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Stable maps between 2-spheres with a connected fold curve

Shin-ichi Demoto

(Received March 19, 2003)

(Revised October 13, 2004)

Abstract. Stable maps between 2-dimensional spheres, whose fold curve is connected

and its image is simple with minimal number of cusps, are classified for every degree

db 2.

1. Introduction

We deal with the following problem.

Let M and N be connected surfaces and f : M ! N a smooth map. Then

is there a map h : M ! N which satisfies the following conditions?

1. h is a stable map.

2. h is homotopic to f .

3. h has a connected fold curve.

4. The set of critical values of h has the smallest possible number of

singular points.

Furthermore, how many such maps are there?

By Pignoni [8] the form for the set of critical values of such a map h

is determined when N ¼ R2. In this paper we determine the form for the

maps f : S2 ! S2 with deg f ¼ db 2. More precisely, we show that the set

of critical values of such a map has 2d cusps and no self-intersections.

Furthermore we give the number of their right-left equivalence classes. All

such stable maps are right-left equivalent in the case of d ¼ 2, but not in the

case of db 3.

The paper is organized as follows. In § 2 we define some notions, the

apparent contour, the irreducible contour and so on. We quote a theorem of

Quine [9] which will be used in § 3 and § 4. In § 3 we study the form for the

maps f : S2 ! S2 with deg f ¼ 2. Then we prove that all these maps are

right-left equivalent by using the result of [2] and the argument of [3]. In § 4

we generalize the argument to the case of deg f ¼ db 3.
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2. Preliminaries

Let M and N be compact, oriented and connected surfaces without

boundary. We denote by CyðM;NÞ the set of the smooth maps of M into N

with the Whitney Cy topology. For a smooth map f : M ! N, Sf denotes

the singular set of f , i.e., Sf is the set of points in M where the rank of the

di¤erential df is less than two. A smooth map f : M ! N is stable if there

exists an open neighborhood Nð f Þ of f in CyðM;NÞ such that every h in

Nð f Þ is right-left equivalent to f , i.e., there exist di¤eomorphisms f : M ! M

and c : N ! N satisfying h ¼ c � f � f�1.

Let f : M ! N be a stable map. Then for each point x in M, there exist

local coordinates ðx1; x2Þ centered at x and ðy1; y2Þ centered at f ðxÞ such that

f is given by one of the following local normal forms (see [10]):

ð1Þ ðx1; x2Þ 7! ðy1; y2Þ ¼ ðx1; x2Þ x: regular point;

ð2Þ ðx1; x2Þ 7! ðy1; y2Þ ¼ ðx2
1 ; x2Þ x: fold point;

ð3Þ ðx1; x2Þ 7! ðy1; y2Þ ¼ ðx1x2 � x3
1 ; x2Þ x: cusp point:

In this case Sf is called a fold curve and is divided into Sf ¼ Ff UCf , where

Ff ¼ fp A Sf j p is a fold pointg;

Cf ¼ fp A Sf j p is a cusp pointg:

A stable map between surfaces is also known as Whitney’s plane map or

excellent map. The following theorem is well-known.

Theorem 2.1. A smooth map f : M ! N is stable if and only if the

following four conditions are satisfied:

1. Sf ¼ Ff UCf .

2. f jFf
is an immersion with normal crossings.

3. f ðFf ÞV f ðCf Þ ¼ q.

4. If p; q A Cf and p0 q then f ðpÞ0 f ðqÞ.

Definition 2.2. The set of critical values of a stable map f forms a union

of finite closed curves and is called the apparent contour of f .

Let g be the apparent contour of a stable map h : M ! N. A point q A g

is said to be a self-intersection if there exist pa A Sh and pb A Sh such that
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pa 0 pb and hðpaÞ ¼ hðpbÞ ¼ q. Furthermore q A g is said to be a cusp if there

exists p A Ch such that hðpÞ ¼ q.

Definition 2.3. If the fold curve Sh is connected, g is called an irreducible

contour.

Let h : M ! N be a stable map which has an irreducible contour g. As

usual, we shall indicate with c the number of cusps, while n shall denote the

number of self-intersections.

Definition 2.4. Let f be a smooth map. By Theorem 4.8 of [1], there

exist stable maps which have irreducible contours and are homotopic to f .

