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Bessel-type functions of matrix variables
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ABSTRACT. In the present work we compute explicitly a certain type of hypergeometric
functions of matrix variables given as an integral of a Gaussian-type kernel. In the
case of one variable, these functions are related to the modified Bessel function of the
third kind.

1. Introduction

This paper deals with explicit computations of certain type of hyper-
geometric functions related to the linear groups U(p,q) and Sp(2n,R). In
doing this, some integral formulas over the group of unitary matrices are
given. To be more precise, let us take the case of U(p,q).

IP

0 —I,
with p copies of (+1) and ¢ copies of (—1) along the diagonal. Define U(p,q)
as the set of invertible matrices g € M(n,C) such that gI, ,g* =1, ,, where
gt =g

For diagonal matrices @ := diag(o, ..., ,) and f := diag(f,...,f,), such
that o; + f8; # 0, we define

For pgeNand n=p+gq, let I, ,:= { } be the diagonal matrix

_gdfe 0 9)"!
Cp,q(aaﬂ) ::J e {[0 ﬂ](.‘/\) }dg

U(p,q)

Here “tr” means the usual trace of a matrix. If p = ¢ =1, we can easily show
that

Gl ) = cole+B)7 Ko+ ),
where K,(z) is the modified Bessel function of the third kind

A \'~1?
K(z) =\ | e 1+=-) ar
(2) 22F(v+%)Joe Jrz
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for Re(v+1) >0 and |argz| <n. As we can see, the function (,, is a
multivariate analogue of the modified Bessel function K,. To compute {, ,,
the main idea is to write {,, as an integral over the unit ball D, , :=
{ze M(p,q;:C)|det(, — zz*) > 0}, and to use the polar decomposition of
D, 4. In doing this, we also obtain the explicit formula of

()F()(S, T) = J etr(uSu‘T) du
U(m)
for S = diag(sy,...,8m,,0,...,0) and T = diag(¢y,...,tn,,0,...,0). Here U(m)
denotes the set of unitary matrices u € M(m,C). It turns out that (Fy(S,T)
was introduced by A. T. James in [JAMES, 1964] as a generalization of the usual
hypergeometric function (Fp(S) = e,

The Bessel-type functions under investigation play a crucial role in the
theory of random matrices, mainly when one needs to derive explicit formulas
for the correlation functions of the random variables (see for instance [BREZIN-
Hikawmi, 2001, BrEzIN-Hikami, 2003]).

The following notations will be used through out the paper. For a matrix

x we write x* = X' where x’ is the transpose of x. If x, x;,..., X, are complex
numbers, diag (x1,x,...,x,) denotes the diagonal matrix of size rxr.
—_——

If x and y are twéxrsquare matrices of size r xr and s x s, respectively,
expltr(x + )] stands for exp[tr(x)] exp[tr(y)] where “exp” is the exponential
function. For r,se€N, the element [, is the diagonal matrix diag[l,; —I],
where Iy is the N x N identity matrix. For re N, S, denotes the group of
permutations.

2. The U(p,q)-case
Let p,q e N, and assume that ¢ > p. We define
U(p,q) ={9€ GLn,C) gl 49" = 1pq}  (n=p+9q),

where GL(n,C) denotes the set of n x n-invertible matrices. For g =

C D
relations

A B
[ } e U(p,q), the defining condition of U(p,q) implies the following
a) AA*—BB* =1, () C=DB"'A!,

(

(b) CcC*-DD*=-1, (f) B=AC*'D"',
(c) A*4A—-C*C=1, (g) C=D"'B"A4,
(

d B*B-D'D=-], (hy B=A4"'C*D.
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For all a=diag(a,...,®,) with o; >0, and f = diag(f,...,B,) with
Bi >0, let

Gal0.B) = j exp|—tr(diagla, f](gg") )] dg.

U(p.q9)

A B

For g = {C D}’
a(AA* + BB*) a(—AC* — BD*)
p(—CA* — DB*) B(CC* + DD¥)

diagla, Bl(99") "' = [
Therefore, by the relations (a) and (b) we have
tr(diagle, B](gg") ") = tr(a(4A" + BB") + B(CC* + DD"))
=tr(a(244* —1,) + p(2DD* — 1,)).
Let D, , be the domain defined by
D, ={TeM(p,qC)|det(l, — TT") > 0}.

