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Székely, Rizzo and Bakirov (Ann. Statist. 35 (2007) 2769–2794) and Székely and Rizzo (Ann. Appl. Statist.
3 (2009) 1236–1265), in two seminal papers, introduced the powerful concept of distance correlation as
a measure of dependence between sets of random variables. We study in this paper an affinely invariant
version of the distance correlation and an empirical version of that distance correlation, and we establish
the consistency of the empirical quantity. In the case of subvectors of a multivariate normally distributed
random vector, we provide exact expressions for the affinely invariant distance correlation in both finite-
dimensional and asymptotic settings, and in the finite-dimensional case we find that the affinely invariant
distance correlation is a function of the canonical correlation coefficients. To illustrate our results, we con-
sider time series of wind vectors at the Stateline wind energy center in Oregon and Washington, and we
derive the empirical auto and cross distance correlation functions between wind vectors at distinct meteo-
rological stations.

Keywords: affine invariance; distance correlation; distance covariance; hypergeometric function of matrix
argument; multivariate independence; multivariate normal distribution; vector time series; wind
forecasting; zonal polynomial

1. Introduction

Székely, Rizzo and Bakirov [23] and Székely and Rizzo [20], in two seminal papers, introduced
the distance covariance and distance correlation as powerful measures of dependence. Contrary
to the classical Pearson correlation coefficient, the population distance covariance vanishes only
in the case of independence, and it applies to random vectors of arbitrary dimensions, rather than
to univariate quantities only.

As noted by Newton [14], the “distance covariance not only provides a bona fide dependence
measure, but it does so with a simplicity to satisfy Don Geman’s elevator test (i.e., a method must
be sufficiently simple that it can be explained to a colleague in the time it takes to go between
floors on an elevator).” In the case of the sample distance covariance, find the pairwise distances
between the sample values for the first variable, and center the resulting distance matrix; then do
the same for the second variable. The square of the sample distance covariance equals the average
entry in the componentwise or Schur product of the two centered distance matrices. Given the
theoretical appeal of the population quantity, and the striking simplicity of the sample version,
it is not surprising that the distance covariance is experiencing a wealth of applications, despite
having been introduced merely half a decade ago.

1350-7265 © 2014 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/13-BEJ558
mailto:richards@stat.psu.edu


2306 Dueck, Edelmann, Gneiting and Richards

Specifically, let p and q be positive integers. For column vectors s ∈R
p and t ∈R

q , denote by
|s|p and |t |q the standard Euclidean norms on the corresponding spaces; thus, if s = (s1, . . . , sp)′
then

|s|p = (
s2

1 + · · · + s2
p

)1/2
,

and similarly for |t |q . For vectors u and v of the same dimension, p, we let 〈u,v〉p be the standard
Euclidean scalar product of u and v. For jointly distributed random vectors X ∈ R

p and Y ∈ R
q ,

let

fX,Y (s, t) = E exp
[
i〈s,X〉p + i〈t, Y 〉q

]
be the joint characteristic function of (X,Y ), and let fX(s) = fX,Y (s,0) and fY (t) = fX,Y (0, t)

be the marginal characteristic functions of X and Y , where s ∈ R
p and t ∈ R

q . Székely et al.
[23] introduced the distance covariance between X and Y as the nonnegative number V(X,Y )

defined by

V2(X,Y ) = 1

cpcq

∫
Rp+q

|fX,Y (s, t) − fX(s)fY (t)|2
|s|p+1

p |t |q+1
q

ds dt, (1.1)

where |z| denotes the modulus of z ∈C and

cp = π(1/2)(p+1)

�((1/2)(p + 1))
. (1.2)

The distance correlation between X and Y is the nonnegative number defined by

R(X,Y ) = V(X,Y )√
V(X,X)V(Y,Y )

(1.3)

if both V(X,X) and V(Y,Y ) are strictly positive, and defined to be zero otherwise. For dis-
tributions with finite first moments, the distance correlation characterizes independence in that
0 ≤ R(X,Y ) ≤ 1 with R(X,Y ) = 0 if and only if X and Y are independent.

A crucial property of the distance correlation is that it is invariant under transformations of the
form

(X,Y ) �−→ (a1 + b1C1X,a2 + b2C2Y), (1.4)

where a1 ∈ R
p and a2 ∈ R

q , b1 and b2 are nonzero real numbers, and the matrices C1 ∈ R
p×p

and C2 ∈ R
q×q are orthogonal. However, the distance correlation fails to be invariant under the

group of all invertible affine transformations of (X,Y ), which led Székely et al. [23], pages 2784–
2785, and Székely and Rizzo [20], pages 1252–1253, to propose an affinely invariant sample
version of the distance correlation.

Adapting this proposal to the population setting, the affinely invariant distance covariance be-
tween distributions X and Y with finite second moments and nonsingular population covariance
matrices �X and �Y , respectively, can be introduced as the nonnegative number Ṽ(X,Y ) defined
by

Ṽ2(X,Y ) = V2(�−1/2
X X,�

−1/2
Y Y

)
. (1.5)
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The affinely invariant distance correlation between X and Y is the nonnegative number defined
by

R̃(X,Y ) = Ṽ(X,Y )√
Ṽ(X,X)Ṽ(Y,Y )

(1.6)

if both Ṽ(X,X) and Ṽ(Y,Y ) are strictly positive, and defined to be zero otherwise. In the sample
versions proposed by Székely et al. [23], the population quantities are replaced by their natural
estimators. Clearly, the population affinely invariant distance correlation and its sample version
are invariant under the group of invertible affine transformations, and in addition to satisfying
this often-desirable group invariance property (Eaton [2]), they inherit the desirable properties of
the standard distance dependence measures. In particular, 0 ≤ R̃(X,Y ) ≤ 1 and, for populations
with finite second moments and positive definite covariance matrices, R̃(X,Y ) = 0 if and only
if X and Y are independent.

The remainder of the paper is organized as follows. In Section 2, we review the sample ver-
sion of the affinely invariant distance correlation introduced by Székely et al. [23], and we prove
that the sample version is strongly consistent. In Section 3, we provide exact expressions for the
affinely invariant distance correlation in the case of subvectors from a multivariate normal popu-
lation of arbitrary dimension, thereby generalizing a result of Székely et al. [23] in the bivariate
case; our result is non-trivial, being derived using the theory of zonal polynomials and the hy-
pergeometric functions of matrix argument, and it enables the explicit and efficient calculation
of the affinely invariant distance correlation in the multivariate normal case.

In Section 4, we study the behavior of the affinely invariant distance measures for subvectors of
multivariate normal populations in limiting cases as the Frobenius norm of the cross-covariance
matrix converges to zero, or as the dimensions of the subvectors converge to infinity. We expect
that these results will motivate and provide the theoretical basis for many applications of distance
correlation measures for high-dimensional data.

