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ABSTRACT. The L? Sobolev-type inequality shows that the supremum of |u(y)| defined
on RY is estimated from above by constant C multiples of the L? norm of
(=4 4+ a®*)u(x). Among such constant C, the smallest constant is the best constant
Cy. If we replace C by Cj in the L? Sobolev-type inequality, then the equality holds
for the best function U(x). The aim of this paper is to find Cy and U(x) of the L?
Sobolev-type inequality. The Green function G(x — y) of partial differential equation
of elliptic type (—4 + a?)u(x) = f(x) defined on R¥ is an important factor in this paper
because Cp and U(x) consist of the Green function.

1. Introduction

Let N=1,2,3,..., a>0 and p,q > 1 satisfying 1/p+1/g=1. Let x=

(x1,X2,...,xy) € RY be an independent variable. We put the Laplacian:
A=0d + 02 02 oy, =2
= x1+ x2_|_...+ e x’_ﬁ_xi’

the surface area of N dimensional unit sphere [8, p. 517]:

2 2 2 4
C()N—m, w] = 24, Wy = LT, w3 = 4an,...

and the heat kernel H(x,1):
1 2
H(x,t) = ———¢ /() xeRY 0<t< ). 1.1
(0= ( ) (L)

ASSUMPTION 1.1. We assume that

{3)
max 1,? <p<oo.
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LemMA 1.2.  For any bounded continuous function f(x), the partial differ-
ential equation of elliptic type

(=4 +a®)u = f(x) (xeRY) (1.2)
has a unique solution
)= | Gle= s, (13)
where G(x — y) is the Green function. G(x) is given by
am:Le#m@nm (1.4)
a(N-2)/2
:WK<N—2)/2(0|XI) (1.5)
an—l/z

WKn—I/Z(aM) (N=2n+1)

4
(2n)n+1 |X|n

(n=0,1,2,...), (L6)

n

K, (alx]) (N=2n+2)

where K,(z) is the modified Bessel function (10, p. 170] as

i 1,(z) = 1,(2)

k(2) = 2 sin(vr)

(v¢Z),

K =Kol = ST -0 e,

Here, I,(z) is the modified Bessel function [10, p. 170] as

o0 z v+2n
Zn']" (v+n+1 )(2> '

n=0

COROLLARY 1.3. We enumerate G(x) in the case of N=1,2,3 as

1
B —0|X| frnd
3¢ (N =1),

G(x) = %Ko(cﬂx\) (N =2),

1

— e (N =3).
4nfx] € ( )
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We introduce the function space W7 and the L? norm | ||, as

1/p
WP ={u, due L"(R™)}, ||, = (J M(X)I”dX) ;
RN
where dx = dxidx, - - - dxy.

THEOREM 1.4. Under Assumption 1.1, for any ue WP, there exists a
positive constant C which is independent of u, such that the LP Sobolev-type
inequality

sup |u(y)| < C||(=4 +a*)ul], (1.7)
yeRY

holds.  Among such C, the best constant Cy = |G|, is

a(Nfz)qu

N © _ _ _
1G||¢ = J p ((N=220N=V (R ) o (r)) (1.8)

(2n>(N/2)q 0
If we replace C by C, then the equality holds for u(x) = cU(x), where ¢ is an
arbitrary constant and U(x) is given by

U = | |Gl 0)(6) . (19)

We refer to U(x) as the best function.

The L? Sobolev-type inequality (1.7) shows that the supremum of |u(y)| is
estimated in constant multiples of the L?” norm of (=4 + a*)u(x). The Green
function G(x — y) of (—4 + a*)u(x) is an important factor in this paper. The
best constant of (1.7) is given by the L7 norm of the Green function. The best
function of (1.7) consists of the Green function.

Applying N =1,2,3 and the formula in [10, p. 172] to (1.8), we have
Corollary 1.5.

COROLLARY 1.5. We enumerate ||G||J in the case of N =1,2,3 as

1
2 Tgatiy (N=1,1<g< ),
l o0
'G-q)
@ ey Ve

where I'(z) is the Gamma function.
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Furthermore, applying p = ¢ = 2 to Theorem 1.4, we obtain Theorem 1.6.
We note that N satisfies N =1,2,3 by Assumption 1.1.