If h has the smallest possible value cþ n among such stable maps, then the

irreducible contour of h will be called a minimal contour of f .

Let f : M ! N be a stable map. Let Mþ be the closure of the set of

regular points whose neighborhoods are orientation-preserved by f and M� be

the one whose neighborhoods are orientation-reversed by f . We notice that

Mþ and M� are compact surfaces with boundary and satisfy the following

conditions,

qMþ ¼ qM� ¼ Mþ VM� ¼ Sf and Mþ UM� ¼ M:

Now we define the sign for any cusp qk as in Figure 1:

signðqkÞ ¼
þ1 (if qk is a positive cusp)

�1 (if qk is a negative cusp).

�

Fig. 1. Sign of a cusp

Stable maps between 2-spheres 95



Then the following formula is proved by J. R. Quine.

Theorem 2.5 ([9]).

wðMÞ � 2wðM�Þ þ
X

qk A f ðCf Þ
signðqkÞ ¼ ðdeg f ÞwðNÞ

where w is the Euler characteristic, deg is the topological degree and Cf is the set

of cusp points.

Now, we assume that f is a stable map of a closed, oriented and

connected surface M into the 2-sphere S2, and that Sf is non-empty and

connected. Then Theorem 2.5 becomes

X
qk A f ðCf Þ

signðqkÞ � 2 deg f ¼ 2wðM�Þ � wðMÞ:

Since Mþ and M� are surfaces having the same circle as boundary by the

assumption that Sf is non-empty and connected, we get

wðMþÞa 1 and wðM�Þa 1:

Furthermore, since Mþ UM� ¼ M, we get

wðMÞ ¼ wðMþÞ þ wðM�Þ � wðS1Þ

¼ wðMþÞ þ wðM�Þ:

Then

wðM�Þ ¼ wðMÞ � wðMþÞ

b wðMÞ � 1:

Now we have

wðMÞ � 1a wðM�Þa 1:

Combining this with Theorem 2.5, we get

X
qk A f ðCf Þ

signðqkÞ � 2 deg f a 2 � 1� wðMÞ

¼ 2� wðMÞ

and
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X
qk A f ðCf Þ

signðqkÞ � 2 deg f b 2ðwðMÞ � 1Þ � wðMÞ

¼ wðMÞ � 2:

So, we get the following corollary.

Corollary 2.6. Let f : M ! S2 be a stable map of a closed, oriented and

connected surface M. If Sf is non-empty and connected, then

X
qk A f ðCf Þ

signðqkÞ � 2 deg f

������
������a 2� wðMÞ:

When the target of a smooth map is S2, the following theorem is known.

(For example, see [7, § 7].)

Theorem 2.7 (Hopf). Let M be an oriented, connected, and closed sur-

face and f ; g A CyðM;S2Þ. Then f and g are homotopic if and only if

deg f ¼ deg g.

3. Minimal contour of the map between spheres with degree two

The purpose of this section is to investigate the minimal contour of a map

f : S2 ! S2 with deg f ¼ 2.

Theorem 3.1. Let f : S2 ! S2 be a smooth map with deg f ¼ 2. The

minimal contour of f has exactly four cusps and no self-intersections.

Proof. Let h be a stable map which is homotopic to f and has a

connected fold curve. Since Sh 0q, we have

X
qk A hðChÞ

signðqkÞ � 2 � 2

������
������a 0

by Corollary 2.6. Then,

X
qk A hðChÞ

signðqkÞ ¼ 4:

So, the map which gives the minimal contour of f must have at least four

positive cusps. Then if we can construct a stable map h0 : S
2 ! S2 with

deg h0 ¼ 2 whose apparent contour has exactly four cusps and no self-

intersections, h0 realizes the minimal contour.

We can construct such an h0 as in Figure 2, where þ indicates the positive

orientation of S2 and � the negative one.
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Moreover, we have the following theorem.

Theorem 3.2. Let f ; h : S2 ! S2 be two stable maps which realize the

minimal contour. If deg f ¼ deg h ¼ 2, then f and h are right-left equivalent.

To prove this theorem, we use the result of [2]. Since we do not use the

argument of the branch point, we may apply the argument of [2] more easily.