As an illustration of our results, Section 5 considers time series of wind vectors at the Stateline
wind energy center in Oregon and Washington; we shall derive the empirical auto and cross dis-
tance correlation functions between wind vectors at distinct meteorological stations. Finally, we
provide in Section 6 a discussion in which we make a case for the use of the distance correlation
and the affinely invariant distance correlation, which we believe to be appealing and powerful
multivariate measures of dependence.

2. The sample version of the affinely invariant distance
correlation

In this section, which is written primarily to introduce readers to distance correlation measures,
we describe sample versions of the affinely invariant distance covariance and distance correlation
as introduced by Székely et al. [23], pages 2784–2785, and Székely and Rizzo [20], pages 1252–
1253.

First, we review the sample versions of the standard distance covariance and distance corre-
lation. Given a random sample (X1, Y1), . . . , (Xn,Yn) from jointly distributed random vectors
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X ∈R
p and Y ∈R

q , we set

X = [X1, . . . ,Xn] ∈R
p×n and Y = [Y1, . . . , Yn] ∈ R

q×n.

A natural way of introducing a sample version of the distance covariance is to let

f n
X,Y(s, t) = 1

n

n∑
j=1

exp
[
i〈s,Xj 〉p + i〈t, Yj 〉q

]

be the corresponding empirical characteristic function, and to write f n
X(s) = f n

X,Y(s,0) and
f n

Y(t) = f n
X,Y(0, t) for the respective marginal empirical characteristic functions. The sample

distance covariance then is the nonnegative number Vn(X,Y) defined by

V2
n(X,Y) = 1

cpcq

∫
Rp+q

|f n
X,Y(s, t) − f n

X(s)f n
Y(t)|2

|s|p+1
p |t |q+1

q

ds dt,

where cp is the constant given in (1.2).
Székely et al. [23], in a tour de force, showed that

V2
n(X,Y) = 1

n2

n∑
k,l=1

AklBkl, (2.1)

where

akl = |Xk − Xl |p, āk· = 1

n

n∑
l=1

akl, ā·l = 1

n

n∑
k=1

akl, ā·· = 1

n2

n∑
k,l=1

akl

and

Akl = akl − āk· − ā·l + ā··,

and similarly for bkl = |Yk − Yl |q , b̄k·, b̄·l , b̄··, and Bkl , where k, l = 1, . . . , n. Thus, the squared
sample distance covariance equals the average entry in the componentwise or Schur product of
the centered distance matrices for the two variables. The sample distance correlation then is
defined by

Rn(X,Y) = Vn(X,Y)√
Vn(X,X)Vn(Y,Y)

(2.2)

if both Vn(X,X) and Vn(Y,Y) are strictly positive, and defined to be zero otherwise. Com-
puter code for calculating these sample versions is available in an R package by Rizzo and
Székely [17].

Now let SX and SY denote the usual sample covariance matrices of the data X and Y, respec-
tively. Following Székely et al. [23], page 2785, and Székely and Rizzo [20], page 1253, the
sample affinely invariant distance covariance is the nonnegative number Ṽn(X,Y) defined by

Ṽ2
n(X,Y) = V2

n

(
S

−1/2
X X, S

−1/2
Y Y

)
(2.3)
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if SX and SY are positive definite, and defined to be zero otherwise. The sample affinely invariant
distance correlation is defined by

R̃n(X,Y) = Ṽn(X,Y)√
Ṽn(X,X)Ṽn(Y,Y)

(2.4)

if the quantities in the denominator are strictly positive, and defined to be zero otherwise. The
sample affinely invariant distance correlation inherits the properties of the sample distance cor-
relation; in particular

0 ≤ R̃n(X,Y) ≤ 1,

and R̃n(X,Y) = 1 implies that p = q , that the linear spaces spanned by X and Y have full
rank, and that there exist a vector a ∈ R

p , a nonzero number b ∈ R, and an orthogonal matrix
C ∈ R

p×p such that S
−1/2
Y Y = a + bCS

−1/2
X X.

Our next result shows that the sample affinely invariant distance correlation is a consistent
estimator of the respective population quantity.

Theorem 2.1. Let (X,Y ) ∈ R
p+q be jointly distributed random vectors with positive defi-

nite marginal covariance matrices �X ∈ R
p×p and �Y ∈ R

q×q , respectively. Suppose that
(X1, Y1), . . . , (Xn,Yn) is a random sample from (X,Y ), and let X = [X1, . . . ,Xn] ∈ Rp×n and
Y = [Y1, . . . , Yn] ∈ R

q×n. Also, let �̂X and �̂Y be strongly consistent estimators for �X and �Y ,
respectively. Then

V2
n

(
�̂

−1/2
X X, �̂

−1/2
Y Y

) → Ṽ2(X,Y ),

almost surely, as n → ∞. In particular, the sample affinely invariant distance correlation satisfies

R̃n(X,Y) → R̃(X,Y ), (2.5)

almost surely.

Proof. As the covariance matrices �X and �Y are positive definite, we may assume that the
strongly consistent estimators �̂X and �̂Y also are positive definite. Therefore, in order to prove
the first statement it suffices to show that

V2
n

(
�̂

−1/2
X X, �̂

−1/2
Y Y

) − V2
n

(
�

−1/2
X X,�

−1/2
Y Y

) → 0, (2.6)

almost surely. By the decomposition of Székely et al. [23], page 2776, equation (2.18), the left-
hand side of (2.6) can be written as an average of terms of the form∣∣�̂−1/2

X (Xk − Xl)
∣∣
p

∣∣�̂−1/2
Y (Yk − Ym)

∣∣
q

− ∣∣�−1/2
X (Xk − Xl)

∣∣
p

∣∣�−1/2
Y (Yk − Ym)

∣∣
q
.

Using the identity∣∣�̂−1/2
X (Xk − Xl)

∣∣
p

∣∣�̂−1/2
Y (Yk − Ym)

∣∣
q

= ∣∣(�̂−1/2
X − �

−1/2
X + �

−1/2
X

)
(Xk − Xl)

∣∣
p

∣∣(�̂−1/2
Y − �

−1/2
Y + �

−1/2
Y

)
(Yk − Ym)

∣∣
q
,
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we obtain∣∣�̂−1/2
X (Xk − Xl)

∣∣
p

∣∣�̂−1/2
Y (Yk − Ym)

∣∣
q

− ∣∣�−1/2
X (Xk − Xl)

∣∣
p

∣∣�−1/2
Y (Yk − Ym)

∣∣
q

≤ ∥∥�̂
−1/2
X − �

−1/2
X

∥∥∥∥�̂
−1/2
Y − �

−1/2
Y

∥∥|Xk − Xl |p|Yk − Ym|q
+ ∥∥�̂

−1/2
X − �

−1/2
X

∥∥|Xk − Xl |p
∣∣�−1/2

Y (Yk − Ym)
∣∣
q

+ ∥∥�̂
−1/2
Y − �

−1/2
Y

∥∥∣∣�−1/2
X (Xk − Xl)