THEOREM 1.6.  For any function u e W?, there exists a positive constant C
which is independent of u such that the L*> Sobolev-type inequality

sup |u(y)] < C| (=4 +a)ull, (N =1,2,3) (1.10)
yeRY

holds.  Among such C, the best constant Cy = ||G||, is

s W=D
> 1
1G5 = iz (V=2), (1.11)
1

If we replace C by C, then the equality holds for u(x) = cU(x), where ¢ is an
arbitrary constant and U(x) is given by

4%3(4)4 + e (N=1,x€eR),
X
Ulx) = %K_l(abd) (N =2, xeR?), (1.12)
1
%e*“l)“ (N =3, xeR?).

In our previous studies, we have the best constant of the L?> Sobolev
inequality corresponding to some differential equations with boundary condi-
tions. We enumerate its differential equations. Here, we introduce the char-
acteristic polynomial Py (z) = (z+a3)(z+al)---(z+a3,_;), where 0 < ay <
ay <---<ay_;. Let D=d/dx. We have the best constant of the L2
Sobolev inequality corresponding to Pi(—D?*)u= f(x) (xe (0,L)) [7, 22], its
discrete version [26, 27], Pr(—D?*)u = f(x) (x € (0, 0)) [6, 15, 18], P»(—D?)u
f(x) (xe(0,L)) [22, 25], Py(—D?*)u= f(x) (xeR) [1] and Py/(—A)u = f(x
(xeRY) [4, 5. Here, we also consider 2M-th order simple type (ap = - -
ay—1 = 0) differential equation on an interval (—1)” DMy = f(x) (x e (0,L))
[17, 20, 21, 23] and its discrete version [11]. Moreover, we extend the L?
Sobolev inequality into the L? Sobolev inequality corresponding to (—1) M pamy,
= f(x) (xe(0,L)) [2, 12, 13, 14, 19, 28, 29]. On the other hand, we have
the best constant of the L?> Sobolev-type inequality corresponding to Py (D)u =
f(x) (xeR) [3], Py(D)u= f(x) (xe(0,1)) with periodic boundary condition
[16], Py(—A)u= f(x) in an N dimensional torus [24]. In this paper, we

~—



L? Sobolev-type inequality corresponding to elliptic operator 91

extend the argument of the L? Sobolev-type inequality into the L? Sobolev-type
inequality. We have the best constant and the best function of the L? Sobolev-
type inequality corresponding to the second order partial differential equation
(=4 +a®)u= f(x) (xeRM).

This paper is organized as follows. In section 2, we explain the Green
function. The sections 3 and 4 are devoted to the proof of Theorem 1.4 and
1.6, respectively. In section 5, we state the relation between the L? Sobolev-
type inequality and the L?> Sobolev inequality.

2. Green function

In this section, we prove Lemma 1.2. First, we prepare Lemma 2.1 which
states the initial value problem of heat equation. Second, using Lemma 2.1,
we prove Lemma 1.2. Finally, we state the LY norm of the Green function.

LemMmA 2.1, For any bounded continuous function f(x) (x € RY), the ini-
tial value problem

VP

{(6,—A+a2)u:f(x) (xeRM, 0<t< ),
u(x,0) =0 (xeRY)

has a unique solution

u(x, 1) = J ’ Jteast(x — y,8)dsf (y)dy. (2.1)
RY Jo

PROOF OF LEMMA 2.1. If we consider u(x,?) = e “"'v(x, 1), then we have

IVP™

(6, — Mp=e"""f(x) (xeRY,0<1< ),
v(x,0)=0 (x eRY).

For x = (x1,X2,...,xy) e RY and & = (¢,&,...,¢y) e RY, using
N N
Exy=> &y, =& =) I,
J=1 Jj=1

we define the Fourier transform as
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Through the Fourier transform, IVP™ is transformed into

VP~
(0 + €10 = e[ (&) (eRM, 0< 1< ),
9(¢,0)=0 (EeRY).
IVP™ ™ has a solution as
0 = [ HG-9e™ (@), A=k
0

Through the inverse Fourier transform, the solution of IVP™ follows
from

v(x, 1) = LN Jo H(x—y,t— s)e”zs dsf (y)dy,

where H(x,t) is the heat kernel given by (1.1). Thus, the solution of IVP
is

u(x,t) = e “v(x,1)

t
= JRN Jo e’”2<H)H(x — y,t—s)dsf(y)dy

-1 J;e—a%mx ~ y,0)dof (y)dy.