The measure du(T) = det(l, — TT*) "~ ?dT is the U(p, g)-invariant measure on
D), where dT is the Lebesgue measure on D, ,.
The map U(p,q) — D, , defined by

4 B T =BD"!
= — =
9=lc b

is an isomorphism. Using the relations (a),...,(g) and (h), we can write
AA* = (I, - TT*)"" and DD* = (1, - T*T)"".

Next, we write U(N) = U(N,0). It is well known that for all functions
U(p)

0 v (q)]
exists a function F#:D,, — C defined by F#(T) = F(g) such that

F defined on U(p,q), such that F(gk) = F(g) for all k e[ , there

| Fodg= [ FHTauT)
U(p.q) D

p.q

Therefore, if F(g) = exp[—tr(diag[a,ﬂ](gg*)_l)], there exists a complex valued
function F# on D, , such that

FA(T) = exp[—tr(a2(1, — TT*)"" = L] + B2(1, — T*T)"" — 1,])]
= exp[—tr(a(l, — TT*) (I, + TT*) + (I, — T*T) "' (I, + T*T))]

= exp[—tr(a+ f + 2a(I, — TT*) ' TT* +2(I, — T*T) "' T*T)).
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By [Hua, 1963], for T € D, ,, there exists u € U(p) and v e U(q) such that
T = udv, where

Al 0 0 0
A= ©o | eM(p,g;R)
0 Jp 0 0
and 1 >4 >4, >--->4,>0. Hence
TT* :udiag[lf,...,iﬁ]u*, T*T =v* diag[lf,...,lﬁ,O,...,O] v.
e he

Therefore F# can be written in terms of u, v and A as
F¥(T) = exp[—tr(a + B)] exp(—2 tr(u au(I, — A4 44Y))
x exp(=2 tr(v™'Bo(I, — A*A) ' A% 4)).

Consider the map ¢ : D, , — 1" taking each T € D, , to the collection of
the eigenvalues of v77* The image of the Lebesgue measure d7° on D, ,
with respect to the map ¥ is the measure on 1 given by

p
12 1272 2(q—p)+1
¢ Il (47 —47) ||/1i d;,
1<i<j<p i=1

for some constant ¢. Thus, the image of the measure du(T)=
det(l, — TT*)""dT is

P
(2.1) e [I -4 a7 da.
I<i<j<p i=1

Hence, the function {, ,(a, ) is given by

¢y 4(a,B) = c exp[—tr(a+ f)] J J exp(—2 tr(u'au(l, — A4*) ' A4%))

U(p) JU(q) 1
x exp(=2 tr(v' po(I, — A*A) "' A% 1))

P P
< I i=a A" =)+ ]] didud.
l<i<j<p i=1 i=1
Let
[ 242 24,
(2.2) A:=2(1, — A1*)' 44" = diag L=,
1 -4 1— lp

pxp
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and
242 24
(2.3)  B:=2(I,— A*A)' A" 4 = diag L —15,0,...,0
1-4 1 -2,
axq

. . : 2,2
It will be convenient for us to define new coordinates x; = . Then the
set ' ={A[1>4 >4 >--->1, >0} becomes the set (=4

= {diag(x1,x2,..., %) | X1 =X = -+ = x, = 0}.

The measure (2.1) in the coordinates x; has the form
,

c H (xi — xj) Hx? P dx;,
1<i<j<j i=1

and the function {, ,(a,f) can be written as

8y q(a,B) = c exp[—tr(a + p)] JU( ) JU< : L exp(—tr(u~'aud)) exp(—tr(v™'pvB))
»Ju

X H (xi — x))* ﬁxf’fp dx;dudb,

1<i<j<p i=1

where 4 and B are given by (2.2) and (2.3).
Now we turn our attention to the integral formula over U(p) and U(g).
For this we need to introduce some terminology.

For a multi-parameter ¢ = (#1,%,...,¢y), the Vandermonde polynomial
is defined by D(t)= [ (ti—¢t). Let £=(/,...,¢y) eN". The Schur
1<i<j<N

polynomial Sy(#,...,ty) is defined by

S/(Zl,...,ZN): ) <i,j<

For more details on Schur polynomials, we refer to [MACDONALD, 1979,
Chapter 1]. We also need the following lemma.

Lemma 2.1 (cf. [Hua, 1963], Theorem 1.2.1). Let the power series
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Then for all (y1,y2,...,yn) the following identity holds
i 4
det(fi(¥)1<ij<n = Z det(a?hg,gzv det(y/)1<ij<n
(1 >0>>0v >0
where £1,4(,...,{n are integers.