Let g be an immersion with normal crossings of a finite set of oriented

circles into R2 ¼ S2 � fyg. Such a g is called a normal family of curves and

any double point q A R2 is called a node. Note that the set of nodes on a

normal family is a finite set.

Let g be an immersion of S1 into R2. We denote by tðgÞ the degree of

the following map:

S1 C y 7! g 0ðyÞ
kg 0ðyÞk A S1:

We shall call it the turning number of g. If the source of g is a union of finite

Fig. 2. Construction of h0 r
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circles S1
i ð1a ia nÞ, tðgÞ is the sum of the turning numbers of the restricted

maps gjS 1
i
.

Now let q be a node of a normal family g in R2, and let gq denote the

normal family obtained from g by cutting through q. That is, we exchange the

two exiting subarcs of g at q as in Figure 3. Note that tðgÞ and tðgqÞ are

equal to each other.

If every node of a normal family is cut through, the new curve family gl

consists of a finite collection of mutually non-crossing closed oriented Jordan

curves, and tðgÞ ¼ tðglÞ. We shall call these curves the Gaussian circles of

g. They are also known as Seifert circuits in knot theory.

Let a be a finite family of rays on S2 concurrent at the point y. That is,

a is the image of a finite set of closed radii of an embedding of a disk into S2,

with center going to y (see Figure 4).

Such an a is called a raying for a normal family g, provided that they lie in

general position. That is, if x is a common point of g and a, then

(1) x0y,

(2) x is not a node of g,

g gq

Fig. 3. Cutting through q

Fig. 4. A family of rays concurrent at y
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(3) x is not the initial point of the ray through x,

(4) g intersects a transversely at x.

Any raying a of g is said to be su‰cient if there is at least one crossing on

each member curve of g, and at least one crossing on each Gaussian circle in

gl which is negatively (¼ clockwise) oriented in the plane S2 � fyg.
Let Xðg; aÞ denote the set of crossings of g and a. For x A Xðg; aÞ, ax

denotes the ray through x, and gx the closed curve in the family g that passes

through x. We say x is positive if gx crosses from the right-hand side to the

left-hand side of ax oriented to y at x, and we say x is negative otherwise

(Figure 5).

Among the permutations on X ¼ Xðg; aÞ, by a pair on X we shall mean a

transposition ðx; yÞ that interchanges two crossings of opposite sign on the

same ray with the condition that the negative crossing separates the positive

crossing from the initial point (Figure 5).

Let S denote the successor permutation that takes each crossing x into the

next succeeding crossing xS on gx in the orientation of gx. (In the example of

Figure 6, S ¼ ða1; a2; a3; a1; a2; a3Þ, where a1, a2, a3 are positive crossings and

a1, a2, a3 are corresponding negative ones. The succeeding crossings are

denoted as aS
1 ¼ a2, aS

2 ¼ a3 and so on.)

We say a permutation P on X is a pairing if P is a product of disjoint

pairs. (In Figure 6, P ¼ ða1; a1Þða2; a2Þða3; a3Þ is such an example.) Let Px

denote the transposition which is a part of P including x. Let us call a pairing

P on X ðg; aÞ e¤ective if it has exactly as many pairs as the negative crossings.

Let P ¼ P1P2 be the product of the two permutations P1 and P2. That is,

if y ¼ xP1 and z ¼ yP2 then z ¼ xP:

gx ¼ gy

Fig. 5. A pair ðx; yÞ
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When we decompose S into disjoint cyclic permutations, each of them acts

transitively on the crossings on some connected component of g. If the

operation of the permutation P is transitive on the set of connected components

of g, we say that P is transitive on S.

Proposition 3.3 ([2, Proposition 2]). Let g be a normal family of closed

curves, a a su‰cient raying and

r: number of closed curves in g;

t: turning number of g;

n: number of negative crossings in Xðg; aÞ;
S: successor permutation;

P: pairing which is e¤ective and transitive on S;

z: number of the disjoint cyclic permutations in R ¼ SP; and

m ¼ nþ t� z: expected number of the branched points.

If m ¼ 0, then there exists an immersion GP : MP ! R2 ¼ S2 � fyg of a com-

pact, oriented and connected surface MP of genus ð2þ n� r� zÞ=2 such that

GPjqMP
¼ g, where the orientation of qMP is induced from that of MP.