∣∣
p
|Yk − Ym|q,

where the matrix norm ‖�‖ is the largest eigenvalue of � in absolute value. Now we can separate
the three sums in the decomposition of Székely et al. [23], page 2776, equation (2.18) and place
the factors like ‖�̂−1/2

X −�
−1/2
X ‖ in front of the sums, since they appear in every summand. Then,

‖�̂−1/2
X − �

−1/2
X ‖ and ‖�̂−1/2

Y − �
−1/2
Y ‖ tend to zero and the remaining averages converge to

constants (representing some distance correlation components) almost surely as n → ∞, and
this completes the proof of the first statement. Finally, the property (2.5) of strong consistency of
R̃n(X,Y) is obtained immediately upon setting �̂X = SX and �̂Y = SY. �

Székely et al. [23], page 2783, proposed a test for independence that is based on the sample
distance correlation. From their results, we see that the asymptotic properties of the test statistic
are not affected by the transition from the standard distance correlation to the affinely invariant
distance correlation. Hence, a completely analogous but different test can be stated in terms of
the affinely invariant distance correlation. Noting the results of Kosorok [11], Section 4; [12], we
raise the possibility that the specific details can be devised in a judicious, data-dependent way so
that the power of the test for independence increases when the transition is made to the affinely
invariant distance correlation. Alternative multivariate tests for independence based on distances
have recently been proposed by Heller et al. [7] and Székely and Rizzo [22].

3. The affinely invariant distance correlation for multivariate
normal populations

We now consider the problem of calculating the affinely invariant distance correlation between
the random vectors X and Y where (X,Y ) ∼ Np+q(μ,�), a multivariate normal distribution
with mean vector μ ∈R

p+q , covariance matrix � ∈R
(p+q)×(p+q), where X and Y have nonsin-

gular marginal covariance matrices �X ∈ R
p×p and �Y ∈R

q×q , respectively.
For the case in which p = q = 1, that is, the bivariate normal distribution, the problem was

solved by Székely et al. [23]. In that case, the formula for the affinely invariant distance correla-
tion depends only on ρ, the correlation coefficient, and appears in terms of the functions sin−1 ρ

and (1 − ρ2)1/2, both of which are well-known to be special cases of Gauss’ hypergeometric se-
ries. Therefore, it is natural to expect that the general case will involve generalizations of Gauss’
hypergeometric series, and Theorem 3.1 below demonstrates that such is indeed the case. To for-
mulate this result, we need to recall the rudiments of the theory of zonal polynomials (Muirhead
[13], Chapter 7).
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A partition κ is a vector of nonnegative integers (k1, . . . , kq) such that k1 ≥ · · · ≥ kq . The
integer |κ| = k1 + · · · + kq is called the weight of κ ; and �(κ), the length of κ , is the largest
integer j such that kj > 0. The zonal polynomial Cκ(�) is a polynomial mapping from the class
of symmetric matrices � ∈ R

q×q to the real line which satisfies several properties, the following
of which are crucial for our results:

(a) Let O(q) denote the group of orthogonal matrices in R
q×q . Then

Cκ

(
K ′�K

) = Cκ(�) (3.1)

for all K ∈ O(q); thus, Cκ(�) is a symmetric function of the eigenvalues of �.
(b) The polynomial Cκ(�) is homogeneous of degree |κ| in �: For any δ ∈R,

Cκ(δ�) = δ|κ|Cκ(�). (3.2)

(c) If � is of rank r , then Cκ(�) = 0 whenever �(κ) > r .
(d) For any nonnegative integer k, ∑

|κ|=k

Cκ(�) = (tr�)k. (3.3)

(e) For any symmetric matrices �1,�2 ∈ Rq×q ,∫
O(q)

Cκ

(
K ′�1K�2

)
dK = Cκ(�1)Cκ(�2)

Cκ(Iq)
, (3.4)

where Iq = diag(1, . . . ,1) ∈ R
q×q denotes the identity matrix and the integral is with

respect to the Haar measure on O(q), normalized to have total volume 1.
(f) Let λ1, . . . , λq be the eigenvalues of �. Then, for a partition (k) with one part,

C(k)(�) = k!
(1/2)k

∑
i1+···+iq=k

q∏
j=1

(1/2)ij λ
ij
j

ij ! , (3.5)

where the sum is over all nonnegative integers i1, . . . , iq such that i1 + · · · + iq = k, and

(α)k = �(α + k)

�(α)
= α(α + 1)(α + 2) · · · (α + k − 1),

α ∈ C, is standard notation for the rising factorial. In particular, on setting λj = 1, j =
1, . . . , q , we obtain from (3.5)

C(k)(Iq) = ((1/2)q)k

(1/2)k
(3.6)

(Muirhead [13], page 237, equation (18), Gross and Richards [6], page 807, Lemma 6.8).
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With these properties of the zonal polynomials, we are ready to state our key result which
obtains an explicit formula for the affinely invariant distance covariance in the case of a Gaus-
sian population of arbitrary dimension and arbitrary covariance matrix with positive definite
marginal covariance matrices. This formula turns out to be a function depending only on the di-
mensions p and q and the eigenvalues of the matrix � = �

−1/2
Y �YX�−1

X �XY �
−1/2
Y , that is, the

squared canonical correlation coefficients of the subvectors X and Y . For fixed dimensions this
implies R̃(X,Y ) = g(λ1, . . . , λr ), where r = min(p, q) and λ1, . . . , λr are the canonical correla-
tion coefficients of X and Y . Due to the functional invariance, the maximum likelihood estimator
(MLE) for the affinely invariant distance correlation in the Gaussian setting is hence defined by
g(̂λ1, . . . , λ̂r ), where λ̂1, . . . , λ̂r are the MLEs of the canonical correlation coefficients.

Theorem 3.1. Suppose that (X,Y ) ∼Np+q(μ,�), where

� =
(

�X �XY

�YX �Y

)

with �X ∈R
p×p , �Y ∈R

q×q , and �XY ∈ R
p×q . Then

Ṽ2(X,Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k!22k

(1/2)k(−1/2)k(−1/2)k

((1/2)p)k((1/2)q)k
C(k)(�), (3.7)

where

� = �
−1/2
Y �YX�−1

X �XY �
−1/2
Y ∈ R

q×q . (3.8)

Proof. We may assume, with no loss of generality, that μ is the zero vector. Since �X and �Y

both are positive definite the inverse square-roots, �
−1/2
X and �

−1/2
Y , exist.