Now we are in position to compute the integral over the compact groups
U(p) and U(gq).

PROPOSITION 2.2. (i) For A = diag(xi,...,x,), and for a = diag(o, ..., a,),

we have

det(e*ﬁ“j)lgi,js;;

I i—x)(—o)

I<i<j<p

P
J eXp[—tr(uflauA)]du — (_1)p(p—1)/z H(’ Y
U(p) 11

(i) For B=diag(xi,x2,...,Xp;0,...,0), and for p = diag(B,,,...,B,),
we have

qxq

J exp[—tr(v™! fvB)]dv
U(q)

(_l)q(qfl)/Z ﬁ(’ —1)!
i=1
H (xi — x;) H (Bi = B;)

1<i<j<p 1<i<j<q
(=BT ()
lytq— lyq—
det(x) I
i)<ij<p e e
S T (=B ()
O>l> >0, > (/j—i-q—p)!
j=1
(=B1) (—=B,)
1 1
where {1,...,¢, are integers.

ProoF. (i) First, let us write the Taylor series of exp[—tr(u~'aud)] as a
series of Schur polynomials S,, in the form

o!
exp[—tr(u~'aud)] = dy ——S;(p(—u""auA)),
&2-2,20 (£ +9)!
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D(¢ +9)
D(9)
for the collection (zy,...,z,) of the eigenvalues of g. Therefore,

where £ = (/1,...,4,),0=(p—1,p—2,...,0), d, = , and p(g) stands

I(a,A) = JU( >exp[—tr(u_]azuA)]du
P

= Z d/(fj'!é)!JU(p) Sy (p(—u"'aud))du

Oh=20,20

= Z %S/(G)SA_A)-
o (4 !

O>2l,>

To obtain the latter equality, we used the following well known functional
equation

1
J o ey i = 1, (x)1(3)
U(p) l

where y, is the central function on U(p) whose restriction to the set of di-
agonal matrices in U(p) is equal to S, (see for instance [MACDONALD, 1979,
Chapter IJ).

Using the determinant formula of S,, we deduce

det(ocfjﬂ)_j) det(—x?+’)_‘j)

o! 1<ij<p I<ij<p
(O J—— shjs sijs
(@A) = 5D /12;)20 Grp-—Datp_2..14
/~ 4
B o! det(e/); <; j<p det(—=x;"); i i<,
D(a)D(— )/1>~~>/,,20 /1!/2! e /p!

Let

=0

(i _ (—=x)"

Using Lemma 2.1 where a; —> we obtain
!

det(e_x#j)lgi,jgp = det(fi(aj))lsi,js,n

4

—x; /
= Z det<( /")> det(ocf)lgﬂjgp.
1<i,j<p

l(1>>0,>0 J*

Therefore, statement (i) holds.
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(i) Let B=diag(f,...,B,) and let X = diag(xi,.
Using statement (i), we have

N T T R
axq
det(e™ ), _, ;.
exp[—tr(v™! fvX)]dv = ¢, SEE ,
JU(q) H (xi —x;) H (Bi —ﬁj)
1<i<j<gq 1<i<j<q

q
where ¢, = (1)) H(i—l |

Also, from the proof of statement (i), we
have
(2.4)
det(€7Xiﬁj)1§i,‘/£q 1 ( 1<z S\ I j<q 4
e pirer [ ot det ) sy
H (Xi =) /s Sy >4, >0 j=1 H (xi — x;)
1<i<j<gq <i<j

Now we set x, =0 in (2.4).

Then all terms with 7, > 0 vanish, and we get
(2.4)

|x4=0
=B o (=B
4
_ Z i_[i det(xi)lgg/qq s
o / q—1 ly-1 =1
H>>0 >0 j=1 (X, x])Hxi (_ﬁl) ( ﬂq)
1<i<j<q-1 i=1 1 1
=B)" - (=B
4—1
Z i—[i det(x; i< g1
H>>0, >0 j=1 /J (xiij) (*ﬁ1)({'71 (*ﬁq)/qfl
1<i<j<q-1 1 1
After substituting /; by /; + 1, we obtain
(2'4)\)@/:0
(=g g
/.
B Z i—I det(x/))<; j<q-1
OG>ty 120 j=1 (4 + 1! H (xi = x;) (_ﬂl)/"fI+1 /’)Z"’IH
1<i<j<g-1

1

Setting now x,_; = 0 and repeating this process (¢ — p — 1)-times, we arrive at
the following sum: if x, = 0,x,-1 =0

., Xp+1 = 0, then
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J exp[—tr(v‘lﬂvX)}dvm:.,,:xM:0
U(q)

a4 g P
H (B; _ﬂj) /’1>/2>Z->/,,20j11 (4j+q—p)!

