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1. Introduction

Throughout this paper we consider an M=G=1 queue, where the inter-arrival times are

independently and exponentially distributed with mean 1=º, the service times are

independently non-negative, not concentrated at 0 and otherwise generally distributed with

distribution function F and finite mean f1, there is one server and an infinite waiting room.

We will assume starting in an empty queue.

For later purposes let f(Tn, Sn), n > 1g, denote the sequence of arrival times and service

times of the customers. Let S be a generic random variable with the same distribution as S1.

Let the workload in the system at time t be denoted by Vt, i.e. Vt is the sum of the

residual service times of the customer currently being served and the customers awaiting

service and is zero if there are no customers in the system. By convention, a workload

process fVt, t > 0g will be taken to be right-continuous with left-hand limits. For the

M=G=1 queue, the evolution of Vt between two arrivals is described by Lindley’s equation,

Vt ¼
0, t 2 [0, T1),

(VTn� þ Sn � (t � Tn)) ^ 0, t 2 [Tn, Tnþ1), n > 1:

�
(1)

In what follows a cumulative distribution function (cdf) of a non-negative random

variable is denoted by a capital letter, A, say. The kth moment is denoted by ak, the

complementary cdf by A(x) ¼ 1� A(x), x > 0, the stationary excess distribution by

Ae(x) ¼ a�1
1

Ð
[0,x]

A(y) dy, x > 0, and the Laplace–Stieltjes transform by ~AA(Ł) ¼Ð
[0,1)

e�ŁxA(dx), Ł 2 R.

If we let F denote the cdf of the service-time distribution and assume the stability

condition r , 1, then a limiting distribution (in weak convergence as well as total variation)
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of Vt exists (Asmussen 2003: Corollary X.3.3). Moreover, if we let G be the cdf of the

limiting distribution then the Pollaczeck–Khintchine’s formula holds (Asmussen 2003:

Theorem X.5.2):

G ¼ �(r, F), (2)

where

�(r, F) ¼ (1� r)
X1
k¼0

rk F?k
e ,

and ?k denotes k-fold convolution.

We now assume that it is possible to test the performance of the queue by sampling the

workload, without loss of generality, at every positive integer time point, as other sampling

intervals can be obtained by proper rescaling. This process is denoted by fVi, i > 1g. The
main objective of this paper is to infer Fe and F from the sampled workloads. We suggest

the empirical cumulative distribution function (ecdf) as an estimator for G:

Gn(x) ¼ n�1
Xn
i¼1

1(Vi < x), 0 < x , 1: (3)

Its nth empirical process counterpart is defined as

Gn(x) ¼ n1=2(Gn(x)� G(x)), 0 < x , 1: (4)

In the following we will provide sufficient conditions for the empirical process to converge

weakly to a Gaussian process.

Assume we want to make make statistical inference about the workload distribution

function, then we notice that G has a 1� r atom at zero. This leads to a plug-in estimator

r̂rn for r given by

r̂rn ¼ 1� n�1
Xn
i¼1

1(Vi ¼ 0):

Later on (see (6)) we need to divide by r̂rn and 1� r̂rn, so we notice that with probability one

r̂rn will be in (0, 1) eventually. For a discussion of the potential danger in heavy and light

traffic, see Section 7.

Formula (2) can via Laplace transformation be inverted under conditions in the following way:

Fe(x) ¼
1

r

X1
k¼1

(�1)kþ1 1

1� r

� �k

(Go)?k(x), (5)

where, for any function h, we write ho for the function x 7! h(x)� h(0) and convergence is

in a suitable weighted Banach space; see Proposition 3 below. This leads to the following

plug-in estimator of Fe:

Fn,e(x) ¼
1

r̂rn

X1
k¼1

(�1)kþ1 1

1� r̂rn

� �k

(Go
n)

?k(x): (6)
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Turning to the estimation of F from Fn,e, one notices, from the definition of the

stationary excess distribution, that this involves some sort of numerical differentiation of a

concave distribution function. One popular method for this is to take the left derivative of

the concave majorant of the empirically determined distribution function, normally termed

the Grenander estimator.

One motivation for the set-up presented above arises when a call admission controller

(CAC) in an ATM network decides whether there are sufficient resources to allow a new

connection to be established. This problem was considered by Sharma and Mazumdar

(1998) and Sharma (1999). They consider an M=G=1 queue which is probed by Poisson

traffic from which moments of the service-time distribution are inferred by the well-known

moment relations which can be derived from the Pollaczeck–Khintchine formula (Asmussen

2003: Theorem VIII.5.7 (5.6) and (5.7)). In the present paper we attack the even harder

problem of inferring the entire distribution function of the service time.

Another motivation arises in an infinite-capacity storage model, where inputs S1, S2, . . .
to the storage facility arrive in a Poisson process with rate º, where S1, S2, . . . are

independently and identically distributed (i.i.d.) random variables with distribution function

F. The total amount in the storage facility at time t has the same distribution as Vt in the

M=G=1 queuing model above. Suppose that observations on the sampled total amounts at

times t ¼ 1, 2, . . . are available, and that interest lies in inference for the distribution F of

the inputs to the facility. This inference problem is exactly analogous to that described

above for the queuing model, and the methods of this paper apply.