Remark. Let z 0 be the number of the disjoint cyclic permutations in

R 0 ¼ PS. Then, z 0 ¼ z because R and R 0 are conjugate. So, we will identify z 0

and z from now on.

Now we consider an immersion G : M ! S2 � fyg of a compact, ori-

ented, connected, bordered surface M. Suppose that g ¼ GjqM forms a nor-

mal family. We get a pairing P by the following construction. Let a be a

su‰cient raying for g. Note that for each negative crossing a A Xðg; aÞ, there
exists a unique lift âa A G�1ðaÞV qM of the point. The point âa A G�1ðaÞV qM

must terminate at a unique border point âa A qM for a positive crossing a ¼

Fig. 6. An example
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GðâaÞ. Thus G uniquely determines an e¤ective pairing P such that Pa ¼ ða; aÞ
for each negative crossing a, when a su‰cient raying a for g is given.

Proposition 3.4 ([2, Proposition 4]). Let G be an immersion into

S2 � fyg of a compact, oriented, connected, bordered surface M such that

g ¼ GjqM is a normal family of r closed curves with turning number t. Let a

be a su‰cient raying for g with n negative crossings in X ðg; aÞ. Let S be

the successor permutation induced by ðg; aÞ and P the e¤ective pairing induced

by G. Then P is transitive on S and there is an orientation-preserving dif-

feomorphism H : MP ! M such that GP ¼ G �H, where MP and the immersion

GP : MP ! R2 ¼ S2 � fyg are those of Proposition 3.3. Moreover, m ¼ nþ
t� z must be equal to 0.

Now, let us prove Theorem 3.2.

Proof of Theorem 3.2. Let f : S2 ! S2 be a stable map with deg f ¼ 2

such that f has a connected fold curve, and that the apparent contour g of f

has exactly four positive cusps, but no negative cusps nor self-intersections. By

the structure of cusps, the number of points in the preimage increases by þ2 at

each crossing as in Figure 7 and hence the apparent contour as in Figure 7

does not occur. So, the apparent contour of f must be as in Figure 8, where

we take y outside the star-like quadrilateral whose boundary curve is the

apparent contour.

Now let Uy be a su‰ciently small open neighborhood of y such that

f ðSf ÞVUy ¼ q, where Uy is the closure of Uy. Since deg f ¼ 2, f �1ðUyÞ
consists of:

Fig. 7. Contradicting two cusps

Fig. 8. Apparent contour on S2 � fyg
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Case (1) two open discs which are orientation-preserved by f , or

Case (2) n open discs which are orientation-preserved by f and n� 2

open discs which are orientation-reversed by f (nb 3).

Case (1): We divide the source sphere of f into some parts. Since

f �1ðUyÞ consists of two open discs, f is divided as in Figure 9. Now we look

at a neighborhood of the fold curve Sf and the corresponding neighborhood

of the apparent contour g. Since the four positive cusps are connected as in

Figure 8, the behavior of f around these neighborhoods should be as in Figure

10. Dividing f in this way, we get four parts of f as in Figure 11, where the

source of the second part from left is a surface with three border circles. In

fact, the simple closed curve Sf in the annulus in the source sphere of Figure 9

is isotopic either to one as in Figure 11 or to one parallel to the boundary.

But we see that the latter case does not occur by considering the orientation of

the parts.

Fig. 9. The division of f

Fig. 10. The neighborhood of four cusps
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Among the four parts of Figure 11, we have only to consider the second

part from left because the other three parts are clearly understood. To apply

Proposition 3.3, let us regard the image of the boundary closed curves of this

part as a normal family g. The orientation of g is given such that the number

of the inverse points increases from right-hand side to left-hand side. Let a be

a su‰cient raying as in Figure 12 and define the crossing points,

Xðg; aÞ ¼ fa; b; c; d; a 0; b 0; c 0; d 0; a; b; c; dg:

Note that a, b, c and d are negative crossings and the other points are positive.

