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ABSTRACT. We study the homotopy type classification problem of n dimensional m-
twisted complex projective spaces for the case n =4. In particular, we determine the
number of homotopy types of m-twisted CP*’s when m > 1 is an odd integer.

1. Introduction

Let n > 2 be an integer and let M be a simply-connected 2n dimensional
finite Poincaré complex. For an integer m >0, M is called an m-twisted
CP” if there is an isomorphism H,(M,Z) = H.(CP",Z) with the condition
X3 - X2 = mxy4, where xy, € H* (M,Z) =~ Z denotes the corresponding generator
(k=1,2). Any m-twisted CP" is homotoy equivalent to a CW complex of the
form

M ~ S?U,,, e*Ue®U---Ue?Ue®  (homotopy equivalence),

and it has the homotopy type of 2n dimensional closed topological manifolds
([6]). Let .47 be the set consisting of all the homotopy equivalence classes

of m-twisted CP"’s.  For example, when n = 2, .#? = {[CP*]} and .4 = & if
m# 1. When n =3, the following result is known:

THEOREM 1.1 ([I1] (cf. [4])). If m =0 is an integer,

_[1 if m=1 (mod?2),
)={ .

. dﬂfﬁ
card( 3 if m=0 (mod?2),

m

where card(V') denotes the cardinal number of a set V.

In general, it is known that ,/%,311‘“ # ( for any m,k > 2 (cf. [2]), and we
have infinitely many non-trivial examples of m-twisted CP**’s.  On the other
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hand, it is even not known whether .//,2”" is an empty set or not if m # 1 and
k =2. As the first step of this question, we would like to study the set .#,, for
the case n =4. Then if (a,b) denotes the greatest common divisor of positive
integers a and b, the following result has been known.

THEOREM 1.2 ([6]).

) If m=0, 3 <card(./}) <2732

i) If m=1 (mod?2), 1 <card(.#%)<m-(m,3).
) If m=0 (mod8) and m # 0, 3 <card(./}) <2%-3-m-(m,3).
) If m=0 (mod2) and m#0 (mod8), .4, = .

In this paper we shall investigate the set .#; when m =1 (mod 2), and
our main results are stated as follows:

THEOREM 1.3 (The main Theorem). Let m > 1 be an odd integer, and let

My, My, M_, denote the m-twisted CP*’s defined in Definition 4.

(i) If m#0 (mod3), .4 — {[My]}.

(i) If m=0 (mod3), .#3 = {[My],[Mi],[M_]}, such that the first mod 3
reduced power operation P':H*(M,,Z/3) — H*(M,,Z/3) is an iso-
morphism if ¢ = +1 and is trivial if ¢ = 0.

COROLLARY 1.4. If m>1 is an odd integer,

1 if m#0 (mod3),

card(./4y,) = (m,3) = {3 if m=0 (mod 3).

REMARK. Let m >3 be an odd integer with m =0 (mod 3), and let
o/, denote the mod p Steenrod algebra. Although M; and M_; are not
homotopy equivalent, there are isomorphisms

H*M,,Z)=H*(M_,,Z) (as graded rings)
H*M,,Z/p) = H*(M_1,Z/p) (as o/,-modules for any prime p > 2).

This paper is organized as follows. In §2, we compute some Whitehead
products and in § 3, we consider the group of self-homotopy equivalences &(X,,)
of the 6-skeleton X;, of m-twisted CP*’s. In §4, we study the left &(X,,)-action
on 77(X,,) given by composite of maps, which is the key point for determining
the homotopy types of m-twisted CP*s. In particular, we determine the set
,/%fn explicitly when (m,6) = 1. Finally, in §5, we compute the &(X,,)-action
on 77(X;,) explicitly and determine the set .#* when (m,6) = 3.