In (5), Fe is given in terms of r and G. We observe that r ¼ 1� G(0), so that Fe is

determined by G, and we can write Fe as a functional of G. The proposed estimator Fn,e is

then the result of applying the same functional to the estimator Gn of G. Given an

appropriate asymptotic normality result for Gn, the infinite-dimensional delta method can be

used to derive asymptotic normality of Fn,e, provided that the functional in question

satisfies a particular differentiability result. For general descriptions of the infinite-

dimensional delta method, see Gill (1989) and van der Vaart (1998).

From (2), we see that G is a compound geometric distribution function, based on r and

Fe, and so the inverse functional that takes G onto Fe is a decompounding functional that

‘decompounds’ the compound geometric distribution. As such, this functional is closely

related to that in Buchmann and Grübel (2003), where the notion of decompounding is

introduced in the context of decompounding for a compound Poisson distribution. The set-up

and proofs for the definition and differentiability of our functional follow those in Buchmann

and Grübel (2003), making adaptations for the geometric case as necessary. However, our

data do not consist of i.i.d. observations, but rather exhibit regenerative structure, so that the

asymptotic normality result for our input estimator is obtained using an empirical central

limit theorem for regenerative data; see Tsai (1998) and Levental (1988).

The infinite-dimensional delta method has been used for stochastic models in previous

work, and this paper follows the set-up and approach developed in, for example, Grübel and

Pitts (1993) and elsewhere; see also Bingham and Pitts (1999a, 1999b). The latter two

papers study inference for service-time distributions given data on busy and idle periods for

the M=G=1 and the M=G=1 queues respectively, and can be regarded as tackling inverse

problems, in the same way that inference for decompounding can be regarded as an inverse
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problem. Hall and Park (2004) give a different approach to estimation of the density of F

from busy period data.

The paper is organized as follows. In Section 2 the regenerative structure of the data

is discussed in detail, together with related measurability issues. The asymptotic

normality result for Gn is then stated in Section 3, and our main result, giving the

asymptotic normality of the proposed estimator Fn,e of Fe, is stated in Theorem 2.

Section 4 contains discussion of two pragmatic approaches for dealing with the step from

Fe to the service-time distribution function F. Examples of the estimators in action are

given in Section 5, and proofs related to the regenerative structure and also proofs of

the asymptotic normality results are given in Section 6. Section 7 contains discussion and

conclusions.

2. Preliminaries

2.1. Measurability considerations

Let ~TTn ¼ Tn � Tn�1, n > 1, where T0 ¼ 0. Then the input to the M=G=1 queue can be

described as f( ~TTn, Sn), n > 1g and viewed as the coordinate projection on the probability

space (�, F , P), where � ¼ ([0, 1)3 [0, 1))N, F ¼ (B[0, 1)3 B[0, 1))N and P is the

N-fold product of the product of the exponential distribution with mean 1=º and the

distribution with cdf F.

Furthermore, by Lindley’s equation (1) it is straightforward to prove that the workload

process fVt, t > 0g : � ! [0, 1)[0,1) is (F , B[0, 1)[0,1))-measurable, where B[0, 1)[0,1)

is the Baire � -field (Hoffmann-Jørgensen, 1994b: (9.2.4)).

Now fVi, i > 1g : [0, 1)[0,1) ! [0, 1)N is the process fVt, t > 0g sampled at all

integer points. Hence fVi, i > 1g is (B[0, 1)[0,1), B[0, 1)N)-measurable.

Finally, let (D[0, 1), k � k1) be the Banach space of cadlag functions f on [0, 1) such

that limx!1 f (x) is in R, with supremum norm. We will equip this space with the open ball

(with respect to k � k1) � -field P; see Pollard (1984: 199). We can then consider

Gn : [0, 1)N ! D[0, 1) as a ([0, 1)N, P)-measurable map.

Altogether, the measurable mappings can now be summarized as

(�, F , P) !fv tg ([0, 1)[0,1), B[0, 1)[0,1), PVt
)

!fVtg
([0, 1)N, B[0, 1)N, PVi

)

!G n
(D[0, 1), P, PG)

where PVt
, PVi

and PG n
are image probability measures of the underlying measure P

(Hoffmann-Jørgensen, 1994a: (1.44.1)).
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2.2. Regenerative structure of the subsampled workload

A stochastic process is regenerative if there are random times where it starts ‘stochastically’

anew. More formally, we follow the approach of Levental (1988).

Definition 1. Let fX i, i > 0g be a discrete parameter stochastic process with state space R

equipped with the Borel � -algebra B(R) and fNi, i > 1g a sequence of integer-valued

random variables satisfying 0 < N1 , N2 ,. . ., 1 and limi!1Ni ¼ 1 almost surely. Both

processes are assumed to be supported on the probability space (�, F , P). The stochastic

process fX i, i > 0g will be called a regenerative process with regeneration times fNi, i > 1g
if

E[ f (X Ni
, X Niþ1, . . .)jF Ni

] ¼ E[ f (X N1
, X N1þ1, . . .)],

for all functions f : [0, 1)N ! R which are bounded and (B[0, 1)N, B(R))-measurable, and
where F Ni

¼ � (fX k^Ni
: k ¼ 1, 2, . . .g).

First, we shall notice that (within the workload process) the subsampled workload is an

embedded Markov chain.

