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In statistical analysis, measuring a score of predictive performance is an important task. In many scientific
fields, appropriate scoring rules were tailored to tackle the problems at hand. A proper scoring rule is a
popular tool to obtain statistically consistent forecasts. Furthermore, a mathematical characterization of the
proper scoring rule was studied. As a result, it was revealed that the proper scoring rule corresponds to a
Bregman divergence, which is an extension of the squared distance over the set of probability distributions.
In the present paper, we introduce composite scoring rules as an extension of the typical scoring rules in
order to obtain a wider class of probabilistic forecasting. Then, we propose a class of composite scoring
rules, named Hölder scores, that induce equivariant estimators. The equivariant estimators have a favorable
property, implying that the estimator is transformed in a consistent way, when the data is transformed. In
particular, we deal with the affine transformation of the data. By using the equivariant estimators under
the affine transformation, one can obtain estimators that do no essentially depend on the choice of the
system of units in the measurement. Conversely, we prove that the Hölder score is characterized by the
invariance property under the affine transformations. Furthermore, we investigate statistical properties of
the estimators using Hölder scores for the statistical problems including estimation of regression functions
and robust parameter estimation, and illustrate the usefulness of the newly introduced scoring rules for
statistical forecasting.
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1. Introduction

In statistical analysis, an important task is to measure a score or a loss of the prediction perfor-
mance. In many fields in which probabilistic forecasting is required, appropriate scoring rules
or loss functions are tailored to tackle the scientific problems at hand, for example, weather and
climate prediction [8,9], computational finance [16], and so forth.

Under an uncertain situation, the prediction is described by using the probability distribution.
The probability distribution for the prediction is expected to put much weight to outcomes that
are likely to materialize in the future. Hence, the scoring rule is formalized as a function tak-
ing two inputs, that is, a probability distribution for the prediction and an outcome. In order
to achieve high prediction performance on average, ideally, optimization of the expected scor-
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ing rule is conducted. When the identically and independently distributed (i.i.d.) samples are
available, the expected scoring rule is approximated by the empirical mean over the samples.
By optimizing the empirical mean over a statistical model for the prediction, one will obtain a
probability distribution attaining high prediction performance.

The above statistical procedure is formalized as the statistical inference using the scoring rules
[9,14,21,25]. We regard the scoring rule as a loss to be minimized. The estimator obtained from
the scoring rule is called the optimum score estimator. To obtain a good estimator, scoring rules
need to satisfy some assumptions. A typical assumption is that the scoring rule is proper. Given
a probability distribution of outcomes, the optimal value of the expected proper scoring rule
is attained by setting the prediction probability to be the true probability distribution. Under
mild assumptions, optimization of the proper scoring rule averaged over the observed samples
produces a statistically consistent estimator. The proper scoring rule is a special case of M-
estimation [26], and the statistical properties of the proper scoring rule have been studied in the
framework of M-estimators [33], Chapter 5.

The proper scoring rule is a basic element that yields important concepts in statistical infer-
ence. According to [14], the proper scoring rule introduces a divergence, which is a discrepancy
measure between two probability distributions. The divergence is regarded as a generalization of
the (squared) distance, and induces a sort of topological structure over the statistical model. As
a result, geometrical structures such as the Riemannian metric and affine connection are defined
over the geometrical space consisting of probability distributions. Such a geometrical structure is
closely related to the statistical properties of the estimator. Bregman divergence [7] is an impor-
tant class of divergences, since it is closely related to the proper scoring rule. A major milestone
in the theoretical approach is the characterization of the proper scoring rule by using the Bregman
divergence [1,21,25]. More precisely, any proper scoring rule produces a Bregman divergence,
and a given Bregman divergence yields a proper scoring rule. The correspondence established a
way to investigate the proper scoring rule by using the Bregman divergence on statistical models.