2. Whitehead products

For an integer m > 1, let L,, and P*(m) denote the CW complexes defined
by Ly=S*Up,e* and P*(m)= S?U,, e*, respectively. If q:L, — Ly,
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denotes the 2-connective covering of L,,, it is known that there is a homotopy
equivalence L,, ~ P*(m)v S° ([13]). If we identify L,, = P°(m) v S°, then the
map ¢ is also identified with the map

(1) q=(fou,bm) : P*(m)vS> - L,  (up to homotopy).
It follows from [[6], Lemma 3.3] that there is a homotopy commutative di-

agram

’
mi3 D

S PAm) §4

S3
I N M
S3

mn i n
82— L, — S,

where two horizontal sequences are cofiber sequences.

Let weng(S’)=Z/12 and o(3) = 4w e n6(S*)3) = Z/3 denote the
generators. If m =0 (mod 3), we denote by &(3) € n7(P*(m)) the coexten-
sion of o;(3) which satisfies the condition ¢,, o a1(3) = Eo;(3).

Lemma 2.1 ([6], [11])). If m =1 is an odd integer, there are isomorphisms

7[5(Lm) Y bi717 5(P4(m)) =0,
m6(Lm) = Z/(m,3) - i.(ny0 w) ®Z/m - fryo 6 @ L/2 - by 015,
ns(P*(m)) = Z/(m,3) -i' cw ® Z/m - 7,
w7 (L) = Z/(m,3) - fn 0 0 @ L2 - by 003 @ Z/m - b, i (1)),
7 (P*(m)) = Z/(m. 3) - o,
where we can take w,, = a1(3) € {i’,mi3,0,(3)} if m=0 (mod 3).
ProOF. The assertions follow from [6] except the last equality. If

m =0 (mod 3), by the proof of [[6], Proposition 2.9], the induced homo-
morphism

Z)3 - @, = n7(P*(m )) A (P (m), §%) & my(DY,S%) = Z/12
is injective, where o, € 74(P*(m), S3) =~ Z denotes the characteristic map of the
top cell e* in P*(m). Because 4'(Ew) = m(i3 o @) in the sequence (5) of [6], we

have ¢,, o w,, = Ex;(3) and the condition w,, = «1(3) € {i’,mi3,0:(3)} is also
satisfied. O

DerFmNiTION 1. For an integer m > 1, let X, be the space defined by
X,y = L,,U,, €% There is a cofiber sequence, S° —=% Ul L, X, — SS.

'm

Lemma 2.2 ([6]). If m>1 is an odd integer, there are isomorphisms

{ﬂs(Xm) =Z/(m,3) - ju(iu(ny 0 ©)) @ Z/m - j(fin © 0),
71 (Xn) = Z -9,y @ Z/(m,3) - ju(fin © Om) @ ZJm - ji([bm, - (1)),
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and the following equality holds:

(3) jl*((pm> = [ﬂryn i]r +ﬂm ° ’7g
Here B, € (X, Lim) = Z denotes the characteristic map of the top cell e°
in X, [,], a relative Whitehead product, 5] € m2(D**!,S¥) = Z/2 the gen-

erator (k>3), ji1:(Xu,%) = (Xm,Lm) is the inclusion and j. :77(Xy) —
71 ( X, Lin) = Z - [f,,1), ®L/2 - B, 0 n§ the induced homomorphism.

LemMa 2.3. If m=1 (mod2), [by,i. ()] = [[bm,i],i] € 77(Lm).
Proor. It follows from the Jacobi identity ([[10], Corollary 7.14]) that
[[bma i]’ l] + Hlv l]abm] + [[17 bm]’ l] =0.

Because [i, ;] = [bm, i), we have 2[[by,, i],i] + [[i,i],bm] = 0. Then using [i,i] =
io[n,n] =i.(2n,) = 2i.(y,), we have

2[bm, 1], i) + 2t (1), bn] = 2[[bm 1], 1] = 2[bm, ()] = 0.

Since the order of [by,,i.(n,)] is just m (by [[6], Corollary 3.5]) and
m=1 (mOd 2)’ [[bWHlLl] - [bm’i*(rh)] = 0. (l

LEmMA 24. If m=1 (mod?2), fi,00 = [by,i]+ byonsens(Ln).