By considering the standardized variables X̃ = �
−1/2
X X and Ỹ = �

−1/2
Y Y , we may replace the

covariance matrix � by

�̃ =
(

Ip �XY

�XY
′ Iq

)
,

where

�XY = �
−1/2
X �XY �

−1/2
Y . (3.9)

Once we have made these reductions, it follows that the matrix � in (3.8) can be written as
� = �XY

′�XY and that it has norm less than or equal to 1. Indeed, by the partial Iwasawa
decomposition of �̃, viz., the identity,

�̃ =
(

Ip 0
�XY

′ Iq

)(
Ip 0
0 Iq − �XY

′�XY

)(
Ip �XY

0 Iq

)
,

where the zero matrix of any dimension is denoted by 0, we see that the matrix �̃ is positive
semidefinite if and only if Iq −� is positive semidefinite. Hence, � ≤ Iq in the Loewner ordering
and therefore ‖�‖ ≤ 1.
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We proceed to calculate the distance covariance Ṽ(X,Y ) = V(X̃, Ỹ ). It is well-known that the
characteristic function of (X̃, Ỹ ) is

fX̃,Ỹ (s, t) = exp

[
−1

2

(
s

t

)′
�̃

(
s

t

)]
= exp

[
−1

2

(|s|2p + |t |2q + 2s′�XY t
)]

,

where s ∈R
p and t ∈ R

q . Therefore,∣∣fX̃,Ỹ (s, t) − fX̃(s)fỸ (t)
∣∣2 = (

1 − exp
(−s′�XY t

))2 exp
(−|s|2p − |t |2q

)
,

and hence

cpcqV2(X̃, Ỹ ) =
∫
Rp+q

(
1 − exp

(−s′�XY t
))2 exp

(−|s|2p − |t |2q
) ds

|s|p+1
p

dt

|t |q+1
q

(3.10)

=
∫
Rp+q

(
1 − exp

(
s′�XY t

))2 exp
(−|s|2p − |t |2q

) ds

|s|p+1
p

dt

|t |q+1
q

,

where the latter integral is obtained by making the change of variables s �→ −s within the former
integral.

By a Taylor series expansion, we obtain(
1 − exp

(
s′�XY t

))2 = 1 − 2 exp
(
s′�XY t

) + exp
(
2s′�XY t

)
=

∞∑
k=2

2k − 2

k!
(
s′�XY t

)k
.

Substituting this series into (3.10) and interchanging summation and integration, a procedure
which is straightforward to verify by means of Fubini’s theorem, and noting that the odd-order
terms integrate to zero, we obtain

cpcqV2(X̃, Ỹ ) =
∞∑

k=1

22k − 2

(2k)!
∫
Rp+q

(
s′�XY t

)2k exp
(−|s|2p − |t |2q

) ds

|s|p+1
p

dt

|t |q+1
q

. (3.11)

To calculate, for k ≥ 1, the integral∫
Rp+q

(
s′�XY t

)2k
exp

(−|s|2p − |t |2q
) ds

|s|p+1
p

dt

|t |q+1
q

, (3.12)

we change variables to polar coordinates, putting s = rxθ and t = ryφ where rx, ry > 0, θ =
(θ1, . . . , θp)′ ∈ Sp−1, and φ = (φ1, . . . , φq)′ ∈ Sq−1. Then the integral (3.12) separates into a
product of multiple integrals over (rx, ry), and over (θ,φ), respectively. The integrals over rx
and ry are standard gamma integrals,∫ ∞

0

∫ ∞

0
r2k−2
x r2k−2

y exp
(−r2

x − r2
y

)
drx dry = 1

4

[
�

(
k − 1

2

)]2 = [(− 1
2

)
k

]2
π, (3.13)
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and the remaining factor is the integral∫
Sq−1

∫
Sp−1

(
θ ′�XY φ

)2k dθ dφ, (3.14)

where dθ and dφ are unnormalized surface measures on Sp−1 and Sq−1, respectively. By a
standard invariance argument,∫

Sp−1

(
θ ′v

)2k dθ = |v|2k
p

∫
Sp−1

θ2k
1 dθ,

v ∈Rp . Setting v = �XY φ and applying some well-known properties of the surface measure dθ ,
we obtain ∫

Sp−1

(
θ ′�XY φ

)2k dθ = |�XY φ|2k
p

∫
Sp−1

θ2k
1 dθ

= 2cp−1
�(k + 1/2)�(1/2p)

�(k + (1/2)p)�(1/2)

(
φ′�φ

)k
.

Therefore, in order to evaluate (3.14), it remains to evaluate

Jk(�) =
∫

Sq−1

(
φ′�φ

)k dφ.

Since the surface measure is invariant under transformation φ �→ Kφ, K ∈ O(q), it follows that
Jk(�) = Jk(K

′�K) for all K ∈ O(q). Integrating with respect to the normalized Haar measure
on the orthogonal group, we conclude that

Jk(�) =
∫

O(q)

Jk

(
K ′�K

)
dK =

∫
Sq−1

∫
O(q)

(
φ′K ′�Kφ

)k dK dφ. (3.15)

We now use the properties of the zonal polynomials. By (3.3),

(
φ′K ′�Kφ

)k = (
trK ′�Kφφ′)k =

∑
|κ|=k

Cκ

(
K ′�Kφφ′);

therefore, by (3.4),∫
O(q)

(
φ′K ′�Kφ

)k dK =
∑
|κ|=k

∫
O(q)

Cκ

(
K ′�Kφφ′)dK =

∑
|κ|=k

Cκ(�)Cκ(φφ′)
Cκ(Iq)

.

Since φφ′ is of rank 1 then, by property (c), Cκ(φφ′) = 0 if �(κ) > 1; it now follows, by (3.3)
and the fact that φ ∈ Sq−1, that

C(k)

(
φφ′) =

∑
|κ|=k

Cκ

(
φφ′) = (

trφφ′)k = (
φ′φ

)k = |φ|2k
q = 1.
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Therefore, ∫
O(q)

(
φ′K ′�Kφ

)k dK = C(k)(�)

C(k)(Iq)
= (1/2)k

((1/2)q)k
C(k)(�),

where the last equality follows by (3.6). Substituting this result at (3.15), we obtain

Jk(�) = 2cq−1
(1/2)k

((1/2)q)k
C(k)(�).

Collecting together these results, and using the well-known identity (2k)! = k!22k(1/2)k , we
obtain the representation (3.7), as desired. �

We remark that by interchanging the roles of X and Y in Theorem 3.1, we would obtain (3.7)
with � in (3.8) replaced by

�0 = �
−1/2
X �XY �−1

Y �YX�
−1/2
X ∈R

p×p.

Since � and �0 have the same characteristic polynomial and hence the same set of nonzero
eigenvalues, and noting that Cκ(�) depends only on the eigenvalues of �, it follows that
C(k)(�) = C(k)(�0). Therefore, the series representation (3.7) for Ṽ2(X,Y ) remains unchanged
if the roles of X and Y are interchanged.

The series appearing in Theorem 3.1 can be expressed in terms of the generalized hyper-
geometric functions of matrix argument (Gross and Richards [6], James [9], Muirhead [13]).
For this purpose, we introduce the partitional rising factorial for any α ∈ C and any partition
κ = (k1, . . . , kq) as

(α)κ =
q∏

j=1

(
α − (1/2)(j − 1)

)
kj

.