Lemma 1. Let sk ¼ (s1 . . . , sk), t k ¼ (t1 . . . , t k),

un,k(sk , t k) ¼
Xk
i¼1

((n� ti) ^ si)� 1,

vn,k(sk , t k) ¼
Xk
i¼1

(si � (n� ti) ^ si):

Then the subsampled workload process fVn, n > 0g is a Markov chain embedded within the

workload process with transition kernel

P(Vnþ1 2 BjVn) ¼ e�º1((Vn � 1)þ 2 B)

þ
X1
k¼1

e�º º
k

k!

ð
[n,nþ1] k

ð
[0,1) k

3 1 Vn þ unþ1,k(sk , t k)ð Þþ þ vnþ1,k(sk , t k)
� �

2 B
� �

3 dF�k(sk) dt k , a:s:,

for any B 2 B(Rþ) and n 2 N0.

Secondly, the subsampled workload process is regenerative in the following sense.

Proposition 1. Let N1 ¼ inffn > 1jVn ¼ 0g and Ni ¼ inffn . Ni�1jVn ¼ 0g for i > 2.

Then fVn, n > 1g is a regenerative process with regeneration times fNi, i > 1g. Moreover,
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Ni is a stopping time with respect to the increasing sequence of � -algebras
F n ¼ � (fV1 . . . , Vng), and if E(S2) , 1 then E((N2 � N1)

2) , 1.

Proposition 2. If E(N2 � N1) , 1, then

�(A) ¼ E
XN2�1

i¼N1

1(Vi 2 A)

 !
=E(N2 � N1) (7)

is a probability measure on ([0, 1), B[0, 1)) and its distribution function F�(t) ¼ �([0, t])
equals G as given in (2).

3. Estimation of the stationary excess distribution Fe

In this section we state our main asymptotic normality results for the various estimators

introduced above. The estimator Gn is constructed directly from the observations V1 . . . , Vn

of the regenerative process fVi, i > 1g, and we first give an asymptotic normality result for

Gn based on regenerative data. This is a regenerative empirical central limit theorem for Gn

in D[0, 1). For this space, and throughout the paper, weak convergence in Banach spaces

refers to � -algebras generated by the open balls in the respective norms.

Theorem 1. If E(S2) , 1, then

Gn ! DZ as n ! 1

in (D[0, 1), k � k1) where Z is a centred Gaussian process with covariance structure

D(s, t) ¼ EZ(s)Z(t)

¼ 1

E(N )
cov Us � G(s)N , Ut � G(t)Nð Þ,

for all s, t > 0, Us ¼
PN2�1

i¼N1
1(Vi < s) and N ¼ N2 � N1.

We follow the approach and methodology of Buchmann and Grübel (2003), and in

particular we use the weighted spaces defined there as follows. For � in R, let D�[0, 1) be

the space of all functions f : [0, 1) ! R, such that the function x 7! e��x f (x) is in

D[0, 1). For f in D�[0, 1), let k f k1,� ¼ supx>0e
��xj f (x)j, so that (D�[0, 1), k � k1,�) is a

Banach space. We later show that, under conditions on G, the right-hand side of (5) is in

D�[0, 1).

In order to state our next result, let Z be the limiting process in Theorem 1, and let

�k(r) ¼
1

r(1� r)k
, k > 1:

With this notation, we can now formulate the main result on weak convergence of the inverse

estimator of the stationary excess distribution function.
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Theorem 2. Assume E(S2) , 1 and that � . 0 is such that ~FFe(�) , 1=(2r). Thenffiffiffi
n

p
(Fn,e � Fe) ! DA, as n ! 1,

in (D�[0, 1), k � k1,�), where A is a centred Gaussian process given by

A ¼ D � Z(0)ˆþ Z o ? H, in which

ˆ ¼
X1
k¼1

(�1)kþ1�9k(r) Goð Þ?k

and

H ¼
X1
k¼1

(�1)kþ1k�k(r) Goð Þ?(k�1):

4. Estimation of service-time distribution function F

Assume that the objective is to estimate the service-time distribution function F based on

an estimate of the stationary excess distribution function. First, we notice the relations

F(x) ¼ 1� f 1F9e(x),

f 1 ¼ 1=F9e(0),

which are easily derived from the definition of the stationary excess distribution function.

Consequently, the estimation problem is reformulated as a problem of estimating derivatives

of Fe.

In the present paper we will suggest two pragmatic approaches to this problem, and

pinpoint possible difficulties in obtaining rigorous convergence results. The performance of

one of the suggestions is illustrated in the following section.

4.1. Kernel smoothing

One possibility that springs to mind is to smooth out the probability mass around a given

point x. Specifically, let K be a probability density with mean 0 and variance 1, for instance

the standard normal density. A kernel estimate with kernel K is defined as

F9n,e(x) ¼
ð
K

x� y

h

	 

dFn,e(y):

Here h . 0 is a number to be chosen, called the bandwidth of the estimator. If this method is

pursued one has to find a way of dealing with the fact that the density of Fn,e has a

discontinuity at zero. Various methods have been proposed for solving this; see Wand and

Jones (1995: Section 2.11) or the recent and promising boundary-adjusted density estimation

method of Chiu (2000).

Carrying on with an asymptotic analysis along the lines of Section 3 seems to be a
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difficult matter. It is well known that if Fn,e is formed by i.i.d. distributed random variables,

the finite-dimensional marginals converge to a multivariate Gaussian with a diagonal

covariance matrix. Such a result is difficult to establish as the marginals of F9n,e are

asymptotically dependent as they arise from smoothing a convolution series and it seems

hard to get a handle on the dependency structure. Aiming for a uniform result is not

possible in the i.i.d. case because the limiting process is not tight. One might hope that the

convolution series imposes tightness, but it is not at all clear how the results should be

established. This is left as an open problem.