Proor. It follows from [[6], Proposition 5.1] that there is a unit
Xm € (Z/m)* such that [b,,i] =Xy fmoo+byons. Since the order of
o € ng(P*(m)) is m ([8]), by changing the generator ¢ — x;,'g, we may assume
that x,, =1 and the assertion follows. O

CorOLLARY 2.5. If m=1 (mod?2), [fo0,i] = [bui(n)]

Proor. It follows from Lemmas 2.3 and 2.4 that

(4) [ © 0,i] = b, 1(12)] + [bm © 15, 1]

Since the orders of [b,,i.(n,)] and ¢ are m, we see [b, ons,i] =0 and the
assertion follows. ]

Now we remark the following general fact concerning m-twisted CP*’s.

LEMMA 2.6. Let m >0 be an integer and M an m-twisted CP*. Then if
m#0 (mod 3), 2': HY(M,Z/3) = H3(M,Z/3) is an isomorphism.

Proor. If yye H?(M,Z/3) ~Z/3 denotes the mod3 generator

(1<1<4), (y2)> =mys, y2-ys=mys and (y4)> = y2- y6 = ys by [[6], (0.2)].
Hence, 2'(y2) = (12)° = (mys) - y2» = m*ys = +ys and
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m- 2" (ya) = 2 (mys) = 2" ((32)*) = 202 - 2" (12) = £202 - y6 = Fos.
Because m # 0 (mod 3), this implies that 2!(y4) = +ys. O

3. Groups of self-homotopy equivalences

For a connected space X, we denote by &(X) the set consisting of all
based homotopy classes of based self-homotopy equivalences of X, which
becomes a group whose multiplication is induced from composite of maps.
The group &(X) is called the group of self-homotopy equivalences of X.

DeriNiTION 2. If K is a CW complex and X = KUye” with dim K <
n—2, we define the homomorphism A : j,(7,(K)) — &(X) by

!

Mjog)=Vo(lvjog)on : X s xv s 12

Yvx Y. x

for g € m,(K), where j: K — X denotes an inclusion, z/ : X — X v.§" the co-
action map given by pinching the hemisphere of the top cell ¢” and V is a
folding map.

If 0: X > X is a homotopy equivalence, it follows from the cellular
approximation Theorem that the restriction 0| also defines a self-homotopy
equivalence on K. So we can define the homomorphsim ¢ : &(X) — &(K) by
the restriction ¢(0) = 0| for 0 e &(X).

ProposITION 3.1. If m>1 is an odd integer, there is an exact sequence
A ¢
NG(A/m) - O(A/m) - ’)(Lm) — 1,
where we take Zy = {+1} and &(L,,) = Z,.

ProOF. Because j.(ns(L,;)) = m6(Xn), the assertion easily follows from
the Barcus-Barratt Theorem [[1], Theorem 6.1] and [[11], Corollary 4.8]. [

4. An action of &(X,,) on 77(X,,)

For CW complexes X and Y, we write X ~ Y if there is a homotopy
equivalence X — Y. Let M(gp) denote the mapping cone defined by

(5) M(p) = X,, U, e* for ¢ € n7(Xp).
Recall the following well-known result.

LemMmA 4.1 (Homotopy Theorem). Let K be a simply-connected CW
complex and let X, Y denote the CW complexes defined by X = K Uye" and
Y=KUge", where dm K <n—2,n>4 and f,g€n,_1(K). Then there is a

homotopy equivalence X ~ Y if and only if there is a homotopy equivalence
0 e &(K) such that 0o f = +g.
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THEOREM 4.2 ([6]). Let m =1 be an odd integer. Then M is an m-twisted
CP* if and only if there is some element y e m;(L,,) such that M ~ M(p) =
XUy b, where 9 = ¢, + j.(7).