Let α1, . . . , αl, β1, . . . , βm ∈ C where −βi + 1
2 (j − 1) is not a nonnegative integer, for all

i = 1, . . . ,m and j = 1, . . . , q . Then the lFm generalized hypergeometric function of matrix
argument is defined as

lFm(α1, . . . , αl;β1, . . . , βm;S) =
∞∑

k=0

1

k!
∑
|κ|=k

(α1)κ · · · (αl)κ

(β1)κ · · · (βm)κ
Cκ(S),

where S is a symmetric matrix. A complete analysis of the convergence properties of this series
was derived by Gross and Richards [6], page 804, Theorem 6.3, and we refer the reader to that
paper for the details.

Corollary 3.2. In the setting of Theorem 3.1, we have

Ṽ2(X,Y ) = 4π
cp−1

cp

cq−1

cq

(
3F2

(
1

2
,−1

2
,−1

2
; 1

2
p,

1

2
q;�

)
(3.16)

− 23F2

(
1

2
,−1

2
,−1

2
; 1

2
p,

1

2
q; 1

4
�

)
+ 1

)
.
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Proof. It is evident that

(1/2)κ =
{

(1/2)k1 , if �(κ) ≤ 1,
0, if �(κ) > 1.

Therefore, we now can write the series in (3.7), up to a multiplicative constant, in terms of a
generalized hypergeometric function of matrix argument, in that

∞∑
k=1

22k − 2

k!22k

(1/2)k(−1/2)k(−1/2)k

((1/2)p)k((1/2)q)k
C(k)(�)

=
∞∑

k=1

22k − 2

k!22k

∑
|κ|=k

(1/2)κ (−1/2)κ(−1/2)κ

((1/2)p)κ((1/2)q)κ
Cκ(�)

=
∞∑

k=1

1

k!
∑
|κ|=k

(1/2)κ (−1/2)κ(−1/2)κ

((1/2)p)κ((1/2)q)κ
Cκ(�)

− 2
∞∑

k=1

1

k!22k

∑
|κ|=k

(1/2)κ (−1/2)κ(−1/2)κ

((1/2)p)κ((1/2)q)κ
Cκ(�)

=
[

3F2

(
1

2
,−1

2
,−1

2
; 1

2
p,

1

2
q;�

)
− 1

]
− 2

[
3F2

(
1

2
,−1

2
,−1

2
; 1

2
p,

1

2
q; 1

4
�

)
− 1

]
.

Due to property (3.2) it remains to show that the zonal polynomial series expansion for the
3F2(

1
2 ,− 1

2 ,− 1
2 ; 1

2p, 1
2q;�) generalized hypergeometric function of matrix argument converges

absolutely for all � with � ≤ Iq in the Loewner ordering. By (3.6)

3F2

(
1

2
,−1

2
,−1

2
; 1

2
p,

1

2
q;�

)
≤

∞∑
k=0

22k

k!22k

(−1/2)k(−1/2)k

((1/2)p)k

= 2F1

(
−1

2
,−1

2
; 1

2
p;1

)
.

The latter series converges due to Gauss’ theorem for hypergeometric functions and so we have
absolute convergence at (3.16) for all � with positive definite marginal covariance matrices. �

Consider the case in which q = 1 and p is arbitrary. Then � is a scalar; say, � = ρ2 for
some ρ ∈ [−1,1]. Then the 3F2 generalized hypergeometric functions in (3.16) each reduce to a
Gaussian hypergeometric function, denoted by 2F1, and (3.16) becomes

Ṽ2(X,Y ) = 4
cp−1

cp

(
2F1

(
−1

2
,−1

2
; 1

2
p;ρ2

)
− 22F1

(
−1

2
,−1

2
; 1

2
p; 1

4
ρ2

)
+ 1

)
.

For the case in which p = q = 1, we may identify ρ with the Pearson correlation coefficient and
the hypergeometric series can be expressed in terms of elementary functions. By well-known
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results (Andrews, Askey and Roy [1], pages 64 and 94),

2F1
(− 1

2 ,− 1
2 ; 1

2 ;ρ2) = ρ sin−1 ρ + (
1 − ρ2)1/2

, (3.17)

and thus we derive the same result for p = q = 1 as in Székely et al. [23], page 2785.
For cases in which q = 1 and p is odd, we can again obtain explicit expressions for Ṽ2(X,Y ).

In such cases, the 3F2 generalized hypergeometric functions in (3.16) reduce to Gaussian hyper-
geometric functions of the form 2F1(− 1

2 ,− 1
2 ; k + 1

2 ;ρ2), k ∈ N, and it can be shown that these
latter functions are expressible in closed form in terms of elementary functions and the sin−1(·)
function. For instance, for p = 3, the contiguous relations for the 2F1 functions can be used to
show that

2F1

(
−1

2
,−1

2
; 3

2
;ρ2

)
= 3(1 − ρ2)1/2

4
+ (1 + 2ρ2) sin−1 ρ

4ρ
. (3.18)

Further, by repeated application of the same contiguous relations, it can be shown that for k =
2,3,4, . . . ,

2F1
(− 1

2 ,− 1
2 ; k + 1

2 ;ρ2) = ρ−2(k−1)
(
1 − ρ2)1/2

Pk−1
(
ρ2) + ρ−(2k−1)Qk

(
ρ2) sin−1 ρ,

where Pk and Qk are polynomials of degree k. Therefore, for q = 1 and p odd, the distance
covariance Ṽ2(X,Y ) can be expressed in closed form in terms of elementary functions and the
sin−1(·) function.

The appearance of the generalized hypergeometric functions of matrix argument also yields a
useful expression for the affinely invariant distance variance. In order to state this result, we shall
define for each positive integer p the quantity

A(p) = �((1/2)p)�((1/2)p + 1)

[�((1/2)(p + 1))]2
− 22F1

(
−1

2
,−1

2
; 1

2
p; 1

4

)
+ 1. (3.19)

Corollary 3.3. In the setting of Theorem 3.1, we have

Ṽ2(X,X) = 4π
c2
p−1

c2
p

A(p). (3.20)

Proof. We are in the special case of Theorem 3.1 for which X = Y , so that p = q and � = Ip .
By applying (3.6), we can write the series in (3.7) as

4π
c2
p−1

c2
p

∞∑
k=1

22k − 2

k!22k

(1/2)k(−1/2)k(−1/2)k

((1/2)p)k((1/2)p)k
C(k)(Ip)

= 4π
c2
p−1

c2
p

∞∑
k=1

22k − 2

k!22k

(−1/2)k(−1/2)k

((1/2)p)k
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= 4π
c2
p−1

c2
p

([
2F1

(
−1

2
,−1

2
; 1

2
p;1

)
− 1

]

− 2

[
2F1

(
−1

2
,−1

2
; 1

2
p; 1

4

)
− 1

])
.

