o V.
Then wy,...,w; is a local basis on V" which we required. Now Y(g¢;(s)) =

@(p;(s)) for any i. Then we have

Ty = (o)), 220, 20 ) D D
i = wols), ..., wk(8),=—(8),...,—(8),..., 8y, —0(8) ).
— 0 k Ouy ou, Ouy u,
We apply the fact in the particular case to wy,...,w, so that we have

Zf:o T,; < T,. We complete the proof of (1).

(2) (=) Follows from (1) and the assumption. (<) Let uj,...,u, be
a local parameter system and vg,...,vx: ¥V — AM"! a local basis. For any
seV, let

T, = <vo(s),...,vk(s) (s),...,Zi;(s),...,g—f:(s),...,g—zl;(s)>.

For the adapted parameterization @ : V' x A**! — X induced by the local
basis, by Lemma 2.9, Im(d,®) c T for any (s,7) € Vin x A1 By ge-
nerically étaleness of Iz — X, we have an open subset V' = V' such that
for any se V' there exists re A¥*! such that dimIm(d(; y®@) =k +r+ L.
Fix se V. The set of points (f,...,%) such that dimIm(d .. @)=
k+r+1 is open in sx A*™' ~ A If dimIm(d, @) =k+7r+1 then
Im(d(, @) = T;. We see projective tangent spaces are constant on each ele-
ment of V' < B, hence the uniruling is developable. O

000
’ 6u1
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4. One parameter developable ruled varieties

In this section, we describe the focal subscheme by using the standard
local basis when the dimension of a base B = G(k,N) is one, and classify one
parameter developable uniruled varieties.

Let B <= G(k,N) be a closed subvariety of dimension 1, Ig the incidence
correspondence of B with the projections f : Iz — P and ¢ : Iz — B, and let
X = f(Ig) be uniruled by B. Let I ={0,...,k}. We can assume BN U; #
@5. We take the standard local basis vg,...,0 : BN Uy — AV Let u be a
local parameter at some smooth point of B. Let V' = B be an open set that
dv;/du can be defined for all i =0,...,k. Then /-th coordinate of dv;/du is 0 if
0 <! < k. Hence, the focal subscheme of B is locally isomorphic to the closed
subscheme of V' x P* given by

k
dU,'
=L (s) =0.
2ty )

i=0
(The isomorphism is given by the local trivialization map in the sense of
Remark 2.4.)

LemMmA 4.1. Let B<= G(k,N) be a closed subvariety of dimension 1 and
Ip the incidence correspondence of B with the projections. Then the focal
subscheme of B is a proper closed subscheme of the smooth locus of Ip.

ProOF. We have only to prove that dv;/du # 0 for some local parameter

u and some i. But at a smooth point of B, one can choose one of the co-
ordinate function minus constant as a local parameter, then we have v; =
0,...,1,...,0,...,u+c,...) for some i with ce K. This implies dv;/du # 0.
O

ProorF oF THeorem 1.3. (0). Now we describe /s :B-->G(k—1,N).

di . L.
We can assume that —;k #0. When B gives developable uniruling, by
u

Theorem 1.1, there are functions Ay,...,Ax—; in the function field K(B) such
dv; d .
that d—i:&% for i=0,...,k—1. Hence the focal subscheme is locally

given by 1 + K ' 12, = 0. Moreover,
FFNGHE)) = P({u(E) = M(E)or(E) |i=0,....k— 1})).

(1) We can take C as the image of the morphism ¥V — PY s [v(s)].
(2) First, we will prove that (a) = (e) = (¢) = (a). We have the

natural birational morphism ¢: V x PX"1 — F (s) x (fg: -+ : tr_1) — () X
[le:(]l ti(vi(s) — 2i(s)ox(s))]. The composition of ¢:V x P! - F and
f:F— F'is given by (s) X (fp: -+ : tx_1) — [Zf‘;ol ti(vi(s) — Ai(s)v(s))]. We

consider the affine lifting of this, fo¢: V x A¥ — ANTL (8, f0y ..y tk—1) —
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Z;:OI t;(vi(s) — Ai(s)ve(s)). The image of the differential of this morphism at
. , d _

(85205 -+ k1) 18 <Uo(5) —Z0(8)0k(8), - vk—1(s) — Akfl(S)Uk(S),E (Zf:ol 1i(vi(s) —

Xi(s)vk(s)))>. Here,

(0 1o = dw)) = 0050 1] = Aok = Z0p) = =(L54 i)
(" means differential by u).