Proor. This follows from [[6], Theorem 4.5] and the homotopy exact
sequence of the pair (X, L,). O
So it is useful to consider the left &(X,,) action on n7(X,,) given by the
composite of maps, &(Xy,) X 77(Xu) 2 (0,0) — 00 ¢ € w7(Xn).
LemMmA 4.3. Let m > 1 be an integer and ¢ € n7(X,,) be an element such
that ji.(¢) =a- [, 1], +&- P, ons for some (a,e) e L x LJ2. Then
ﬂ;((ﬂ) :on(0+a[j67jXOjoi]+8'j607767

where X, kLS X, v SO 2S5 denote the corresponding inclusions, ' : X, —
X, vS® is a co-action map and . :mi(X,) — n7(X, v S®) is the induced
homomorphism.

Proofr. This follows from [[12], Lemma 2.2]. O

COROLLARY 4.4. If m > 1 be an odd integer, the following equalities hold:
(1) @) = jx 0 @+ Us, jx © jo il + je o 116.
(i) @l (Ge[bm; 2(m2)])) = Jix © Ji([bms E:(72)]).-
(i) 1f m=0 (mod 3), 1(j.(i-(ny 0 ®))) = jx 0 ju(i.(1; 0 ®)).

ProOF. The assertions follows from (3) and Lemma 4.3. O

DeFINiTION 3. Let m > 1 be an odd integer and let A: j.(ms(Ly)) —
&(X,) denote the homomorphism defined in Definition 2. Then define the
homotopy equivalence 6, € £(X,,) by

(6) Or = (k- ji(fno0))) for each ke Z/m.
Similarly, when m =0 (mod 3), we define 0, € £(X,,) by
(7) 0, = (- j.(is(nyow)))  for each I e Z/3.

ProrosiTION 4.5.  If m > 1 is an odd integer, the following equalities hold
for any (k,1)eZ/m x Z/3:
@) {0t = KBl

Ok © J[bms i(12)]) = Je (b, 12 (112)]).-
(ii) If m=0 (mod 3),

{ 010 Py = O 070 Ji([bimy 1:(1)]) = Jie([bm, £(12)]),
91/ © ]*(fm o wm) = 0k oj*(ﬁﬂ o a)m) = ]*(fm o wm)
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Proor. (i) It follows from Corollary 4.4 that we have

Ok © jo[bm, ic(n2)] =V o (1 v (k - ji(fm © 0))) © t([bm, 1 (1))
=Vo(lv(k-jo fmwoa))o jxo jl[bm,i(n)])
= j*([bma i*(’?z)])~

Since f,oo0n, =0 (by [6]), we also obtain

Ok 0 ¢ =V o (1v(k: ju(fino0)))o ey
=Vo(lv(k:j(fmno0))) o (jx © @+ s jx o joil+ jsone)
=tk j(fmoo),joil+k- j(fmooons)
=tk ju[fmoa,il])
=@, + k- ji([bm,ix(1,)]) (by Corollary 2.5).

(i) Because the proof is similar to that of (i), we only give the proof of
the first equality. This follows from

0109y =Vo(lv(l-ju(is(ny 0 ) o f(p,)
=Vo (v (l-j(i(ny 0 ®))) o (jx © @y + [jos jx © j o i] + j6 © 1)
=@+ [ ju(ix(ny 0 @), joi]l + 1+ ju(is(in, 0 o))
=+ 1 jlis(lnown]))  (by inyowons) =0)
=0,  (by [1om,n]=0 (by [3])). O

DEerINITION 4. Let m > 1 be an odd integer. Then we denote by My the
m-twisted CP* defined by

(8) MO = M(wm) = Xm U(/’m 68-

Moreover, when m =0 (mod 3), we denote by M; and M_; the m-twisted
CP*s defined by

(9) MS = M(wm +e- ]* (ﬁ” o CUm)) = X U¢r71+£'j*(j;r1owm) 88 (fOI' &= il)
Tueorem 4.6. If m=1 (mod2) and m #0 (mod 3), .#* = {[M]}.