By Gauss’ theorem for hypergeometric functions the series 2F1(− 1
2 ,− 1

2 ; 1
2p; z) also converges

for the special value z = 1, and then

2F1

(
−1

2
,−1

2
; 1

2
p;1

)
= �((1/2)p)�((1/2)p + 1)

[�((1/2)(p + 1))]2
,

thereby completing the proof. �

For cases in which p is odd, we can proceed as explained at (3.18) to obtain explicit values for
the Gaussian hypergeometric function remaining in (3.20). This leads in such cases to explicit
expressions for the exact value of Ṽ2(X,X). In particular, if p = 1 then it follows from (1.2) and
(3.17) that

Ṽ2(X,X) = 4

3
− 4(

√
3 − 1)

π
;

and for p = 3, we deduce from (1.2) and (3.18) that

Ṽ2(X,X) = 2 − 4(3
√

3 − 4)

π
.

Corollaries 3.2 and 3.3 enable the explicit and efficient calculation of the affinely invariant
distance correlation (1.6) in the case of subvectors of a multivariate normal population. In doing
so, we use the algorithm of Koev and Edelman [10] to evaluate the generalized hypergeometric
function of matrix argument, with C and Matlab code being available at these authors’ websites.

Figure 1 concerns the case p = q = 2 in various settings, in which the matrix �22 depends on
a single parameter r only. The dotted line shows the affinely invariant distance correlation when

�XY =
(

0 0
0 r

)
;

this is the case with the weakest dependence considered here. The dash-dotted line applies when

�XY =
(

r 0
0 r

)
.

The strongest dependence corresponds to the dashed line, which shows the affinely invariant
distance correlation when

�XY =
(

r r

r r

)
;
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Figure 1. The affinely invariant distance correlation for subvectors of a multivariate normal population,
where p = q = 2, as a function of the parameter r in three distinct settings. The solid diagonal line is the
identity function and is provided to serve as a reference for the three distance correlation functions. See the
text for details.

in this case we need to assume that 0 ≤ r ≤ 1
2 in order to retain positive definiteness.

In Figure 2, panel (a) shows the affinely invariant distance correlation when p = q = 2 and

�XY =
(

r 0
0 s

)
,

where 0 ≤ r, s ≤ 1. With reference to Figure 1, the margins correspond to the dotted line and the
diagonal corresponds to the dash-dotted line.

Panel (b) of Figure 2 concerns the case in which p = 2, q = 1 and �XY = (r, s)′, where
r2 + s2 ≤ 1. Here, the affinely invariant distance correlation attains an upper limit as r2 + s2 ↑ 1,
and we have evaluated that limit numerically as 0.8252.

4. Limit theorems

We now study the limiting behavior of the affinely invariant distance correlation measures for
subvectors of multivariate normal populations.

Our first result quantifies the asymptotic decay of the affinely invariant distance correlation in
the case in which the cross-covariance matrix converges to the zero matrix, in that

tr(�) = ‖�XY ‖2
F −→ 0,



2320 Dueck, Edelmann, Gneiting and Richards

Figure 2. The affinely invariant distance correlation between the p- and q-dimensional subvectors of a
(p + q)-dimensional multivariate normal population, where (a) p = q = 2 and �XY = diag(r, s), and
(b) p = 2, q = 1 and �XY = (r, s)′.

where ‖ · ‖F denotes the Frobenius norm, and the matrices � = �XY
′�XY and �XY are defined

in (3.8) and (3.9), respectively.

Theorem 4.1. Suppose that (X,Y ) ∼Np+q(μ,�), where

� =
(

�X �XY

�YX �Y

)

with �X ∈ R
p×p and �Y ∈ R

q×q being positive definite, and suppose that the matrix � in (3.8)
has positive trace. Then,

lim
tr(�)→0

R̃2(X,Y )

tr(�)
= 1

4pq
√

A(p)A(q)
, (4.1)

where A(p) is defined in (3.19).

Proof. We first note that Ṽ2(X,X) and Ṽ2(Y,Y ) do not depend on �XY , as can be seen from
their explicit representations in terms of A(p) and A(q) given in (3.20).
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In studying the asymptotic behavior of Ṽ2(X,Y ), we may interchange the limit and the sum-
mation in the series representation (3.7). Hence, it suffices to find the limit term-by-term. Since
C(1)(�) = tr(�) then the ratio of the term for k = 1 and tr(�) equals

cp−1

cp

cq−1

cq

π

pq
.

For k ≥ 2, it follows from (3.5) that C(k)(�) is a sum of monomials in the eigenvalues of �, with
each monomial being of degree k, which is greater than the degree, viz. 1, of tr(�); therefore,

lim
tr(�)→0

C(k)(�)

tr(�)
= lim

�→0

C(k)(�)

tr(�)
= 0.

Collecting these facts together, we obtain (4.1). �

If p = q = 1, we are in the situation of Theorem 7(iii) in Székely et al. [23]. Applying the
identity (3.17), we obtain

2F1

(
−1

2
,−1

2
; 1

2
; 1

4

)
= π

12
+

√
3

2
,

and (tr(�))1/2 = |ρ|. Thus, we obtain

lim
ρ→0

R̃(X,Y )

|ρ| = 1

2(1 + (1/3)π − √
3)1/2

,

as shown by Székely et al. [23], page 2785.
In the remainder of this section, we consider situations in which one or both of the dimensions

p and q grow without bound. We will repeatedly make use of the fact that, with cp defined as in
(1.2),

cp−1√
pcp

−→ 1√
2π

(4.2)

as p → ∞, which follows easily from the functional equation for the gamma function along with
Stirling’s formula.

Theorem 4.2. For each positive integer p, suppose that (Xp,Yp) ∼N2p(μp,�p), where

�p =
(

�X,p �XY,p

�YX,p �Y,p

)

with �X,p ∈R
p×p and �Y,p ∈ R

p×p being positive definite and such that

�p = �
−1/2
Y,p �YX,p�−1

X,p�XY,p�
−1/2
Y,p �= 0.
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Then

lim
p→∞

p

tr(�p)
Ṽ2(Xp,Yp) = 1

2
(4.3)

and

lim
p→∞

p

tr(�p)
R̃2(Xp,Yp) = 1. (4.4)

In particular, if �p = r2Ip for some r ∈ [0,1] then tr(�p) = r2p, and so (4.3) and (4.4) reduce
to

lim
p→∞ Ṽ2(Xp,Yp) = 1

2 r2 and lim
p→∞ R̃(Xp,Yp) = r,

respectively. The following corollary concerns the special case in which r = 1; we state it sepa-
rately for emphasis.

Corollary 4.3. For each positive integer p, suppose that Xp ∼ Np(μp,�p), with �p being
positive definite. Then

lim
p→∞ Ṽ2(Xp,Xp) = 1

2 . (4.5)

Proof of Theorem 4.2 and Corollary 4.3. In order to prove (4.3), we study the limit for the
terms corresponding separately to k = 1, k = 2, and k ≥ 3 in (3.7).