4.2. The Grenander estimator

Another possibility is to notice that Fe has a monotone density and is thus concave. One

could then use the Grenander estimator, F̂Fn,e (i.e. the least concave majorant of Fn,e) of the

concave distribution Fe. Taking the left derivatives F̂F9n,e(x) of the Grenander estimator yields

the following nonparametric estimator of F:

Fn(x) ¼ 1� F̂F9n,e(0)F̂F9n,e(x):

This procedure is rather pragmatic in nature, as theoretical results seem hard to obtain. One

might be motivated by the i.i.d. case, where the pointwise limit distribution was proved by

Prakasa Rao (1983) to be proportional to the distribution of the argmax of the standard

Brownian motion process with parabolic drift, or Groeneboom (1989), where the limit

distribution is fully characterized. This is also left as an open problem.

5. Examples

To check the performance of the proposed procedure, we applied it to various simulated

data sets. Results from two typical cases are summarized in this section.

We carried out all programming and simulation in the freely available computational

statistical software package R; see http://www.r-project.org for more details.

Numerical estimates are obtained by discretizing the data and applying Panjer recursion

(Panjer 1981: Section 4). Let F be a service-time distribution function. First, choose a

discretization level h . 0. Secondly, let f k denote the mass given by Fe to the interval

((k � 0:5)h, (k þ 0:5)h],

f k ¼ Fe((k þ 0:5)h)� Fe((k � 0:5)h),

and let the discrete distribution that gives mass f k to the point kh, k ¼ 0, 1, 2, . . . , be an

approximation to the distribution Fe. Finally, consider the following recursively defined

approximation of the density of the workload distribution function:

g0 ¼
1� r
1� r f 0

, gk ¼
r

1� r f0

Xk
j¼1

f j g k� j:

It is straightforward to invert the Panjer recursion,
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f0 ¼
g0 � 1þ r

rg0
, f k ¼

(1� r)gk

g20r
� 1

g0

Xk�1

j¼1

f j g k� j,

so that, given a discrete approximation (gk) to G, we can calculate recursively a discrete

approximation ( f k) to Fe.

The Grenander estimator F̂Fn,e is found by forming the convex hull of the set

S ¼ f(x, y) 2 R2 : x > 0, 0 < y < Fn,e(x))g
and letting

F̂Fn,e ¼ supfy : (x, y) 2 chull(S)g:
This is easily implemented by the chull routine in R. Taking left derivatives yields the

nonparametric estimator of F, as described above.

Suppose one is inclined to check whether the service-time distribution has heavy tails

(i.e. 1� F(x) ¼ x�ÆL(x), as x ! 1, where L is slowly varying; see Resnick 1997: (2.2));

it is desirable to develop a Hill-type estimator for the tail index Æ. This is indeed not a

simple task for the problem at hand, as we are not facing an estimate of the distribution

function based on an i.i.d. sample; see the comprehensive review by Resnick (1997) for

the i.i.d. case. Instead we take a simpler and exploratory approach and plot log(1� Fn(x))

against x and log(x) to check for exponentially or polynomially decaying (heavy) tails,

respectively.

5.1. Exponentially distributed service times

Figure 1 displays the estimates obtained for two independent samples of size 1000 from a

discretely sampled M=G=1 queue with traffic intensity r ¼ 0:5 and exponentially

distributed service times with mean 1 (i.e. the arrival intensity of the Poisson distribution

is 1/2). In what follows the dashed line shows the underlying theoretical properties of the

distribution function. The solid black and grey lines are two independent realizations of the

experiment. The upper left-hand panel shows the ecdfs of the subsampled workloads, the

upper right-hand panel shows the estimated stationary excess distributions and the lower

left-hand panel shows left derivatives of the Grenander estimator. Finally, the lower right-

hand panel shows a log plot of the estimated tail probabilities.

5.2. Pareto distributed service times

In this example we consider service times with cdf

F(x) ¼ 1� x�Æ

for x > 1 and Æ . 1. This is actually a Pareto distribution with with parameter Æ.
Figure 2 displays the estimates obtained for two independent samples of size 1000 from a

discretely sampled M=G=1 queue with traffic intensity r ¼ 0:5 and Pareto distributed service

times with mean 5/3 (i.e. the arrival intensity of the Poisson distribution is 3/10 and the
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parameter of the Pareto distribution is Æ ¼ 2:5). As above, the dashed line shows the underlying
theoretical properties of the distribution function. The upper left-hand panel shows the ecdfs of

the subsampled workloads, the upper right-hand panel shows the estimated stationary excess

distributions and the lower left-hand panel shows left derivatives of the Grenander estimator.

Finally, the lower right-hand panel shows a log plot of the estimated tail probabilities.