In the present paper, we introduce composite scoring rules as an extension of the proper scor-
ing rules in order to obtain a wider class of probabilistic forecasting. Then, we propose a class of
composite scoring rules, named Hölder scores, that induce equivariant estimators [5]. The equiv-
ariant estimator is a class of estimators having a favorable property, implying that the estimator
is transformed in a consistent way, when the data is transformed. In particular, we deal with the
affine transformation of the data, that is, ω �→ σ−1(ω−μ) for the data ω ∈ R

d , where σ is a d by
d invertible matrix and μ is a d-dimensional vector. The normalization of data is a typical exam-
ple of affine transformations. Each element of the normalized data has zero sample-mean and unit
sample-variance. Thus, for the normalized data, the statistical comparison of each component is
reasonable. As an example of the equivariant estimators under the affine transformation, let us
consider the estimation of the mean value θ of a one-dimensional probability distribution. When
all samples are transformed from ω ∈ R into σ−1(ω − μ) with the constants μ ∈ R and σ �= 0,
also the estimator θ̂ of the mean value θ should be transformed into σ−1(θ̂ − μ). By using the
equivariant estimators under the affine transformation, the estimate does not essentially depend
on the choice of the system of units in the measurement. In addition, we show a characterization
of the Hölder scores. Similarly to the correspondence between the proper scoring rules and the
Bregman divergences, the composite scoring rules correspond to a class of divergences. When
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the divergence is invariant under the data transformation, the corresponding composite scoring
rule provides an equivariant estimator. We prove that the Hölder scores are characterized by the
affine invariance of the associated divergence, that is, among a class of composite scoring rules,
only Hölder scores provide the equivariant estimator under affine transformations. Furthermore,
we investigate statistical properties of the estimators derived from Hölder scores for the statistical
problems including estimation of regression functions and robust parameter estimation.

As pointed out in [8], scoring rules of continuous variables have so far received little attention.
In this paper, our main concern is the scoring rules of continuous variables. The invariance under
affine transformations is a specific property for continuous variables.

The remainder of the article is organized as follows. In Section 2, we define composite scoring
rules and associated divergences. Bregman scores and their separable variant are also introduced
as an important class of composite scoring rules. Then, we show a way to use composite scoring
rules to probabilistic forecasting. In Section 3, we define Hölder scores, and demonstrate the rela-
tion between Hölder scores and Bregman scores. In Section 4, we define the affine invariance of
divergences, and show that the Hölder score induces the affine invariant divergences and equivari-
ant estimators. Conversely, we prove that Hölder score is characterized by the affine invariance of
the associated divergence. In Section 5, the Hölder score is used to statistical problems including
regression problems and robust estimation. In particular, the robustness property of the Hölder
score is presented. In Section 6, we close this article with a discussion of the possibility of the
newly introduced class of scoring rules.

2. Composite scoring rules and divergences

In this section, we define composite scoring rules and associated divergences. Then, we introduce
estimators using the composite scoring rules.

Let us summarize the notations to be used throughout the paper. Let R be the set of all real
numbers. The nonnegative numbers are denoted as R+ = {x ∈ R | x ≥ 0}. The interior set of
a set A is denoted as A◦. Thus, R◦+ implies the set of all positive real numbers, that is, R◦+ =
{x ∈ R | x > 0}. For a sample space �, let B be a σ -algebra of subsets of � and m :B → R+
be a σ -finite measure on (�,B). When � is a subset of a Euclidean space, B and m denote
the Borel algebra and Lebesgue measure, respectively. The set of all measurable functions on
� is denoted as L0, that is, L0 = {f :� → R | f is measurable on (�,B,m)}. For f ∈ L0, the
integral

∫
�

f (ω)dm(ω) is denoted as 〈f 〉. Let ‖ · ‖α for 1 ≤ α < ∞ be the Lα-norm, that is,
‖f ‖α = 〈|f |α〉1/α , and ‖ · ‖∞ be the essential sup-norm. For α ≥ 1, let Lα be Lα = {f ∈ L0 |
‖f ‖α < ∞}. For α = 0 or α ≥ 1, L+

α denotes the set of all nonnegative and nonzero functions
in Lα , that is, L+

α = {f ∈ Lα | f ≥ 0, f �= 0}. Provided a set of measurable and nonnegative
functions F ⊂ L+

0 , P denotes the set of probability densities in F , that is, P = {p ∈ F | 〈p〉 = 1},
in which the dependency on F is dropped if there is no confusion. For a differentiable function
ψ , ψi with the integer i denotes the partial derivative of ψ with respect to the ith argument, for
example, for ψ(x, y), ψ1 and ψ2 denote ∂ψ

∂x
and ∂ψ

∂y
, respectively.
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2.1. Definitions

Let us consider the probabilistic forecasts on a measurable space (�,B,m). Suppose that the
probabilistic forecast is given by a probability density q ∈ L+

1 satisfying 〈q〉 = 1. For an outcome
ω ∈ �, let S0(ω, q) be a scoring rule of the forecast using q . When the probability density of the
outcome is p, the expected scoring rule is given as

S0(p, q) :=
∫

�

S0(ω, q)p(ω)dm(ω).