For k = 1, on recalling that C(1)(�p) = tr(�p), it follows from (4.2) that the ratio of that term
to tr(�p)/p tends to 1/2.

For k = 2, we first deduce from (3.3) that C(2)(�p) ≤ (tr�p)2. Moreover, tr(�p) ≤ p because
�p ≤ Ip in the Loewner ordering. Thus, the ratio of the second term in (3.7) to tr(�p)/p is a
constant multiple of

p

tr(�p)

c2
p−1

c2
p

C(2)(�p)

((1/2)p)2((1/2)p)2
≤ c2

p−1

c2
p

p2

((1/2)p)2((1/2)p)2

= 4
p

(p + 1)2

c2
p−1

pc2
p

which, by (4.2), converges to zero as p → ∞.
Finally, suppose that k ≥ 3. Obviously, �p ≤ ‖�p‖Ip in the Loewner ordering inequality, and

so it follows from (3.5) that C(k)(�p) ≤ ‖�p‖kC(k)(Ip). Also, since tr(�p) ≥ ‖�p‖ then by
again applying the Loewner ordering inequality and (3.6) we obtain

C(k)(�p)

tr(�p)
≤ ‖�p‖kC(k)(Ip)

‖�p‖ = ‖�p‖k−1C(k)(Ip) ≤ C(k)(Ip) = ((1/2)p)k

(1/2)k
. (4.6)
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Therefore,

4π
p

tr(�p)

c2
p−1

c2
p

∞∑
k=3

22k − 2

k!22k

(1/2)k(−1/2)k(−1/2)k

((1/2)p)k((1/2)p)k
C(k)(�p)

≤ 4πp
c2
p−1

c2
p

∞∑
k=3

22k − 2

k!22k

(−1/2)k(−1/2)k

((1/2)p)k
.

By (4.2), each term pc2
p−1/(

1
2p)kc

2
p converges to zero as p → ∞, and this proves both (4.3) and

its special case, (4.5). Then, (4.4) follows immediately. �

Finally, we consider the situation in which q , the dimension of Y , is fixed while p, the dimen-
sion of X, grows without bound.

Theorem 4.4. For each positive integer p, suppose that (Xp,Y ) ∼Np+q(μp,�p), where

�p =
(

�X,p �XY,p

�YX,p �Y

)

with �X,p ∈R
p×p and �Y ∈R

q×q being positive definite and such that

�p = �
−1/2
Y �YX,p�−1

X,p�XY,p�
−1/2
Y �= 0.

Then

lim
p→∞

√
p

tr(�p)
Ṽ2(Xp,Y ) =

√
π

2

cq−1

qcq

(4.7)

and

lim
p→∞

√
p

tr(�p)
R̃2(Xp,Y ) = 1

2q
√

A(q)
. (4.8)

Proof. By (3.7),

Ṽ2(Xp,Y ) = 4π
cp−1

cp

cq−1

cq

∞∑
k=1

22k − 2

k!22k

(1/2)k(−1/2)k(−1/2)k

((1/2)p)k((1/2)q)k
C(k)(�p).

We now examine the limiting behavior, as p → ∞, of the terms in this sum for k = 1 and,
separately, for k ≥ 2.

For k = 1, the limiting value of the ratio of the corresponding term to tr(�p)/
√

p equals

π
cq−1

qcq

lim
p→∞

√
p

tr(�p)

cp−1

pcp

C(1)(�p) =
√

π

2

cq−1

qcq

by (4.2) and the fact that C(1)(�p) = tr(�p).
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For k ≥ 2, the ratio of the sum to tr(�p)/
√

p equals

4π

√
p

tr(�p)

cp−1

cp

cq−1

cq

∞∑
k=2

22k − 2

k!22k

(1/2)k(−1/2)k(−1/2)k

((1/2)p)k((1/2)q)k
C(k)(�p)

≤ 4π

√
p

‖�p‖
cp−1

cp

cq−1

cq

∞∑
k=2

22k − 2

k!22k

(−1/2)k(−1/2)k

((1/2)p)k
‖�p‖k

≤ 4π
√

p
cp−1

cp

cq−1

cq

∞∑
k=2

22k − 2

k!22k

(−1/2)k(−1/2)k

((1/2)p)k
,

where we have used (4.6) to obtain the last two inequalities. By applying (4.2), we see that
the latter upper bound converges to 0 as p → ∞, which proves (4.7), and then (4.8) follows
immediately. �

The results in this section have practical implications for affine distance correlation analysis
of large-sample, high-dimensional Gaussian data. In the setting of Theorem 4.4, tr(�p) ≤ q is
bounded, and so

lim
p→∞ R̃(Xp,Y ) = 0.

As a consequence of Theorem 2.1 on the consistency of sample measures, it follows that the
direct calculation of affine distance correlation measures for such data will return values which
are virtually zero. In practice, in order to obtain values of the sample affine distance correlation
measures which permit statistical inference, it will be necessary to calculate �̂p , the maximum
likelihood estimator of �p , and then to rescale the distance correlation measures with the fac-
tor

√
p/ tr(�̂p). In the scenario of Theorem 4.2, the asymptotic behavior of the affine distance

correlation measures depends on the ratio p/ tr(�p); and as tr(�p) can attain any value in the
interval [0,p], a wide range of asymptotic rates of convergence is conceivable.

In all these settings, the series representation (3.7) can be used to obtain complete asymptotic
expansions in powers of p−1 or q−1, of the affine distance covariance or correlation measures,
as p or q tend to infinity.

5. Time series of wind vectors at the Stateline wind energy
center

Rémillard [15] proposed the use of the distance correlation to explore nonlinear dependencies in
time series data. Zhou [24] pursued this approach recently and defined the auto distance covari-
ance function and the auto distance correlation function, along with natural sample versions, for
a strongly stationary vector-valued time series, say (Xj )

∞
j=−∞.
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It is straightforward to extend these notions to the affinely invariant distance correlation. Thus,
for an integer k, we refer to

R̃X(k) = Ṽ(Xj ,Xj+k)

Ṽ(Xj ,Xj )
(5.1)

as the affinely invariant auto distance correlation at the lag k. Similarly, given jointly strongly
stationary, vector-valued time series (Xj )

∞
j=−∞ and (Yj )

∞
j=−∞, we refer to

R̃X,Y (k) = Ṽ(Xj ,Yj+k)√
Ṽ(Xj ,Xj )Ṽ(Yj , Yj )

(5.2)

as the affinely invariant cross distance correlation at the lag k. The corresponding sample ver-
sions can be defined in the natural way, as in the case of the non-affine distance correlation (Zhou
[24]).