Figure 3 shows that increasing the sample size improves the estimate, but Figure 4 shows

that decreasing the rate of the Pareto distribution (into a region where the functional central

limit theorem is not guaranteed) leads to a deterioration.
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Figure 1. Two estimates for service-time distribution for exponentially distributed service times

(n ¼ 1000, º ¼ 1=2, f1 ¼ 1 and r ¼ 0:5).
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6. Proofs

6.1. Proofs of the regenerative structure

Proof of Lemma 1. As the number of arrivals in (n, nþ 1] is Poisson distributed and, given

the number of arrivals in this interval, the arrival times are uniformly distributed over

(n, nþ 1], the transition kernel is obtained by conditioning. The terms unþ1,k and vnþ1,k are
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Figure 2. Two estimates for the service-time distribution for Pareto distributed service times

(n ¼ 1000, º ¼ 3=10, Æ ¼ 2:5 and r ¼ 0:5).
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obtained by splitting the arrived workload into the part contained in (n, nþ 1] and the part

contained in (nþ 1, 1). h

Proof of Proposition 1. The sequence fNi, i > 1g is integer-valued, strictly increasing and

satisfies limi!1Ni ¼ 1 a.s. by construction. For finiteness of the Ni consider N2 � N1. Let

B1, B2, . . . be the lengths of the busy periods after N1 and I1, I2, . . . the lengths of the idle

periods after N1. If � ¼ inffn > 1jI n > 1g, then N2 � N1 <
P�

i¼1 (Bi þ I i). Consequently,
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Figure 3. Two estimates for the service-time distribution for Pareto distributed service times

(n ¼ 10 000, º ¼ 3=10, Æ ¼ 2:5 and r ¼ 0:5).
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P(N2 � N1 , 1) > P
X�
i¼1

(Bi þ I i) , 1
 !

> 1:

As N1 is stochastically dominated by N2 � N1, we obtain, for i > 2,

Ni ¼ N1 þ
Xi

k¼2

(Nk � Nk�1) , 1, a:s:
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Figure 4. Two estimates for the service-time distribution for Pareto distributed service times

(n ¼ 1000, º ¼ 1=7, Æ ¼ 1:4 and r ¼ 0:5).
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First notice by standard arguments (see Hoffmann-Jørgensen 1994a: Section 7.2) that Ni is a

stopping time with respect to the increasing sequence of � -algebras F n. Then by the strong

Markov property (Asmussen 2003: Theorem I.1.1),

E[ f (VNi
, VNiþ1, . . .)jF Ni

] ¼ EVNi
f (V0, V1, . . .)

¼ E0 f (V0, V1, . . .)

¼ E f (VN1
, VN1þ1, . . .):

By Wald’s second moment identity (Asmussen 2003: Proposition A.10.2),

E(N2 � N1)
2 < E

X�
i¼1

(Bi þ I i)

 !2

¼ var(I1 þ B1)E(�)þ 3�2E(�2),

which is finite if and only if E(B2
1) , 1, which again is finite if and only if E(S2) , 1. The

last equivalence follows directly from Kendall’s functional equation; see Feller (1971:

(4.1)). h

Proof of Proposition 2. It is straightforward to prove that � is a probability measure. It is

also obvious that Vt and Vn have the same limiting distribution (both in weak convergence

and total variation). As Vn is regenerative it follows that its limiting distribution exists (in

weak convergence and total variation) and equals � (Asmussen 2003: Theorem VI.1.2 and

Corollary 1.5). As the limiting distributions of Vn and Vt coincide, the stated result

follows. h

6.2. Proof of Theorem 1

A standard method for proving empirical central limit theorems is first to prove that the

finite-dimensional distributions (fidis) converge to a multivariate normal distribution with

the stated covariance structure and secondly to prove a tightness condition (Pollard 1984:

Section VII.5). Henceforth, we notice that fVn, n > 0g is a regenerative process taking

values in Rþ, with regeneration times fNi, i > 1g (as defined in Proposition 1).

Convergence of the fidis is now proved by noticing that any linear combination

aGn(s)þ bGn(t) ¼
ffiffiffi
n

p 1

n

Xn
i¼1

(a1(Vi < s)þ b1(Vi < t))� (aG(s)þ bG(t))

 !

is asymptotically normal with mean 0 and variance
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� 2 ¼ 1

E(N )
var

XN2�1

i¼N1

(a1(Vi < s)þ b1(Vi < t))� (aG(s)þ bG(t))N

 !

¼ 1

E(N )
(a2var(Us � G(s)N )þ b2var(Ut � G(t)N )

þ 2ab cov(Us � G(s)N , Ut � G(t)N ))

by the central limit theorem for renewal–reward processes; see Asmussen (2003: Theorem

VI.3.2). Hence, (G(s), G(t)) has a zero-mean Gaussian distribution with the stated covariance

by the Cramér–Wold device (Billingsley 1968: Theorem 7.7). The above argument clearly

extends to linear combinations of any finite number of fidis.

Secondly, tightness is handled by considering the measure space (Rþ, B(Rþ)) and

defining the family of functions H ¼ f1(� > t)jt 2 Rg. We notice that H is indexed by a

Borel set of a metric space and thus permissible (Pollard 1984: 16). As H is a Vapnik–

Chervonenkis class (Pollard 1984: 16) the combinatorial conditionð1
0

[log N2(u, H)]1=2 du , 1

is satisfied. Finally, from Proposition 1 we notice that E(N2 � N1)
2 , 1. Hence the result is

a direct application of Tsai (1998: Theorem 4.3). See also Levental (1988: Theorem 4.9) for a

slightly weaker result.