Proor. We note that .%;‘1 # & by Theorem 1.2. Now let M be any m-
twisted CP*. It suffices to show that M ~ M,. Since M(—¢) ~ M(p) by
Lemma 4.1, it follows from Theorem 4.2 that there exists some k € Z/m such
that M ~ M(p,, + k - ji([bm,i(5)])). Then because
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Ok O Py = Py + k ]*([bma l*(772)]) (by Proposition 45)a

Mo = M(¢,,) = M(g,, + k - ju([bm, i.(12)])) =~ M. O

COROLLARY 4.7. Let m =1 be an odd integer.
(i) If m#£0 (mod 3), there is an exact sequence

0 — 76(Xm) 2> E(X) 2 Zy — 1,

where n6(Xn) = Z/m.
(i) If m=0 (mod 3), there is an exact sequence

0= Z/m® Gp 5 EXp) > 2y — 1,
where G, =17Z/3 or G, =0.

Proor. (i) It suffices to show that 1: Z/m - j.(fi 0 0) = n6(X) — (X))
is injective. If we write 0, = A(k- j.(fmoo)) (as in (6)), it follows from
Proposition 4.5 that Oy 0@, # 6,09 if k #1€Z/m. Hence, O # 0, if k #1¢€
Z/m, and 1 is injective.

(i) The same proof as that of (i) shows that Al ;. 1 Z/m:
Ji(fmoa) — &(X,,) is injective. Because 76(X,y) =Z/m- j.(fnoo)®Z/3-
Je(ix(my o)), Ker A=27Z/3- j.(i.(n,0ow)) or KerA=0. Then (ii) follows
from Proposition 3.1. ]

PrROPOSITION 4.8.  If'm > 3 is an odd integer with m =0 (mod 3) and M is
an m-twisted CP*, then M ~Mg or M ~M,; or M ~M_, holds.

Proor. Because 77(Xy) =Z - ¢, ®Z/m - ji([bim, i(1,)]) ®Z/3 - j(fim 0 ®),
by Theorem 4.2, there is a homotopy equivalence

M = M(p,, + k- jo(lbsic(02)]) + 1 e (fon 0 0)) = Mics
for some ke Z/m and / € Z/3. Then by Proposition 4.5,
Ok © (@ + 1+ ji(fm 0 0m)) = Ok 0 9y + 1+ O 0 ju(fn © Om)
= @+ k- julbm, i (m)]) + 1+ ji(fin © Om).
Hence, there is a homotopy equivalence M ; ~ M, ;. Then because

M, ifl/=0eZ/3,
Mo’[: M] lleIGZ/3,
M_, ifl=-1=2€eZ/3,

the assertion follows. [l
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5. The case m =0 (mod 3)

From now on, we assume that m >3 is an odd integer with
m =0 (mod 3), and consider the &(X,)-action on 77(X,).

We remark that (by Corollary 4.7) there is a homotopy equivalence
0 e &(X,,) such that 6 1, = represents the generator of &(L,)=Z,. In
this case, because &(X,,) is generated by {Hk,ﬁl’,é:k €Z/m,l € Z/3} and the
actions of 0’s or those of 0;’s are given in Proposition 4.5, it remains to
consider the action of § on n7(X,). For this purpose, we recall self-homotopy
equivalences /; and 0. First, recall i;. Because

(10) (=12) 0 (mmy) = m(=n, + [12,2] 0 H(n))
=m(=1n, + (2115) 0 13) = mip,

by [[10]; page 537, (8.12)], there is a map /4, : L,, — L,, such that the following
diagram is homotopy commutative:

RCIN LN SR (RN
w T
CIN LN S G )

Then the following is known:

Lemma 5.1 ([11]). Let m =1 be an odd integer.
(i ) h1 € é)(Lm) and éa(Lm) = {hl,idLm} = <h1 |h% = idLm> =~ 7.
(ii) The degree of hy on S* is —1 and the that of it on e* is +1.
(iii)  hy o by = —by,.