Hence, we have (2.1). This completes the proof of Lemma 2.1. |

ProOF OF LEMMA 1.2. Taking the limit as t — oo for Lemma 2.1, we have
IVP — (1.2) and u(x,?) in (2.1) — u(x) in (1.3) and (1.4). So this u(x) is the
stationary function of u(x,#). In addition, (1.4) is equal to

1 © 2
G(x) = 71 e~ N2 M40 gy
(4m)N? o

Applying the above equality to the formula in [9, p. 291], we have (1.5). Sub-
stituting N =2n+1 and N =2n+ 2 into (1.5), we have (1.6). This completes
the proof of Lemma 1.2. |

LemMA 2.2.  Under Assumption 1.1, the LY norm of G(x) to the power of ¢
(1.8) holds.

ProoF oF LEmma 2.2. x is denoted by the polar coordinates
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x1 = rcos(0r),
Xy = rsin(0;) cos(6,),

x3 = rsin(6;) sin(6s) cos(6s),

Xn—z = rsin(6)) sin(6) - - - sin(fy—_3) cos(On-_2),
Xn—1 = rsin(6)) sin(6,) - - - sin(fy_2) cos(p),
xy = rsin(6)) sin(6,) - - - sin(fy_») sin(p),

O<r=|x|<0,0<6,0,....,00_2 <7, 0<p<2n).

Then, its Jacobian is

o(xt1,. -, XN) N-1(u N-2/: N-3 :
=r sin(6 sin (6 ---sin(Oy_7).
300, Oy ) (sin(61))™ “(sin(62)) (On—2)

Let the surface area of N dimensional unit sphere wy be

n 2n
wN:J J J (sin(61))Y " (sin(6,))Y 7 - - - sin(On_2)dpdOy_s - - - d6.
0 0 Jo

For (1.5), using the polar coordinates of x, we have

(N-2)/2)q
a _ _
[ 2P (i)

q_
HG”‘J o (2n)(N/2)q RY

((N=2)/2)q 0
a w (N -
- (2 )(N/Z)qNJO e 2)/2)‘1(1((1\’*2)/2(“”))%’]\] bdr
n

a(N72>quw

= WN/ZMN Jo g NN (K ) 5(E)) dE
T

If we rewrite ¢ as r, then we have (1.8).

Here, we investigate the condition of integrability of (1.8). For N =
1,2,3,..., using the formula in [10, p. 173], we have asymptotic expansion of
r— oo as

“p(dsly
/ = T+ 1
Kiny_o(r " ']"Nl—] 2/;’]_)0 (r — o).

In the case of N =2n+ 1, using the formula in [10, p. 172], we have



94 Hiroyuki YAMaGisHl and Yoshinori KAMETAKA

r_((zn—l)/2)q+2”(K(2,171)/2(r)) !

q
<\/§er> (n:())’
B p—(n=1/2)q+2n —rnl(n—l+]l 11\ s
\/;e Z]'(n_l—lejr] (n_ 9%y 7)
Jj=0

Thus, we have asymptotic expansion of r — 0 as

7((zn—1)/2)q+2"(K(2n,1>/2(”))q

~ \/g (n=0), (r—0).

const. p~ a2y — 1,23 ),

Hence, the condition of integrability of (1.8) are 1< g < oo in n=0 and
l<g<2H=: inn=1,23,.... In the case of N =2n+2, using the
formula in [10, p. 170], we have

rfnq+2n+1 (Kn(r)) q
r 21 I
rfnq+2n+1 [(1)n+lln(r) V+10g %)

(_1),1 0 1 I n+2j j l j+nl
2 ;ﬂ(nﬂ)! (2) <;k+;k>

q

n—1 s r 2j—n
+é (_1)/M<§) ] (n: 152535"')a

|
=0 o

where I,(z) is the modified Bessel function [10, p. 170] and y = 0.57721--- is
Euler’s constant. Thus, we have asymptotic expansion of r — 0 as