The successor permutation is given as

S ¼ ða; b; c; dÞða 0; b 0; c 0; d 0Þða; b; c; dÞ:

Fig. 11. The subdivision of f into four parts

Fig. 12. g and a
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The numbers in Proposition 3.3 are given as

n ¼ 4; r ¼ 3 and t ¼ �1:

Since we can change g by di¤eomorphisms of its source and target, we

have only to consider the following four e¤ective pairing types as in Figure

13:

P1 ¼ ða 0; aÞðb 0; bÞðc 0; cÞðd 0; dÞ;

P2 ¼ ða; aÞðb 0; bÞðc 0; cÞðd 0; dÞ;

P3 ¼ ða; aÞðb; bÞðc 0; cÞðd 0; dÞ; and

P4 ¼ ða 0; aÞðb; bÞðc 0; cÞðd; dÞ:

a) Type 1 (P1): The pairing P1 is not transitive on S. So this type

cannot be realized by an immersion of a connected surface by Proposition 3.4.

b) Type 2 (P2): Since R 0 ¼ P2S ¼ ða 0; b 0; c; d 0; a; b; c; d; a; b; c 0; dÞ, the

number of disjoint cyclic permutations in R 0 is z 0 ¼ 1. Then

m ¼ nþ t� z 0 ¼ 4� 1� 1 ¼ 20 0:

So, there is no immersion by Proposition 3.4.

Fig. 13. E¤ective pairings P1, P2, P3, and P4
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c) Type 3 (P3): Since R 0 ¼ P3S ¼ ða 0; b 0; c 0; dÞða; b; c; dÞða; b; c; d 0Þ, we get

z 0 ¼ 3. Then,

m ¼ nþ t� z 0 ¼ 4� 1� 3 ¼ 0:

By Propositions 3.3 and 3.4, we get a uniquely determined immersion

G : MP3
! R2, where MP3

is of genus ð2þ n� r� z 0Þ=2 ¼ 0 and has r ¼ 3

border circles so that MP3
and the source of the second part in Figure 11 are

di¤eomorphic.

d) Type 4 (P4): Since R 0 ¼ P4S ¼ ða 0; b; c; d; a; b 0; c 0; d; a; b; c; d 0Þ, we get

z 0 ¼ 1. Then m ¼ 20 0. So there is no immersion by Proposition 3.4 as for

Type 2.

As a result, we get an immersion G : MP3
! R2 only for Type 3. Note

that this immersion G : MP3
! R2 can be identified with the map h0jS 1�½0;1� in

Figure 2. In addition, by Proposition 3.4 all such maps are right equivalent

to each other, i.e., for any such map G 0 : MP 0
3
! R2, there exist an orientation-

preserving di¤eomorphism c : MP 0
3
! MP3

satisfying G 0 ¼ G � c. Therefore,

the original map f : S2 ! S2 is reconstructed by attaching smoothly and

uniquely these four parts and we see that such maps are all right-left equivalent

to each other.

Case (2): We will exclude this case. We can divide the source 2-sphere

of f in four parts. We see that the position of Sf is as in Figure 14 for d ¼ 2

by the orientational reasoning. As we saw in the case (1) we have only to

consider the immersion of the second part from left in Figure 14 (which

corresponds to Figure 11 with the number of the surrounding circles increased

by n� 2). Let g be the image of the family of boundary closed curves.

To get a su‰cient raying of g, we modify Figure 12 by adding ðn� 2Þ
more surrounding circles. Immediately, we get

r ¼ nþ 1; t ¼ n� 3 and n ¼ 4:

Fig. 14. The four parts
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In order to have an immersion, m ¼ nþ t� z must be equal to 0 by Prop-

osition 3.4, that is, z ¼ nþ t ¼ nþ 1 ¼ r.

We consider the positive crossings on each surrounding circle. Because P

is transitive on S, at least one positive crossing should be interchanged with

some negative crossing on the innermost circle by P. In order that the number

of disjoint cyclic permutations in R 0 ¼ PS is equal to z 0 ¼ z ¼ nþ 1 ¼ r, at

least one more crossing on the same circle should be interchanged by P,

because any cyclic permutation in S rotates the crossings along the same

surrounding circle or the innermost circle. So, at least two crossings on each

surrounding circle are in P. Hence, 2na n ¼ 4, that is, na 2. This means

that case (2) does not occur. r

We may get this conclusion more easily: If nb 3, there is no immersion

of the rightmost surface in Figure 14 such that the bordered circles are mapped

to parallel n� 1 circles in R2 ¼ S2 � fyg with the same orientation, because

there is no e¤ective pairing in this case. But the above argument will be a

good exercise to understand the next section.