If m=1 (mod2), it follows from Proposition 3.1 that there exists a
homotopy equivalence 6 € &(X,,;) such that
(12) i, - h.

We note that 6 also defines a self-homotopy equivalence on (X, L), and we
write it as the same letter 4.

LEMMA 5.2. Let m >3 be an odd integer with m =0 (mod 3).
(1) qoﬂm = _ﬁm'
(ll) 9 Oy =0 mOd Im ]*

ProOF. (i) If xy € H**(X,,,Z) =~ Z denotes the corresponding generator
(k=1,2,3), x2- x4 = mxg. Hence, the degree of § on the top cell e® on X, is
—1 (by (ii) of Lemma 5.1). So it follows from the commutative diagram
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Z. ﬁm = 77:6(AmeLm) %} HG(Xm7L111; Z) ‘L Hé(Xm; Z) =7

i | [

Z- ﬂm = n6(Xm7Lm) ]NI > H6(Xm7Lm; Z) <—jl* H6(X11; Z) ~7Z

Il

e

that we have fof, = —f,.
(i) Consider the induced homomorphism ji.(X,,) — 77(Xn, Lyy). Then
because

jl*(éo (pm) = é*(fl*(¢m)) = é*([ﬁma i]r +ﬁm o ’7;) (by (3))
= [éoﬁm7h1 © l]r + éoﬁm o ’7§

(=B =], + (=Bw) o Eny (by (i), (11))
= [ﬁmv i]r + B0 77; = jl*((”m)v

the assertion (ii) follows form the exact sequence of the pair (X, L,). [

LemMmA 5.3. There exists a homotoy equivalence hp € (5”(P4(m)) such that
hl Oﬁn = fm OhP with /’lp|s3 =13.

Proor. Consider the fibration sequence,

PHm)vsS L K(Z,2).

Since (f,bm) is a 2-connective covering of L,, we may assume that the
map 1:L,, — K(Z,2) represents the oriented generator of [L,,, K(Z,2)]
H?(L,y,Z) =Z. Now we define the involution v:Z — Z by v(n) = —n. It
induces a self-homotopy equivalence v € &(K(Z,2)). Here, because hi|s =
—15, b} : HX(Lyy, Z) = H*(L,,, Z) is given by hi(x) = —x for x € H*(L,,Z)
Z. Hence, vor=10h; (up to homotopy). So there exists a self-homotopy
equivalence /; € &(P*(m) v S°) such that the diagram

I

I

PHmyvsss Uil K(z,2)
illl: hll: ﬁl:
Pimyvss Uil K(z,2)

is homotopy commutative, where horizontal sequences are fibration sequences.
Now we define the map /p: P4(m) — P4(m) by hp=mp ohyoip, where
ip: P*(m) — P*(m)v S® and np: P*(m) v S® — P*(m) denote the natural in-
clusion and the natural projection, respectively. By chasing the diagram, we
can see h, € é”(P“(m)) and that f,, 0hp =hyo f,.
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On the other hand, it follows from the diagram (2) that f,|s: = #,.
Hence, using hy|g. = —1, and (—1,) oy, = 1,, we can choose the map /p such
that /1p|53 = 13. O

LemMA 5.4.  If m is an odd integer with m =0 (mod 3), we may choose the
homotopy equivalence 0 € &(X,,) such that

(13) 0o, =0, +ln js(fuown)  for some I, /3.

Proor. It follows~from Lemma 5.2 that there exists a pair (k,/,)€
Z/m x Z/3 such that, 609, =@, + k- j[bm,i(12)]) + b - j(fin © Om).
If we take ¥ = 60_, 00 € &(X,,), by Proposition 4.5, we have

Yogp,=0 0000,
=0_ 0 (@ + k- ji([bims ix()]) + L - Ji(fn © Om))
=0_r 0@, +k-0_k0 ji([bumis(12)]) + b - O 0 ji (S © Om)
=@ =k jul[bm, (1)) + k- ji([biny 8(172)]) + L - i (Son © Om)
= @+ b+ J(fn © Om).