0 (n=0),
const. p=22+l (p=1,2,3, ),

r7”q+2"+1(Kn(r))q ~ { (r — 0),

where we use Iy(0)=1 and rlogr— 0 (r — 0). Hence, the condition
of integrability of (1.8) are 1 <g<oo in n=0 and 1 <g<2l=:Ain
n=1,2,3.... As a result, we have the condition of 1ntegrab1hty of (1.8)

as



L? Sobolev-type inequality corresponding to elliptic operator 95

2

{N:l,z = l<g< o,

N
N—345 : & max{l,—}<p<oo.
=349 = <:q<:pv__2

So, under Assumption 1.1, we have ||G|! < oo for N =1,2,3,....
This completes the proof of Lemma 2.2. |

3. L? Sobolev-type inequality
In this section, we prove Theorem 1.4.

ProOOF OF THEOREM 1.4. Exchanging x and y in (1.3) and using G(y — x)
= G(x—y), we have

u(y) = | | 6= )1

R N

For any fixed y € RY, applying the Holder inequality to the above relation and
using [|G(- — »)[l, = [Gll, and f(x) = (-4 +a®)u(x), we have

()| < 1GC = NN, = Gl (=4 + a®)ul],.

Taking the supremum of the both sides with respect to y, we have the L?
Sobolev-type inequality

sup |u(y)] < |Gl lI(~=4 +a*)ull,. (3.1)
yeR¥Y

We suppose U(x) satisfying
(=4 +a*)U = (G(x))". (3.2)
From Lemma 1.2, U(x) is given by (1.9). By putting x = 0 and using (3.2),

we have

mmzj

GGy = | (G

R N

:(LJGOM%UXM<LﬁuwamV@>W

=IGll, (-4 +a*)U],,
where we note 1/p+1/¢=1. Combining this with (3.1), we have

161, /(=4 +a*)Ull, = U(0) < sup [U(y)| < [|G]| (=4 + a*)U],.
yeR’
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Hence we have

sup |U(y)| = Gl (=4 +a*)U],.

yER"\

This shows that [|G||, in (1.8) is the best constant of the L? Sobolev-type
inequality (1.7) and the equality holds for U(x) defined by (1.9). The concrete
form of ||G[|{ in (1.8) is shown by Lemma 2.2. This completes the proof of
Theorem 1.4. u
4. L? Sobolev-type inequality

In this section, we prove Theorem 1.6.

PrOOF OF THEOREM 1.6. Applying p = ¢ = 2 to Theorem 1.4, we have the
L? Sobolev-type inequality (1.10), its best constant

1613 = | | 1600 as @.1)

and its best function

U@ﬁ{ Gx - )G (y)dy. (42)

RN

First, we show that the best function (4.2) equals to (1.12). Using G(x) in
(1.4) and the semi-group property of the heat kernel

J H(x— y,)H(y,s)dy = H(x,t+s),
RY
we have

Ulx) =, Gr=2)Gy)dy

= J e*”Z’H(x—y,t)dtJ e~ SH(y, s)dsdy
RY Jo 0

J J J H(x — y,0)H(y,s)dye ") dids
o Jo JR¥

0 0 2
= J J H(x, 1+ 5)e™ ™) drds.
0 Jo

By the change of variables
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1
— ==
{T_Z“ o 2  dids= Y dodr,
c=1t—3s 1 2

2

U(x) is given as

U(x) = J V J e"’ZTH(x7 r)% dadt

= J re’”ZTH(x, 7)dt = J <Lﬁa(eazf)>H(x, 7)dt
0 2a

1 A * —a’t _ i
=5, (J e “TH(x, r)dr) =~ 0,G(x).

Here, setting v =

for G(x) in (1.5), we have

aV

G(x) = —— K, (a|x]).
(x) T (alx])
Hence, we have
U(X) _ i(’) G(x) — i ;a [aVK (a|x|)]
2 a 2a (2n)v+1|x|v a v
1 al’*l /
=% Gy [vK,(alx|) + a|x| K, (a]x])]
1 al’fl

= —— — |—a|x|K,_1 (a|x])],
S Gy -1 alD)

where we use one of the properties of the modified Bessel function [10,
p. 174]:

VK, (z) + zK)(z) = —zK,_1(z).