We illustrate these concepts on time series data of wind observations at and near the Stateline
wind energy center in the Pacific Northwest of the United States. Specifically, we consider time
series of bivariate wind vectors at the meteorological towers at Vansycle, right at the Stateline
wind farm at the border of the states of Washington and Oregon, and at Goodnoe Hills, 146
km west of Vansycle along the Columbia River Gorge. Further information can be found in the
paper by Gneiting et al. [3], who developed a regime-switching space-time (RST) technique for
2-hour-ahead forecasts of hourly average wind speed at the Stateline wind energy center, which
was then the largest wind farm globally. For our purposes, we follow Hering and Genton [8] in
studying the time series at the original 10-minute resolution, and we restrict our analysis to the
longest continuous record, the 75-day interval from August 14, 2002 to October 28, 2002.

Thus, we consider time series of bivariate wind vectors over 10 800 consecutive 10-minute in-
tervals. We write V NS

j and V EW
j to denote the north–south and the east–west component, respec-

tively, of the wind vector at Vansycle at time j , with positive values corresponding to northerly
and easterly winds. Similarly, we write GNS

j and GEW
j for the north–south and the east–west

component, respectively, of the wind vector at Goodnoe Hills at time j .
Figure 3 shows the classical (Pearson) sample auto and cross correlation functions for the

four univariate time series. The auto correlation functions generally decay with the temporal,
but do so non-monotonously, due to the presence of a diurnal component. The cross correlation
functions between the wind vector components at Vansycle and Goodnoe Hills show remarkable
asymmetries and peak at positive lags, due to the prevailing westerly and southwesterly wind
(Gneiting et al. [3]). In another interesting feature, the cross correlations between the north–
south and east–west components at lag zero are strongly positive, documenting the dominance
of southwesterly winds.

Figure 4 shows the sample auto and cross distance correlation functions for the four time
series; as these variables are univariate, there is no distinction between the standard and the
affinely invariant version of the distance correlation. The patterns seen resemble those in the case
of the Pearson correlation. For comparison, we also display values of the distance correlation
based on the sample Pearson correlations shown in Figure 3, and converted to distance correlation
under the assumption of bivariate Gaussianity, using the results of Székely et al. [23], page 2785,
and Section 3; in every single case, these values are smaller than the original ones.
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Figure 3. Sample auto and cross Pearson correlation functions for the univariate time series V EW
j

, V NS
j

,

GEW
j

, and GNS
j

, respectively. Positive lags indicate observations at the westerly site (Goodnoe Hills) leading
those at the easterly site (Vansycle), or observations of the north–south component leading those of the
east–west component, in units of hours.

Having considered the univariate time series setting, it is natural and complementary to look
at the wind vector time series (V EW

j ,V NS
j ) at Vansycle and (GEW

j ,GNS
j ) at Goodnoe Hills from

a genuinely multivariate perspective. To this end, Figure 5 shows the sample affinely invari-
ant auto and cross distance correlation functions for the bivariate wind vector series at the two
sites. Again, a diurnal component is visible, and there is a remarkable asymmetry in the cross-
correlation functions, which peak at lags of about two to three hours.

In light of our analytical results in Section 3, we can compute the affinely invariant distance
correlation between subvectors of a multivariate normally distributed random vector. In particu-
lar, we can compute the affinely invariant auto and cross distance correlation between bivariate
subvectors of a 4-variate Gaussian process with Pearson auto and cross correlations as shown in
Figure 3. In Figure 5, values of the affinely invariant distance correlation that have been derived
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Figure 4. Sample auto and cross distance correlation functions for the univariate time series V EW
j

, V NS
j

,

GEW
j

, and GNS
j

, respectively. For comparison, we also display, in grey, the values that arise when the sample
Pearson correlations in Figure 3 are converted to distance correlation under the assumption of Gaussianity;
these values generally are smaller than the original ones. Positive lags indicate observations at Goodnoe
Hills leading those at Vansycle, or observations of the north–south component leading those of the east–west
component, in units of hours.

from Pearson correlations in these ways are shown in grey; the differences from those values
that are computed directly from the data are substantial, with the converted values being smaller,
possibly suggesting that assumptions of Gaussianity may not be appropriate for this particular
data set.

We wish to emphasize that our study is purely exploratory: it is provided for illustrative pur-
poses and to serve as a basic example. In future work, the approach hinted at here may have the
potential to be developed into parametric or nonparametric bootstrap tests for Gaussianity. For
this purpose recall that, in the Gaussian setting, the affinely invariant distance correlation is a
function of the canonical correlation coefficients, that is, R̃ = g(λ1, . . . , λr ). For a parametric
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Figure 5. Sample auto and cross affinely invariant distance correlation functions for the bivariate time se-
ries (V EW

j
,V NS

j
)′ and (GEW

j
,GNS

j
)′ at Vansycle and Goodnoe Hills. For comparison, we also display, in

grey, the values that are generated when the Pearson correlation in Figure 3 is converted to the affinely
invariant distance correlation under the assumption of Gaussianity; these converted values generally are
smaller than the original ones. Positive lags indicate observations at Goodnoe Hills leading those at Vansy-
cle, in units of hours.

bootstrap test, one could generate B replicates of g(λ�
1, . . . , λ

�
r ), leading to a pointwise (1 − α)-

confidence band. The test would now reject Gaussianity if the sample affinely invariant distance
correlation function does not lie within this band. For the nonparametric bootstrap test, one could
obtain ensembles R̃�

n by resampling methods, again defining a pointwise (1−α)-confidence band
and checking if g(̂λ1, . . . , λ̂r ) is located within this band.

Following the pioneering work of Zhou [24], the distance correlation may indeed find a wealth
of applications in exploratory and inferential problems for time series data.

6. Discussion

In this paper, we have studied an affinely invariant version of the distance correlation measure
introduced by Székely et al. [23] and Székely and Rizzo [20] in both population and sample
settings (see Székely and Rizzo [21] for further aspects of the role of invariance in properties
of distance correlation measures). The affinely invariant distance correlation shares the desirable
properties of the standard version of the distance correlation and equals the latter in the univari-
ate case. In the multivariate case, the affinely invariant distance correlation remains unchanged
under invertible affine transformations, unlike the standard version, which is preserved under
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orthogonal transformations only. Furthermore, the affinely invariant distance correlation admits
an exact and readily computable expression in the case of subvectors from a multivariate normal
population. We have shown elsewhere that the standard version allows for a series expansion too,
but this does not appear to be a series that generally can be made simple, and further research
will be necessary to make it accessible to efficient numerical computation. Related asymptotic
results can be found in Gretton et al. [5] and Székely and Rizzo [22].

Competing measures of dependence also have featured prominently recently (Reshef et al.
[16], Speed [19]). However, those measures are restricted to univariate settings, and claims of
superior performance in exploratory data analysis have been disputed (Gorfine, Heller and Heller
[4], Simon and Tibshirani [18]). We therefore share much of Newton’s [14] enthusiasm about the
use of the distance correlation as a measure of dependence and association. A potential drawback
for large data sets is the computational cost required to compute the sample distance covariance,
and the development of computationally efficient algorithms or subsampling techniques for doing
this is highly desirable.
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