When we assume (a), f/o\¢ is generically étale, hence, Zf;ol 1;4] is not 0 for
general (s, f,...,%-1). We have (e).

Now, we assume (e). Let Ip be the incidence correspondence of B’ with
projections f Iy — PY and §: Iy — B'. We take suitable open sets V = B
and V' = B’ which make the following morphisms well defined:

GV XPT S (510, 061) — (8, [25 ti(oi(s) — 2i(8)ve(5))),

H:V x P S 7/ P (5,0) — (h(s), 1),

local trivialization  : ¥/ x P¥~! — I by the standard local basis for B'.
We have the following commutative diagram:

pxpl 4 g

B

//l

\"“J] // |
o7 |
h

|

|

!

/

)
V' x phl Iy B’
W g
This implies (c) because §: Igr — B’ is generically smooth.

If (c) is true, then H : V x P*1 — 1/ x PX1 (5,1) — (h(s), 1) is gener-
ically étale. Therefore the composition f oo H = f|po¢ is generically étale,
this implies (a).

Next we prove that (e) = (d) and (d), (¢) = (b). Now assume (e). We
take a section B’ — Iz of § so that w: B’ — F’, the composition with f,
has its image not contained in the singular locus. We prove that yow gives
the converse of 4. Let se€ B be a general point. We have (s,woh(s)) € F,
hence s = p(f(s,woh(s))) =yowoh(s) by (¢). Lets e B’ be a general point.
There is s€ B such that h(s) =s'. (s,w(s")) € F, hence s=yp(f(s,w(s"))) =
yow(s') by (¢). We have s’ = h(s) =hoyow(s’). If we assume (d), then H
is birational. On the other hand, f oy : ¥V x P! — F' is birational because
B’ gives developable uniruling by (e). Therefore, the composition f oo H =
flpo¢ is birational. O

H

We denote the /-th osculating scroll of a curve C by Tan’C. We can
recover the following well-known classification result in characteristic 0.
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COROLLARY 4.2. Let B = G(k,N) be a closed variety of dimension 1 giving
developable uniruling, and X =) pepE- If char K =0 then there is a curve
C <P, an integer 1, and a linear subspace L < PN such that

X = Tan") CHL
(where # means the join of the varieties).

ProOF. We use Theorem 1.3 inductively. If we have the case (1) in
Theorem 1.3 then we have nothing to prove. If we have the case (2), then
all conditions (a)—(e) are true by the assumption about characteristic, mainly
we use (e). Then we have X = TanF’ and F’ is one parameter developable
uniruled. We apply Theorem 1.3 to F’. Inductively, we have

X = Tan(Tan(--- Tan(C#L) ---)) = Tan(Tan(- - - (TanC) - - -))#L.
We know that Tan(Tan(---(TanC)---)) = Tan’C ([4, Corollary 2.3]). ]

REMARK 4.3. To prove our Corollary, we use mainly (a) = (e) in (2)
of Theorem 1.3, but the converse is also important. If (a) is false, then our
theorem asserts that the focal variety is not tangent to general leaves at focal
points.

REMARK 4.4. We consider the case k =1. Then, g|p: F — B is always
birational. Hence, (e) implies that the Gauss map on the focal variety
y: F'-—> B is also birational. Then, it is well known that F' is “reflexive”.
(See [5] for definition.)

REMARK 4.5. Let the notation be as in Theorem 1.3. Then [ :1Ip — X
is birational because this morphism is generically finite and a general fiber is
one point. If X is not a linear subspace, we can prove that the focal locus is

contained in the singular locus of X in the same way of the proof in [8, Theorem
4.1].

We give a strange example that the focal variety is a linear subspace of
codimension one in positive characteristic.

ExAMPLE 4.6. We setchar K =p >0, N=3andk=1. Let Bc G(1,3)
be the closure of the image of the regular map A' — G(1,3) : u— (por1 : po :
Po3:pr:piipn)=(:u:0:0:—ul: —ult'). Then the standard local basis
is represented by

=01 0 0 uh)
v=0 1 u 0).
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These differentials are
(0 0 0 0

0 0 1 0.