6.3. Proof of Theorem 2

We essentially follow Buchmann and Grübel (2003). In (5), our quantity of interest Fe is

given in terms of r and G, and this inverse representation is made precise in Proposition 3

below. Thus the equilibrium distribution can be regarded as the output that arises when a

particular functional, ¸ say, is applied to (r, G), so that

Fe ¼ ¸(r, G)(¼ ¸(1� G(0), G)):

The plug-in estimator given in Section 1 is then

Fn,e ¼ ¸(r̂rn, Gn)(¼ ¸(1� Gn(0), Gn)):

Proposition 4 is a suitable differentiability result for ¸, and this leads to the asymptotic

normality of Fn,e as stated in Theorem 2. In adapting the proofs of Buchmann and Grübel

(2003) to the case in hand, we deal with the obvious technical changes necessary for a

compound geometric rather than a compound Poisson, and in addition we incorporate

estimation of the parameter ar r defining the geometric distribution. We give sufficient details

here to make the present paper reasonably self-contained.

First, we note that (5) involves convolutions, and so we use the convolution framework of

Buchmann and Grübel (2003). Define D(1) ¼ [�.0D�[0, 1), and let Dm(1) ( � D(1))

be the space of functions in D(1) that have finite variation on [0, x] for all x . 0. Then

any function H in Dm(1) can be identified with a (not necessarily finite) signed measure
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�H on [0, 1), B[0, 1)ð Þ, where B[0, 1) denotes the Borel sets of [0, 1), and this

identification is given by H(x) ¼ �H [0, x]ð Þ. Elements of Dm(1) can act as integrators in

convolution integrals, and for g in D(1) and H in Dm(1), define

g ? H(x) ¼
ð
g(x� y)H(dy), x > 0:

We note further that elements of Dm(1) are identified via their Laplace transforms, given by

~HH(Ł) ¼
ð
e�Łx H(dx):

If H 2 Dm(1) is in D�[0, 1), � . 0, then the Laplace transform is defined for Ł . �.
Lemma 6(b) of Buchmann and Grübel (2003) provides a useful result linking convolution and

the norms k � k1,� and k � k1, and we quote this result without proof. Let Dþ
m(1) be the

subset of Dm(1) consisting of functions H such that the associated measure is non-negative.

If H is in Dþ
m(1), then

kg ? Hk1,� < kgk1,� ~HH(�) for all � . 0: (8)

We are now ready to state and prove the following result which can be regarded as

specifying the inverse of the compound geometric functional.

Proposition 3. Let 0 , r , 1 and � . 0. If G is a distribution function on [0, 1) with
~GGo(�) , (1� r), then the series

¸(r, G) ¼
X1
k¼1

(�1)kþ1�k(r)(G0)?k

converges in D�[0, 1). Furthermore, if G ¼ � r, F)ð then Fe ¼ ¸(r, G).

Proof. Observe that Go and Goð Þ?k are in D�[0, 1) for � . 0, and so the partial sums of the

series are in D�[0, 1). Applying (8) repeatedly, we obtain

k(Go)?kk1,� < kGok1,�
~GGo(�)k�1

< ~GGo(�)k�1, (9)

where the last inequality holds because Go is the distribution function of a (possibly sub-)

probability measure, and � . 0. By assumption we have ~GGo(�) , 1� r, so there exists �,
0 , � , 1, such that ~GGo(�) , �(1� r). ThenX1

k¼1

�k(r) ~GGo(�)
� �k�1

<
1

r(1� r)

X1
k¼1

�k�1,

and this is finite. Thus the given series converges in D�[0, 1), and so ¸(r, G) is in

D�[0, 1).

This series ¸(r, G) is the difference of two non-decreasing functions, and so it is

Dm(1), and hence it is identified by its Laplace transform. For Ł . � we have
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~̧̧(r, G)(Ł) ¼
X1
k¼1

(�1)kþ1�k(r) ~GGo(Ł)k

¼
~GGo(Ł)

r(1� r)
1þ

~GGo(Ł)

1� r

� ��1

: (10)

On the other hand, using G ¼ �(r, F) from (2), we obtain

~GG(Ł) ¼ 1� r

1� r ~FFe(Ł)
,

so that

~GGo(Ł) ¼ ~GG(Ł)� (1� r) ¼ (1� r)r ~FFe(Ł)

1� r ~FFe(Ł)
, for all Ł . 0:

Rearranging this, we find that

~FFe(Ł) ¼
~GGo(Ł)

r(1� r)
1þ

~GGo(Ł)

1� r

� ��1

,

and this gives ¸(r, G) ¼ Fe by comparison with (10). h

The main part of the proof of Theorem 2 is to establish the differentiability of the

functional that maps G onto Fe, and this entails differentiability of the functional ¸ as a

map from a subset of (0, 1)3 D[0, 1) to D�[0, 1).

Proposition 4. Let r and rn (n 2 N) be in (0, 1), and suppose that

j
ffiffiffi
n

p
(rn � r)� ªj ! 0 as n ! 1, (11)

for some ª in R. Let G and Gn (n 2 N) be elements of Dþ
m(1) \ D[0, 1) with G(0) ¼ 0 and

Gn(0) ¼ 0 for all n 2 N. Suppose that � . 0 is such that ~GG(�) , (1� r), and that

k
ffiffiffi
n

p
(Gn � G)� hk1 ! 0 as n ! 1 (12)

for some h 2 D[0, 1). Then, as n ! 1,

k
ffiffiffi
n

p
(¸(rn, Gn)�¸(r, G))� ªˆ� h ? Hk1,� ! 0,

where ˆ ¼
P1

k¼1(�1)kþ1�9k(r)G?k and H ¼
P1

k¼1(�1)kþ1k�k(r)G?(k�1).