So we have

avfl
AT

By rewriting v = and collecting the above argument, we have

2
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Ulx) = JR G(x — 1)G(y)dy = J: te= H (x, )dt (4.3)

aN/2-2

= 2N/2+17ZN/2|X|N/272KN/2_2(a|X|). (44)
Applying N =1,2,3 and the formula in [10, p. 172] to (4.4), we have the best
function (1.12).

Second, we show that the best constant (4.1) equals to (1.11). From U(x)
n (4.3), |G| is expressed as

1613 = | | 1606y = | 60~ 6y = v

RY

0 ) 1 [5%) )
:J te”'H(0, t)dt = J (NP2t gy

0 (47z)N/2 0
1 4—-N
() s
Applying N =1,2,3 to (4.5), we have the best constant (1.11).
This completes the proof of Theorem 1.6. |

From the uniqueness of the best constant, we have the following non-
trivial identity.

ProrosiTiON 4.1.

J: r(Ko(r))*dr = % :

PrOOF OF PrOPOSITION 4.1. Applying p=¢g =2 to (1.8), we have

161 = 5 || Koy (6

2n)N a4V Jo

Because the best constant is unique, (4.6) equals to (4.5) as

N « 2, 2 1 4 - N
WL r(Ky-2)/2(r))"dr = ||Gll; = (4n)N/2a4NF( 3 );

that is,
© 1 N 4 - N
K 2dr=-r(=|r(——).
Jo r( (N72)/2(r)) r 3 (2) ( 2 >

If we insert N = 1,3 into the above relation, then we have well-known identity
from the concrete form of the modified Bessel function [10, p. 172]. If we
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insert N = 2 into the above relation, then we have the non-trivial identity which
is stated by Proposition 4.1. |

5. Relation to Sobolev inequality

In this section, we state the relation between the Sobolev-type inequality
and the Sobolev inequality. We set p=¢ =2 and N =1 for simplification.
Let D =d/dx. In the background of two inequalities, the differential equa-
tion and the Green function exist. Applying N =1 to Lemma 1.2, we have
Corollary 5.1.

COROLLARY 5.1.  For any bounded continuous function f(x), the ordinary
differential equation (—D* +a*)u = f(x) (xeR) has a unique solution

u(x) = JR Glx—y)f(y)dy,  G(x)= %ae*"'x\.

From Theorem 1.6, we have Corollary 5.2.

COROLLARY 5.2. For any ue W?, the L> Sobolev-type inequality

2
1
(Sup Iu(y)|> <|IGIZII(=D*+a)ul3,  |IG; = i3
yeR a
holds. The equality holds for
1 '
ux) = | 6= 2)G(dy = g (ala] + e,
R 4a
We introduce the Hilbert space and the norm
H={uluu' e P(R)},  |lulf = JR[IM’(X)I2 +a?|u(x)|*]dx.

In the previous paper [1], we have Corollary 5.3.

COROLLARY 5.3. For any ue H, the L*> Sobolev inequality

2
<§1:1§ u(y)|> <GO)llulz,  GO)=5-

holds. The equality holds for u(x) = G(x).

From Corollary 5.2 and 5.3, we have Proposition 5.4 concerning the rela-
tion between the L> Sobolev-type inequality and the L?> Sobolev inequality.
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PROPOSITION 5.4. For any ue {u,u’,u" € L*(R)}, the inequality

2
Lo :
(sup|u<y>|> < 5Nl < 5511 (-=D* + aPull

yeR

holds.

Proor ofF ProrosiTION 5.4. It is obvious that
Jully = | 0P+ P = 0 [ Ju) P =
that is,
1
lull, < —lullz- (5.1)
a
On the other hand, we have

Jully = | 10 COF + el Pl
— W (I, + | [0 () + ur)in)d
R

_ J (=D? + a®)u(x))i(x)dx.
R

Applying the Schwarz inequality to the above relation, we have
2
leellzz < (=D + ayull |l (52)
Combining (5.1) and (5.2), we have
1 2., 2
lully < — 1(=D7 + a)ull,.
Applying the above inequality to Corollary 5.3, we have Proposition 5.4.

Because ||G||3 = (4a®) ' # (24%)"" holds, (24%)"" is not the best constant
of the L? Sobolev-type inequality in Corollary 5.2. Hence, we see that Cor-
ollary 5.2 cannot be obtained directly from Corollary 5.3.
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