Therefore B gives a developable uniruling by Theorem 1.1 and the focal variety
is the closure of the image of [vg]. Hence the focal variety is a line.

5. Two parameter ruled varieties

In this section we prove that the rank condition (xx) in Theorem 1.1
implies generically étaleness of the projection /g — X if the dimension of B is 2,
hence (#x*) is a sufficient condition for developability in this case. We give an
example of a 2-dimensional B which gives developable uniruling but (=) fails,
hence (%) is not a necessary condition.

LemMmA 5.1. Let B< G(k,N) be a closed variety of dimension 2, Ig the
incidence correspondence of B with the projections f : Iz — P and g : Iy — B,
and let X = f(Iz) = PY be uniruled by B. Assume BNU; # & where I =
{0,...,k}. Let vy,...,vx : BONU; — AN be the standard local basis for B.
If there exists an open subset V < BN Uy such that

v vk 0vo Ovg _
rank(aul(s) . aiul(s)aiuz(s) cee auz (S)> =2

for any s€ V then the projection f :Ig — X is generically étale.

ProoOF. We can choose a local parameter system u;, up such that some
two coordinate functions are u;+d; and ux+d, (d,d» € K). Therefore,

essentially, the forms of the standard local basis vy,...,v; are 3 types:
=01 0 -+ 0 wuy+dy w+d, * -+ %)
n=@0 1 --- 0 * * ¥ e )
=0 0 --- 1 * * k oee %)
vo=(1 0 -+ 0 u+d * SRR
vp=0 1 --- 0 * w+dy * *)

=0 0 --- 1 * * koo %)
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vo=(1 0 - 0 w+d * % - %)

vp=0 1 -+ 0 wytd, * * - %)

=0 0 --- 1 * ko ke %)
The first type satisfies rank (2% 2%) = 2. This means the differential of
the adapted parameterization q;; V2>< AT X s surjective at a point

. Jvy 0
(5,1,0,...,0). Next we consider the second type. If rank (% %) =2 or
1 Oup

dvy 0 .

ank <£ %) =2 then we have nothing to prove. Hence we may assume

1 Ouy

0 0 0vy 0 . . .

o _ oo _ 0. Then rank o o) _ 2. This means the differential of

dur  Ouy ouy Oup

@V x AM! = X is surjective at a point (s,1,1,0,...,0). Finally, we con-

. . 0 0 0 0

sider the third type. We may assume ﬂ:ﬂ:O and ﬂ:ﬂ. If
o1 Ov: dvn Ov: auz 5141 6u1 5142

ank | — — ) =2 or rank(———) =2 for some i>2 then we have the
Ouy Quy ouy Ouy

result. If not, then the rank condition is not satisfied. We complete the

proof. O

EXAMPLE 5.2. We set char K =2 and u, v coordinates on A’. Let
B < G(1,4) be the closure of the image of the regular morphism A*> — U; such
that the standard local basis is written by

vo=01 0 u wo>+u* 0)
vp=0 1 v u’v’ v*).

We have the variety X =\ ),_,E < P*. We can check that B determines the
unique uniruling, the rank condition (x*) in Theorem 1.1 is not satisfied and the
projection from the incidence correspondence of B to X is not generically étale.
The defining polynomial F of X is X1 X3+ X$X1 X3 + X§ X5 Xa + X[ X} +
XGXPX}X;. Therefore, the Gauss map on X is given by

(6F/6X0 : aF/aXl : 6F/6X2 : 5F/5X3 : 6F/0X4)
=(0: X3+ XOX?+ XPX} + XEXEXFXE:0:0: X§X7)
=(0:5>(su+)%*:0:0: s%(su+ 1)°)

=0:0*:0:0:1)
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at [svo + tv]) € X.  Therefore the Gauss map does not depend on s, t. The
uniruling is developable.

6. Cases of higher dimensional bases

In this section we treat higher dimensional bases. We give two examples:
bases giving developable uniruling without (xx), and non-developable uniruling
with ().

EXAMPLE 6.1. We set char K =2 and u, v, w coordinates on A>. Let
B = G(1,5) be the closure of the image of the regular morphism A’ = U; such
that the standard local basis is written by
vo=01 0 u v u* v?
vp=0 1 w w2 0 u).