4. The case of deg f b 3

We generalise Theorems 3.1 and 3.2 for the case of deg f b 3.

Theorem 4.1. Let f : S2 ! S2 be a smooth map with deg f ¼ db 2. The

minimal contour of f has exactly 2d cusps and no self-intersections.

Let f : S2 ! S2 be a stable map with deg f ¼ db 2. Since db 2, we get

Sf 0q from the theory of covering spaces. So, assuming that Sf is con-

nected, we see

X
qk A f ðCf Þ

signðqkÞ � 2 � d

������
������a 0

by Corollary 2.6. Then we get

X
qk A f ðCf Þ

signðqkÞ ¼ 2d:

Hence we have at least 2d positive cusps. We will construct a stable map

f : S2 ! S2 with deg f ¼ d whose apparent contour has exactly 2d cusps and

no self-intersections so that f realizes a minimal contour. As in the case of

deg f ¼ 2, a minimal contour g can be assumed as in Figure 15, and we take

y outside the star-like 2d-gon bounded by g.
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Now, let Uy be a su‰ciently small open neighborhood of y such that

f ðSf ÞVUy ¼ q, where Uy is the closure of Uy. Since deg f ¼ d, f �1ðUyÞ
consists of n open discs which are orientation-preserved by f and n� d open

discs which are orientation-reversed by f (nb d). By using an argument

similar to the proof of Theorem 3.2, we divide the source 2-sphere of f into

four parts as in Figure 14.

In the four parts in Figure 14 except the second part from left the map can

be clearly defined in the case n ¼ d. Let g be a normal family of closed curves

and a a su‰cient raying as in Figure 16 for nb d. We assume now that there

is an immersion of the second part from left such that the bordered circles are

g. We will show n ¼ d and get further conditions.

In Figure 16, we get

r ¼ 1þ n;

t ¼ n� 2d þ 1;

n ¼ 2d:

Here, m ¼ nþ t� z must be equal to 0 by Proposition 3.4, that is,

z ¼ nþ t ¼ nþ 1:

Fig. 15. Minimal contour g with 2d cusps in S2 � fyg

Fig. 16. g and a
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So, in particular r ¼ z ¼ nþ 1. By using an argument similar to the proof of

Theorem 3.2, we see that there must be at least two pairs in P for each of the n

surrounding circles, because P must be transitive. Then we get

2na 2d;

and hence

da na d; that is; n ¼ d:

The argument shows moreover that there are exactly two pairs in P for each

surrounding circle.

Hereafter we treat only the case of n ¼ d. Hence g has d þ 1 closed

curves and R 0 ¼ PS should have d þ 1 cyclic permutations. To simplify the

argument we regard the neighborhood of the 2d cusps as a regular 2d-gon or a

circular 2d-gon as in Figure 17.

For a pairing P, we connect two vertices of the 2d-gon by an arc (or by

a line segment for the circular 2d-gon), if the two corresponding negative

crossings on the innermost circle are transposed to crossings on the same circle

by P as in Figure 18. Note that a change of order of the d surrounding circles

corresponds to a di¤eomorphism of the source manifold and we can ignore it.

Fig. 17. 2d-gon

Fig. 18. Expressing a pairing by connecting the vertices of a 2d-gon ðd ¼ 4Þ

Stable maps between 2-spheres 109



Definition 4.2. Any crossing of two line segments connecting vertices on

the circular 2d-gon is called a bad crossing. See Figure 19.

Let g be a normal family of closed curves and a a su‰cient raying as in

Figure 16 with n ¼ d surrounding circles. Then we get the following lemma.

Lemma 4.3. Let P be an e¤ective and transitive pairing on the successor

permutation S determined by ðg; aÞ. Then, there is an immersion GP : MP !
R2 ¼ S2 � fyg with GPjqMP

¼ g if and only if the circular 2d-gon diagram has

no bad crossings.

Proof. Let us consider the cyclic permutations for R 0 ¼ PS. Take an

initial starting crossing point on a surrounding circle and apply R 0 on it

repeatedly. Note that one application of R 0 gives rise to the 2d-th positive

rotation on the rays. Only in the case that the starting crossing in each step

is in a pair of P, the crossing on the innermost circle and that on the relevant

surrounding circle are interchanged before the 2d-th rotation. In order that

z ¼ d þ 1, we must go back to the initial starting point within one full

rotation. If we do not have bad crossings, then it is easy to check that

z ¼ d þ 1 and there is a desired immersion bounded by g by Proposition 3.3.