Suppose that the expected scoring rule satisfies the inequality S0(p, q) ≥ S0(p,p). Then, the
minimization of the empirical mean of S0(ω, q) over the statistical model q is expected to provide
a good estimate of the probability density p. This approach is widely used in statistical inference.

We expand the expected scoring rules to more general forms. It is defined not only for proba-
bility densities but also nonnegative functions.

Definition 2.1 (Composite scoring rule; proper composite scoring rule; entropy). Let F be a
convex subset in L+

0 , and the set of probability densities in F is denoted as P , that is, P = {p ∈
F | 〈p〉 = 1}. The function S(f,g) :F × F → R is called the composite scoring rule on F , if
S(f,g) is of the form

S(f,g) = T

(∫
�

S0(ω,g)f (ω)dm(ω),g

)
, (2.1)

where S0 :�×F → R and T :R×F → R. The function S0(·, g)f (·) is assumed to be integrable
for all f,g ∈ F . The composite scoring rule S(f,g) satisfying the following two conditions is
called proper composite scoring rule:

1. S(f,g) ≥ S(f,f ) for all f,g ∈F .
2. For p,q ∈ P , S(p,q) = S(p,p) implies p = q (almost surely).

The function S(f,f ) is referred to as entropy.

When the composite scoring rule S(f,g) is defined only on the set of probability densities and
the function T is given as T (c, g) = c, the composite scoring rule in the above is reduced to the
expected scoring rule. Likewise, the proper composite scoring rule is an extension of the expected
strictly proper scoring rule [14,21,23,25], that is regarded as the proper composite scoring rule
with T (c, g) = c. In Section 3, we propose a class of proper composite scoring rules with a
nontrivial T .

Remark 2.1. In our definition, the domain of the composite scoring rule is not necessarily a set
of probability densities, but it can be a set of nonnegative functions. In [25], the strictly proper
scoring rules are characterized on the set of nonnegative functions. The definition in the present
paper simplifies mathematical analysis on composite scoring rules.

Let us define the equivalence class on composite scoring rules. The meaning of the equivalence
class is illustrated in Section 2.3.
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Definition 2.2 (Equivalence of composite scoring rules). The composite scoring rules S(f,g)

and S̃(f, g) on F are equivalent if there exists a strictly increasing function ξ :R →R such that
S̃(f, g) = ξ(S(f, g)) holds for all f,g ∈ F . The composite scoring rules S(f,g) and S̃(f, g) on
F are equivalent in probability if there exists a strictly increasing function ξ :R → R such that
S̃(p, q) = ξ(S(p, q)) holds for all probability densities p,q ∈ P ⊂F .

A different definition of the equivalence class was also proposed by [13,14], in which the
classical expected scoring rules S(p,q) and S̃(p, q) on P are equivalent, if there exist a posi-
tive constant c > 0 and a function k :P → R such that S̃(p, q) = cS(p,q) + k(p) holds. The
equivalence class in Definition 2.2 is more suitable for our analysis.

Definition 2.3 (Divergence). Let S be a proper composite scoring rule on F . Then, we call

D(f,g) = S(f,g) − S(f,f ), f, g ∈F ,

the divergence associated with S.

By the definition of the proper composite scoring rule, the divergence D(f,g) is nonnegative
for all f,g ∈ F , and the equality D(p,q) = 0 for p,q ∈P implies p = q .

2.2. Bregman scores

As an important class of proper composite scoring rules, we introduce Bregman scores and their
separable variant. Under a mild assumption, any strictly proper scoring rule on P is expressed as
a Bregman score on P ; see [1,21,25] for details.

Definition 2.4 (Bregman score). For a convex set F ⊂ L+
0 , let us define G :F →R as a convex

function such that G is strictly convex on P = {p ∈ F | 〈p〉 = 1}. Suppose that there exists a
function G∗

g :� → R depending on g ∈ F such that

G(f ) ≥ G(g) +
∫

�

G∗
g(ω)f (ω)dm(ω) −

∫
�

G∗
g(ω)g(ω)dm(ω), for f,g ∈F

holds, where the integrals are assumed to be finite. Then, the Bregman score S(f,g) on F is
defined as

S(f,g) = −G(g) −
∫

�

G∗
g(ω)f (ω)dm(ω) +

∫
�

G∗
g(ω)g(ω)dm(ω), for f,g ∈F .