Then because~x//| 1, =M, we can change the generator y — 0, and we may
assume that 6 € &(X,,) satisfies the equality (13). ]

LEMMA 5.5. Let m =3 be an integer such that m =0 (mod 3).
() G0 (b, ic(02))) = ([, ().
(i) 0o ji(fm o ®m) = ju(fin © Om).

ProoF. (i) Since fo j= joh (by (12)), we have

00 ji([bmy i (m)]) = jilh1 © by 1c(12)]) = Ju([hr © by iy 0 i 0 1))
= ju([=bm,io (—12) o 1)) (by Lemma 5.1 and (11))

(i) Since éoj = johy, it suffices to prove that Ay o f,, o @, = f, o w,.
Then it follows from Lemma 5.3 that we have hj o f, 0w, = fiu0hpow, =
f;ﬂ o (13) oWy = fm O Wy ]

LEMMA 5.6. Let m >3 be an integer such that m =0 (mod 3).
(i) If by #0€Z/3, [Mg] = [My] = [M_4] in 42
(i) If by =0€eZ/3, [Mg] # [My], [M;] # [M_y] and [M_,] # [My] in 43 .

REMARK. So we can determine the set .#} completely if we know
whether /, =0 or not. In fact, [, =0 holds and this will be proved in
Theorem 5.8.
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Proor. (i) If I, #0€Z/3, I, = +1. Then because

{ 000, = pp + ju(fwown) (by (13)), and
0o ((pm i ]*(fm o wm)) =0 1 j*(ﬁn o wm)a

it follows from Lemma 4.1 that we obtain [Mo] = [M;] = [M_;] € .#2.
(i) If [, =0, by using (13) and Proposition 4.5, we have

{ 00 @y # £(Pm £ s (fin 0 0m)),
0o (((pm + ]*(fm o wm)) # i((ﬂm - j*(fm o wm))

for any 6 € &(X,,). Hence, by Lemma 4.1, [My] # [M,], [M;] # [M_;] and
[M_1] # [Mo] in .42, O

LEMMA 5.7. Let m > 3 be an odd integer with m =0 (mod 3) and let M
be an m-twisted CP*.
(i) There is a homotopy equivalence

M/S? ~ S*vSOU, et = N(ng) for some ngeZ/12,

where y = ig 0 v4 +igong+ng-is 0 Ew € n7(S*v S®) and iy : ' — §*v §°
(I =4,6) denotes the corresponding inclusion.

(i) In this case, P':7Z)3=~H*(M,Z/3) — H}(M,Z/3)=7Z/3 is iso-
morphism if ng £0 (mod 3) and it is trivial if no =0 (mod 3).

Proor. (i) Since S¢*:H*(M,Z/2) — H%(M,Z/2) is trivial by [[6],
Proposition 4.1], there is a homotopy equivalence M/S* ~ S*v S°U, 8 = N,
for some yen7(S*Vv S8 =Z - igovi ®Z/12-isEc ®Z)2 - ig 0 15

Since N_, ~ N,, without loss of generalities, we may suppose that

y=a-igova+ng-iso Ew+e-igong (a=0€Z,npeZ/12,eZ/2).