If we have some bad crossings, then we first consider only the lines with

bad crossings on the circular 2d-gon. We can find at least one region bounded

by a circular arc and two lines with bad crossings. Then as an initial starting

point we take the crossing on the surrounding circle corresponding to the initial

point of the circular arc on the boundary of the selected region. (See b in

Figure 19 for example.) Since we have just two pairs in P on each sur-

rounding circle, it is impossible for that crossing to go back to the initial

starting point within one full rotation. So, z < d þ 1 and there is no im-

mersion bounded by g. r

Fig. 19. Example with a bad crossing
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Proof of Theorem 4.1. We already know that the minimal contour g

is as in Figure 15. We divided the source manifold S2 into four parts and

we saw that in case n ¼ d we have only to consider the second part from

left in Figure 14. Since we have a circular 2d-gon with d disjoint lines

which connect two vertices for each d, we get a desired immersion and get

a stable map f : S2 ! S2 with degree d that has g as its apparent con-

tour. This completes the proof of Theorem 4.1. r

By the proof of Theorem 4.1, we obtain that the minimal contour

of a smooth map f : S2 ! S2 of degree db 2 is as in Figure 15. Fur-

thermore, the right-left equivalence class of a stable map that gives the

minimal contour corresponds to the pattern obtained by connecting vertices

of the circular 2d-gon (with a fixed radius) without bad crossings, where

we admit revolving and reflecting the 2d-gon. Note that a rotation or

a reflection of the regular 2d-gon corresponds to a di¤eomorphism of

the target manifold. Complete lists of the patterns without bad crossings

modulo congruence in the case d ¼ 2; 3; 4 and 5 are given in Figure 20.

Fig. 20. Lists of the patterns without bad crossings
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Theorem 4.4. Let f : S2 ! S2 be a smooth map with deg f ¼ db 2. Let

nðdÞ be the number of congruence classes of the plane figure patterns, where a

plane figure pattern is a unit circular 2d-gon with d disjoint lines segments which

connect two vertices. Then the number of the right-left equivalence classes of the

stable maps homotopic to f which realize the minimal contour as in Figure 15 is

equal to nðdÞ.

Furthermore, for a given pattern as above, let us consider each area

in the unit circle divided by the line segments to be a vertex, and connect

two vertices if the corresponding regions are adjacent. Then we get a plane

tree.

In fact, (1) any plane tree determines a patterns unique up to rotation and

(2) two patterns are congruent if and only if the corresponding plane trees are

plane-equivalent or mirror-plane-equivalent. So, by using the theory of plane

trees, we can get a method to calculate nðdÞ. If the reflection of a plane tree G

with respect to a line in the plane is plane-equivalent to G, then G is said to be

achiral. Let us define the following functions:

gðxÞ ¼ 1� ð1� 4xÞ1=2

2
;

pðxÞ ¼ xgðxÞ;

aðxÞ ¼ x4

x2 � x3 � pðx2Þ ;

iðxÞ ¼ pðxÞ2 � pðx2Þ
2x2

;

tðxÞ ¼
 
x
Xy
n¼1

1

n

X
kjn

fðkÞgðxkÞn=k
!
� iðxÞ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

where fðkÞ is the ‘‘Euler f-function’’, the number of positive integers less

than k and relatively prime to k, with fð1Þ ¼ 1. Note that tðxÞ is known

to be the generating function for plane trees (Theorems 2 and 3 of [5],

formula (15.14) of [4]), and aðxÞ is that for achiral plane trees (formulas (6)

and (26) of [6]). Then, we get the following proposition by which we can

calculate nðdÞ numerically. Note that our tðxÞ is denoted by bðxÞ and not by

tðxÞ in [6].

Proposition 4.5. The number nðdÞ is equal to the coe‰cient of xdþ1 in the

Taylor expansion of ðaðxÞ þ tðxÞÞ=2 around x ¼ 0.

For examples, nðdÞ is equal to 1, 2, 3, 6, 12, 27, 65, 175, 490, 1473, 4588,

14782 and 48678 for d ¼ 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13 and 14 respectively.
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