1<i<j<q

(=BT ()

(BT ()

det(x?)l<ij<p
8 ;: (‘ﬁﬂqiﬁil (_ﬁq)tlfpfl ) -
H(x %)
(—B1) (_ﬂq)
1 1

(After the work on this paper was completed, we learned that the ar-
gument presented above for statement (i) was used earlier by G. Olshanski and
A. M. Vershik in [OLSHANSKI-VERSHIK, 1996].)

REMARK 2.3. The first statement of Proposition 2.2 can be proved in
a number of different ways. For instance, it can be obtained by using the
Harish-Chandra integral formula (some times also called HIZ integral)
[HARISH-CHANDRA, 1957], [GROSS-RICHARDS, 1989].  Another interesting way is
to obtain the integral formula over U(p) from the spherical function on
GL(p,C) by a passage to the limit. For more about the latest way described
above, and in a general setting of compact Lie groups, we refer to [BEN SaiD-
ORSTED, 2003].

Next we turn to the computation of {, ,(a,f). The proof of the following
lemma is obvious.

LEMMA 2.4. Let u be a measure on R. Then

|, et o b detfon (o) () o)

= N! det{JRﬂ(x)gm(x)dﬂ(x)} ;

k,m

whenever the right-hand side of the equation makes sense.

Using Proposition 2.2, the function {, ,(a, f) is given by
c exp[—tr(a + B)]

H (0 —oy) H (ﬁi_ﬂj)

1<i<j<p 1<i<j<gq

Cp,q(a,ﬁ) =
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(=BT ()

P

1
’ Z Hm (=gt (_ﬁq)qufl

H>>0,>0 j=1

(=51) (=8,)
1 1
det(e % - det x/’ . )4
% J ( )lsz,]Sp ( zz)lgz.,jﬁp H (xi _ xj)ZHXiCFP dx,~.
X H (x; — x7) 1<i<j<p i=1

1<i<j<p

Using Lemma 2.4, we deduce that

o l;
det(e™*), _. ._ det(x?),_. . P
J ( )ISl.jSP ( IZ)ISZ,jS]I ] [ (xi _ xj)2 l [xiqﬂa dx,-
X I | (x;i — x;) 1<i<j<p i=1

I<i<j<p

o0
= cdet (J e i xltaP dx)
0 1<i,j<p

I'(i+q-p+1)
=c¢ det( li+q—p+1
o; 1<ij<p

| G+ a— D)
= det( /,-+q—p+1 5
oL .o
i 1<i,j<p

where ¢ is a constant. Therefore

- c exp|[—tr(a + B)] u 1
) = IT -« II B-8) /1>.;,zog(f/+4*l?)!
1<i<j<p 1<i<j<q

(=)™ ()

(BT ()
li+q—p)
gyt g det<(q’f)>
i 1<i,j<p

(=B - (=B
1 1
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B ¢ expl[—tr(a+ f)]
B p
[T - [T B—p]Losr! o0z
1<i<j<p 1<i<j<q i=1
(=p) e (=g "
q
(=)o (=B
1
X (—.31)q_p_l (_ﬁq)q—ﬁ—l det<—//> .
o 1<i,j<p
(=B1) (=8,
1 1
LemMa 2.5 (cf. [Hua, 1963], Theorem 1.2.3). Let g>p>0. The
following identity holds
y?+ﬂ*P y$+ﬂ—P
yfpﬂrp yéﬁw
det( )l<1/<p yi]_p_] y;”"’l
1>>(,>0
1 Yq
1 1
I G—x) I bi—»
I1<i<j<p 1<i<j<q

q
H 1 —xi))

1 i=1

::]@.

i

Using the above lemma, we obtain the following explicit expression for

C[LQ'

THEOREM 2.6. Let ¢y be a constant. For a = diag(oy,...,0,) and p =
diag(py,...,B,) such that o; + B; # 0, the Bessel-type function {, ,(a,B) is given
by

gl ) = @ SR P)]

[1C:i+5)

i=1 j=1
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3. The Sp(2n,R)-case
Let

A B
Sp(2n,R) = {g = {E /f] e M(2n,C) | gl 9" = IW,},

where 4 € GL(n,C) and Be M(n,C). 4 B
A simple calculation shows that all elements {E /I] € Sp(2n,R) satisty
AA* — BB* =1, and A*A — B'B=1,.