If x5y € H(M,Z) = Z denotes the corresponding generator (I = 2,4), since M
is an m-twisted CP*, the equality x; - x4 = +xg holds. Hence, by the solution
of Hopf invariant one problem, we have a =1. Moreover, it follows from
(6], Lemma 4.2] that S¢?:Z/2=H(M,Z) > H8(M,Z/2) = Z/2 is an iso-
morphism. Then if ¢: M — M/S?> ~ N, denotes the pinch map, because
N,/S* ~ S8U,,, €, it follows from the commutative diagram

HY(M,Z/2) —L— HS(N,,Z/2) —— HO(S5U,,, ¢%,2/2) =~ Z/2

Sq? l = Sq? l Sq? J/

HY(M,Z/2) <~ HY(N,,Z/2) —— H3(SSU,,, ¢*,2/2) ~ 7,2

that we obtain ¢ = 1. Therefore, (i) is proved.
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(i) By (i) we may assume that M/S?= N(ng). It follows from the
solution of mod 3 Hopf invariant one problem that

2! 7)3 =~ H*(N(ny),Z/3) — H*(N(no),Z/3) =~ Z/3

is an isomorphism if ny # 0 (mod 3), and it is trivial if np =0 (mod 3). Then
the assertion (ii) follows from the following commutative diagram.

»!

H4(M,Z/3) LA HY(M,Z/3)
q*T” q*TN
7)3 =~ H(N(no), Z)3) —2— HY(N(no),Z/3) = Z,/3. 0

THEOREM 5.8. Let m >3 be an odd integer with m =0 (mod 3).
(1) [Mo] # [Mi), [Mo] # [M_1] and [My] # [M_] in .4z}
(i) A, = {[Mo],[Mi], [M_1]}.
(iii) If we choose the free generator ¢, € n;(X,,) suitably,

P! 7)3 ~ HYM,,Z/3) — H3(M,,Z/3) = Z/3
is an isomorphism if ¢ = +1 and it is trivial if ¢ =0.

Proor. (i) It follows from Lemma 5.7 that there is a homotopy
equivalence

Mo/S? ~ S*v S®U,e® = N(ng)  for some nge Z/12,

where y =ig0vy+ng-iso Ew+ igong € n7(S* v S°).

Now we recall the definition of {M;,M_|,My}; My =
M(p,, £ ji(fmown)) and Mo = M(p,,). If we consider the induced homo-
morphism

¢, Z)3 0, =n;(PYm)) = n7(SY) =Z- v ®Z/12 - Ew,

because ¢, (wn) =4Ew = Ex;(3) (by Lemma 2.1), we may assume that there
are homotopy equivalences

(14) M;/S*~N(ko+4) and M_;/S*~ N(ko—4).

Because ko +4=ko+ 1 (mod3), one of AN = {ko,ko—4,ko+4} is zero
mod 3 and the other two numbers of ./ are both non-zero mod 3.

Hence, by Lemma 5.7, there is some & € {0,1,—1} such that 2! :Z/3 ~
H*(M,,Z/3) — H®(M,,Z/3) =~ Z/3 is trivial if ¢ = & and an isomorphism if
ee{0,1,—1} and & # ¢.



156 Kohhei YAMAGUCHI

So [M,] # [M,,] in 4% if & #¢& €{0,1,~1}. Then by Lemma 5.6,
[Mo] # [My], [My] # [M_y], [M_y] # [My] in .4z,

(i) The assertion (ii) follows from Proposition 4.8 and (i).

(iii) We note that 77(X,,) =Z-9,, ®Z/3- j.(fnown) ®DZL/m- by, i.(1n,)].
Then if we change the free base ¢,, by ¢,, — ¢,, + & - j.(fin © ©n), the assertion
(iii) is also satisfied. [

Now we can complete the proof of Theorem 1.3.

PrOOF OF THEOREM 1.3. The assertion (i) follows from Theorem 4.6, and
the assertions (ii), (iii) follow from Theorem 5.8. O

Finally we compute the action of @ on 77(X,,) explicitly.

THEOREM 5.9. Let m =3 be an odd integer with m =0 (mod 3). Then
the left action of 0 on n1(X,,) is determined by the following:

H:Oj*([bm’i*(nz)]) = s ([bm, ic(12)]),
0 o j*(fm o wm) - ]* (fm o wm)7

éo Pm = Om-
Proor. It follows from Theorem 5.8 and Lemma 5.6 that [, =0.
Hence, the assertion follows from Lemma 5.5 and (13). O
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