Proof. Similar methods to those used in Proposition 3 show that ˆ and H are in D�[0, 1)

and also that H is in Dm(1) (and hence is an appropriate quantity for the right-hand factor

in a convolution).

We have
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k
ffiffiffi
n

p
(¸(rn, Gn)�¸(r, G))� ªˆ� h ? Hk1,�

< k
ffiffiffi
n

p
(¸(r, Gn)�¸(r, G))� h ? Hk1,�

þ k
ffiffiffi
n

p
(¸(rn, Gn)�¸(r, Gn))� ªˆk1,�: (13)

By assumption G(0) ¼ 0 and Gn(0) ¼ 0, and so we have Go ¼ G, and Gn ¼ Go
n. For the

second term on the right-hand side of (13), we notice that

k
ffiffiffi
n

p
(¸(rn, Gn)�¸(r, Gn))� ªˆk1,�

¼
����� ffiffiffi

n
p X1

k¼1

(�1)kþ1�k(rn)G
?k
n �

X1
k¼1

(�1)kþ1�k(r)G?k
n

 !
� ª

X1
k¼1

(�1)kþ1�9k(r)G?k

�����
1,�

<

�����X1
k¼1

(�1)kþ1
ffiffiffi
n

p
(�k(rn)� �k(r))� ª�9k(r)

� �
G?k

n

�����
1,�

þ
�����ªX1

k¼1

(�1)kþ1�9k(r) G?k
n � G?k

� ������
1,�

: (14)

We have G?k
n � G?k ¼ (Gn � G) ? Hn,k , with Hn,k ¼

Pk�1
j¼0G

? j
n ? G?(k�1� j) for k > 1. Using

(8), we find that k(Gn � G) ? Hn,kk1,� < kGn � Gk1,�
gHn,kHn,k(�). This yields an upper bound

for the second term of (14),

�����ªX1
k¼1

(�1)kþ1�k(r) G?k
n � G?k

� ������1,� < jªj
X1
k¼1

j�9k(r)j kG?k
n � G?kk1,�

¼ jªj
X1
k¼1

j�k(r)j k(Gn � G) ? Hn,kk1,�

< jªj
X1
k¼1

j�9k(r)j kGn � Gk1,�
gHn,kHn,k(�)

< jªj kGn � Gk1
X1
k¼1

j�9k(r)jgHn,kHn,k(�), (15)

on noting in the final step that kGn � Gk1,� < kGn � Gk1 for � . 0. We now aim to boundgHn,kHn,k(�), and this means we must bound ~GG(�) and fGnGn(�). As in the proof of Proposition 3, the

assumption ~GG(�) , 1� r implies that we can find �, 0 , � , 1, such that ~GG(�) , �(1� r).
Integration by parts gives
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jfGnGn(�)� ~GG(�)j < �

ð1
0

e��xjGn(x)� G(x)j dx

< �kGn � Gk1
ð1
0

e��x dx,

and this converges to zero as n tends to infinity, since from (12) we know that

kGn � Gk1 ! 0. This means that there exists n1 such that n > n1 implies thatfGnGn(�) , �(1� r). This in turn implies that for n > n1, we havegHn,kHn,k(�) < k�k�1(1� r)k�1:

Plugging this into (15), we obtain�����ªX1
k¼1

(�1)kþ1�9k(r)(G?k
n � G?k)

�����
1,�

< jªj kGn � Gk1
X1
k¼1

j�9k(r)jk�k�1(1� r)k�1

< jªj kGn � Gk1
1

r(1� r)2
X1
k¼1

k(k þ 1)�k�1 þ 1

r2(1� r)2
X1
k¼1

k�k�1

 !
:

Since 0 , � , 1, the two series above converge to finite limits, and the fact that

kGn � Gk1 ! 0 shows that the second term of (14) converges to zero.

For the first term, note that by (9), and with n1 as above, for all n > n1, we have

kG?k
n k1,� < �k�1(1� r)k�1. Then the first term in (14) is bounded as follows:�����X1

k¼1

(�1)kþ1(
ffiffiffi
n

p
(�k(rn)� �k(r))� ª�9k(r))G?k

n

�����
1,�

<
X1
k¼1

j
ffiffiffi
n

p
(�k(rn)� �k(r))� ª�9k(r)j(�(1� r))k�1: (16)

By the mean value theorem, we have

j
ffiffiffi
n

p
(�k(rn)� �k(r))� ª�9k(r)j

< j
ffiffiffi
n

p
(rn � r)� ªj j�9k(�n,k)j þ jªj j�9k(�n,k)� �9k(r)j

< j
ffiffiffi
n

p
(rn � r)� ªj j�9k(�n,k)j þ jªj j� 0k(�n,k)j j�n,k � rj,

for some �n,k and �n,k in (rL,n, rU ,n) (� (0, 1)), where rL,n ¼ r ^ rn and rU ,n ¼ r _ rn.