For a diagonal matrix @ = diag(a,...,a,), such that o; # 0, we write

{ola) = j expl—tr(diagla; al(gg™)~)]dg.
Sp(2n,R)

RemMark 3.1. For n=1 and « >0
(i) = codo) ™K o (4a),
where K,(z) is the modified Bessel function of the third kind.
Let
D, = {T € Sym(n,C) |det(l, — TT) > 0},

where Sym(n,C) denotes the set of n x n-symmetric matrices. The Sp(2n,R)-
invariant measure du(T) on D, is given by du(t) = det(l, — TT) ""VdT,
where dT is the Lebesgue measure on D,.

Using the same method used in section 2, we can deduce that if

F(g) = exp[—tr(diagla, a](99") )], g€ Sp(2nm,R),
then there exists a function F¥ : D, — C such that
F*(T) = exp[-2 tr(a)] exp[—4 tr(a(l, — TT) ' TT)].

By [Hua, 1944], every symmetric matrix Z € Sym(n,C) can be written as
Z = udu’, where ue U(n) and A = diag(dy,...,4,) with 21 > > > 1, >
0. Therefore the function F# can be written as

F*(T) = exp|-2 tr(a)] exp[—4 tr(au(l, — 4%) "' A%u™)],

where A = diag(4y,...,4,) with 1 >4, >4 >-->4,>0 and ue U(n).
As in section 2, we consider the map {: D, — 1. The image of the
Lebesgue measure d7° on D, with respect to y is the measure on ¥ given by



Bessel-type functions 43

c I -4 f[z,- di;,
i=1

1<i<j<n

for some constant ¢. Thus the image of du(T) = det(l, — TT)7<"+1>dT is
n
c [T G- ]]u0-aH " Nda.
1<i<j<n i-1

Using the above notations and Proposition 2.2(i) for U(n), we obtain

(a(a) = c exp[—2 tr(a)] JU( : J exp[—4 tr(au(l, — A%) "' A%u*)]

n

< [ GF=a) a0 =) " Vddu

= c exp[—2 tr(a)] L{JU< )exp[—tr(au diag[xp,. .. 7xnht*)]du}

H (x; — x;)dx ... dx,.

1<i<j<n

:cexp[—Ztr(a)])J det(e™™), _; i dx1 ... dxy,
. <ij<

< <
H (OC,' — OCJ' hI=n
1<i<j<n
where
X = {diag(x1,x2,...,X4) | X1 = x2 = -+ = x,, > 0}.
To obtain the above second equality, we used the change of variable
4,7 : ,
X = 0 5. Since det(e ), _; i, = .5 &(7) [, e 0¥, where S, is the
— 2 =hL/>= n

i
group of permutations, then

_ ¢ CXp[—Z tr(a)} . — Oy Xi .
C”(a) B H (0(1' - O(j)0< ' J< gg(f)ge i

1<i<j<n

1 1
_ ¢ exp[—2 tr(a)} J L J Z g(f)gfr(l)*l o 531(1)+-»4+a1(n)*1 dé,...dé,

H (O(i - O(/) 0 0 zes,
1<i<j<n
_ cexp[-2 tr(a)] 1

— e 1') .
I -5 e (@) + %) - () -+ o)

I<i<j<n



44 Salem Ben SaiD

To finish the computation of {,(a), we need the following lemma.

Lemma 3.2 (cf. [Hua, 1963], Lemma 6.3.1).

1
E\T
Z ( )/r(l)(/‘r(l) + @) Gy + o+ L)

(VNN T (4 - 4)

1<i<j<N

Il «“+4

1<i<j<N

Using Lemma 3.2, the following theorem holds.

THEOREM 3.3. Let ¢y be a constant. For a = diag(oy,...,q,) such that
o; # 0, the Bessel-type function (,(a) is given by

exp[—2 tr(a)]

H (OC,‘—i—OCj).

1<i<j<n

Cn (a) = 0o
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