We have X = UEeBECPS' We can check that B determines the unique
developable uniruling, the rank condition (xx) in Theorem 1.1 is not satisfied and
the projection from the incidence correspondence of B to X is not generi-
cally étale. The defining polynomial of X is F = XoX5 + XoX? X3 + X{ X7 +
X13X42 +X02X12X5. The Gauss map on X is given by

(GF/(?XO : 6F/6X1 IaF/aXz : 6F/6X3 : 6F/6X4 : 6F/6X5)
= (X5 + XPX? + X3X}F XPX7:0:0:0: X7X7)
=0 :u*:0:0:0:1)

at [svo + tv1) € X. The Gauss map on X does not depend on s, t. Hence, the
uniruling is developable.

ExXAMPLE 6.2. Let r >3, char K = p > 0 and uy,...,u, be coordinates on
A", Let Bc G(k,k+r+1) be the closure of the image of the regular mor-
phism A" — Uy such that the standard local basis is written by

=01 00 - 0 w wy - U_3 U] 0 ul)
n=0190 -~ 0w 0 --- 0 0 w1 u)
n=00 01 -0 0 0 -~ 0 0 0 u?)
w=0 020 -1 0 0 -~ 0 0 0 ub).

We have X =\, ,E < P*""'. We can easily check that B determines a
uniruling, the rank condition (xx) in Theorem 1.1 is true, and the projection from
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the incidence correspondence of B to X is not generically étale. The defining
polynomial F of X is XoXpyr — X1 Xizr—1. The Gauss map on X is given by

<6F . 0F )
0Xo 0Xipr
2~k+r-2

——
= Xpar: —Xpr—1:0:---:0: =X : Xp: 0)

= (tuf : —tottp—y :0:---:0: =11 : 8 : 0)

at (l() Tl g U Uy s toUp - TUp— L Up— Zouil + - +Zkuf71) eX.
This map depends on ty, t;. Hence this uniruling is not developable. (But, X is
a cone with the vertex L: Xy = X1 = Xiir—1 = Xiwr =0, and with the induced
(k 4+ r — 2)-dimensional space ruling, X is developable.)

PrROBLEM 6.3. Find a condition for developability when the projection
I — X is not generically étale.

7. The fibers of the Gauss maps

In characteristic 0, the generic fibers of the Gauss maps are linear sub-
spaces ([3, Corollary 4.4.12]). This is based on the result that the contact locus
is a linear subspace (see [2], [5] for definition). This implies that varieties with
degenerate Gauss maps are ruled by Gauss fibers. We call this Gauss fiber
ruling.

REMARK 7.1. Now we give the Gauss fiber ruling if char K =0. Let

X <P be a closed subvariety of dimension n, X* < P((AN™)") the dual
variety and let 0 be the dimension of X*. We have the following rational maps:

the Gauss map y: X -—>G(n,N) = G*(N —n—1,N),

[vo], .-, [vN=n-1] : P(X) ——> X* given by a local basis

U0y .-y UN—p—1 : G*(N —n— 1,N) - (AN+1)*,

the Gauss map y* : X* - G*(0,N),

a local basis wy,...,ws: G*(d,N) — (ANTH*,
These give the rational maps V;;=wjoy*o[v]oy: X — (AN™Y* for i=
0,...,N—n—1, j=0,...,6. The linear subspace {{V;;|j}> < (AN gives
the equations of the contact locus of [v;] € X*. The Gauss fiber of a general
point E € y(X) is the intersection of the contact loci of [vo(E)], ..., [vnN-u-1(E)].
Hence, let r = dim y(X), then the image of the rational map

X -G (N—n+r—1,N)=G(n—rN)
x = P({ Vi (x) |4, /1))

gives the Gauss fiber ruling.
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In positive characteristic, this is not always true. We give an example
which does not admit Gauss fiber ruling.

EXAMPLE 7.2. Let char K =3. We consider the hypersurface X in P>
given by F = XZ% — (Y + Z% + WOYW. For a general point (x: y:z:w)e X,
the tangent space given by z°X — (y®+z8+wO)W =0. The intersection
of X and this plane is the line X = W =0 and the plane curve z°X —
(PO + 20+ wOW = (2 +w2)Z2 - 22(Y2+ W?)=0. If X is uniruled, then
there is a leaf which contains the point (x:y:z:w) and is contained in this
plane. Hence, X can not be uniruled.
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