Then we have

j�9k(�n,k)j <
k þ 2

r2L,n(1� rU ,n)kþ1

j� 0k(�n,k)j <
k2 þ 4k þ 5

r3L,n(1� rU ,n)kþ2
:
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Let �, 0 , � , 1, be as above, and let Æ be such that � , Æ , 1. Since rn converges to r,
we have that 0 , �(1� r)=(1� rn) , Æ , 1 for all n large enough, and so

0 , �(1� r)=(1� rU ,n) , Æ for all n large enough. We also have

1

r2L,n(1� rU ,n)2
<

2

r2(1� r)2
,

1

r3L,n(1� rU ,n)3
<

2

r3(1� r)3

for all n large enough, because rL,n and rU ,n both converge to r. Thus, for all n large

enough, (17) is bounded above by

j
ffiffiffi
n

p
(rn � r)� ªj 2

r2(1� r)2
X1
k¼1

(k þ 2)Æk�1

þ jªj jrn � rj 2

r3(1� r)3
X1
k¼1

(k2 þ 4k þ 5)Æk�1,

which converges to zero as n tends to infinity. Hence we have shown that the right-hand side

of (14) converges to zero, i.e. the second term on the right-hand side of (13) converges to

zero.

The first term on the right-hand side of (13) is similar to that in Proposition 8 in

Buchmann and Grübel (2003). Using similar methods to those used there, with � there

replaced by � above, and with minor resulting technical modifications in the details of the

argument there, we obtain convergence of the first term on the right-hand side of (13) to

zero, and the proposition is proved. h

Proof of Theorem 2. We follow the proof of Theorem 2 in Buchmann and Grübel (2003).

Theorem 1 implies that
ffiffiffi
n

p
(Gn � G) ! D Z as n ! 1, where Z is a zero-mean Gaussian

process in (D[0, 1), k � k1).

The sample paths of Z are bounded and uniformly continuous with respect to L2(�)
(Levental 1988: Theorem 4.9), where � is the steady state distribution for the regenerative

process as given in (7). From Proposition 2 we can replace the corresponding distribution

function F� with G. Then, given � . 0, there exists 	 . 0 such that jG(s)� G(t)j , 	
implies that jZ(s)� Z(t)j , �. Hence the sample paths of Z can only have discontinuities at

the jump points of G, and so the process Z is concentrated on the separable subspace of

D[0, 1) consisting of those functions that can only jump at those points where G jumps.

Let S be the linear continuous map that takes f in D[0, 1) onto (� f (0), f o)T in

R3 D[0, 1), where (x, f )T denotes the transpose of (x, f ). The continuous mapping

theorem (Pollard 1984: Section IV.12) implies thatffiffiffi
n

p r̂rn

Go
n

� �
� r

Go

� �� �
! D

�Z(0)

Z o

� �
, as n ! 1,

with the limiting distribution being concentrated on a separable subset of R3 D[0, 1).
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The Skorohod representation theorem (Pollard 1984: Section IV.3) then allows us to

construct a probability space (�y, Fy, Py) carrying random quantities (ryn, G
y
n)

T and

(W y, Zy)T such that (ryn, G
y
n)

T ¼ D(r̂rn, G
o
n)

T, (W y, Zy)T ¼ D(�Z(0), Z0)T, and such thatffiffiffi
n

p ryn
G

y
n

� �
� r

Go

� �� �
! W y

Zy

� �
, as n ! 1, (17)

in R3 D[0, 1) with Py-probability one.

From (17) we have ffiffiffi
n

p
((G

y
n)� Go) ! Zy as n ! 1, (18)

in (D[0, 1), k � k1), and ffiffiffi
n

p
(ryn � r) ! W y as n ! 1,

with Py-probability one.

It is assumed in the statement of Theorem 2 that fFeFe(�) , 1=(2r), and so we have
~GGo(�) , 1� r. Further, ryn is in (0, 1) for all n large enough Py-a.s. Thus the conditions of

Proposition 4 are satisfied eventually with Py-probability one, and so we have Py-a.s.,ffiffiffi
n

p
(¸(ryn, G

y
n)�¸(r, Go)) ! �W yˆþ Zy ? H , (19)

where

ˆ ¼
X1
k¼1

(�1)kþ1�9k(r) Goð Þ?k , H ¼
X1
k¼1

(�1)kþ1k�k(r) Goð Þ?(k�1):

Then we have convergence in distribution of the original sequences,ffiffiffi
n

p
(¸(r̂rn, G

o
n)�¸(r, Go)) ! DA,

where A is a zero-mean Gaussian process, obtained by applying the linear bounded map that

takes f in D[0, 1) onto � f (0)ˆþ f o ? H to the sample paths of Z. Using Proposition 3 for

the definition of ¸, this gives ffiffiffi
n

p
(Fn,e � Fe) ! DA,

where the process A is as given in the statement of the theorem. h

7. Discussion

Buchmann and Grübel (2003) noted that their basic set-up could be generalized in several

ways. In the previous sections we have provided such a generalization towards sampled

regenerative processes. In particular, we provide a method for decompounding geometric

sums. It is our belief that this brings the basic ideas of Buchmann and Grübel (2003) even

closer to real-life applications in such areas as control of queuing systems, infinite-capacity

models and insurance mathematics.

Having said this, we have to acknowledge that in heavy and thin traffic we easily run into
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danger in practice, as r̂rn might be 1 or 0, respectively. This causes problems in (6). A

similar discussion arises with respect to the requirement that ~GG0
n(�) , 1� r for the

convolution sum to be identifiable. Technically this is solved by noticing that things are

eventually satisfied for large n with probability one.

Besides the open problems stated in Section 4.1 and 4.2 regarding proving weak

convergence results for the proposed estimators of F, one could consider ways of assessing

the quality of the proposed estimators. The authors will present methods for obtaining

confidence bands by bootstrap methods in a separate paper.
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