The function G is referred to as the potential function of the Bregman score, and it satisfies
G(f ) = −S(f,f ), that is, the negative entropy. The Bregman divergence is the divergence asso-
ciated with the Bregman score.

The function G∗
g corresponds to the subgradient of G at g ∈ F . The rigorous definition of G∗

g

requires the dual space of a Banach space in L+
0 . See [6], Chapter 4, for sufficient conditions of
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the existence of G∗
g . To avoid technical difficulties, we assume the existence of G∗

g in the above
definition.

The Bregman score is represented as the composite scoring rule (2.1) with

S0(ω,g) = −G∗
g(ω) and T (c, g) = c − G(g) + 〈

G∗
gg

〉
.

From the definition, the Bregman score satisfies S(f,g) ≥ S(f,f ) for all f,g ∈ F . The strict
convexity of G on P ensures that the Bregman score is a proper composite scoring rule. When
the Bregman score is defined on the set of probability densities, setting S0(ω,g) = −G∗

g(ω) −
G(g) + 〈G∗

gg〉 and T (c, g) = c is also a valid choice. This implies that the Bregman score on P
is represented as a strictly proper scoring rule; see Theorem 1 of [21].

The separable variant of the Bregman score is defined below.

Definition 2.5 (Separable Bregman score). Let J :R+ → R be a strictly convex function. The
Bregman score with the potential function G(f ) = 〈J (f )〉 is called the separable Bregman score,
where J (f ) implies the composition function of J and f ∈ F , that is, J (f )(ω) = J (f (ω)). The
separable Bregman divergence is the divergence associated with the separable Bregman score.

The separable Bregman score is of the form

S(f,g) = −〈
J (g)

〉 − 〈
J ′(g)f

〉 + 〈
J ′(g)g

〉
for f,g ∈ F ,

where J ′(z) is the subgradient of J at z ∈R+.
We show some examples of Bregman scores and associated divergences.

Example 2.1 (Kullback–Leibler (KL) score). Let F be a subset of L+
1 , and suppose that f logg

is integrable for all f,g ∈F . The Kullback–Leibler (KL) score is defined as

S(f,g) = 〈−f logg + g〉, f, g ∈F,

which is the separable Bregman score using the function J (z) = z log z − z and the potential
function G(f ) = 〈f logf − f 〉. The associated divergence is called the KL divergence. The
entropy S(p,p) of p ∈ P is given as 〈−p logp〉+ 1, that is equal to the differential entropy [12]
up to a constant.

Example 2.2 (Density power score). Let F be F = L+
1+γ for a given γ > 0. The density power

score on F is defined as

S(f,g) = 〈
g1+γ

〉 − 1 + γ

γ

〈
fgγ

〉
, f, g ∈F ,

which is the separable Bregman score with J (z) = z1+γ /γ and the potential function G(f ) =
〈f 1+γ 〉/γ . The entropy S(p,p) of p ∈P is given as −〈p1+γ 〉/γ , that is, the Tsallis entropy (1−
〈p1+γ 〉)/γ [31] up to a constant. The integrability of fgγ is confirmed by Hölder’s inequality.
The associated divergence is called the density power divergence [3,4,27]. When the parameter
γ in the density power divergence tends to zero, the KL-divergence is recovered.
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Example 2.3 (γ -score; pseudospherical score). Let F be F = L+
1+γ for a given γ > 0. The

pseudospherical score [22] is defined as

S(f,g) = − 〈fgγ 〉
〈g1+γ 〉γ /(1+γ )

, f, g ∈F ,

which is a nonseparable Bregman score with the potential function G(f ) = 〈f 1+γ 〉1/(1+γ ) =
‖f ‖1+γ . For the pseudospherical score S(f,g), the composite scoring rule, − 1

γ
log(−S(f,g)),

is called the γ -score in this paper. The γ -score is proposed in [17,20], and it is used for robust
parameter estimation. As the limiting case of γ → 0, the divergence associated with the γ -score
recovers KL-divergence.

2.3. Optimum score estimator

Statistical inference using the composite scoring rule (2.1) is conducted by substituting the em-
pirical probability and the model probability into the composite scoring rule. Provided the i.i.d.
samples ω1, . . . ,ωn from the probability density p, the empirical approximation of S(p,q) for a
given probability density q is given as

S(p̃, q) = T

(
1

n

n∑
i=1

S0(ωi, q), q

)
,

where p̃ denotes the empirical probability. For a sufficiently large number of samples, S(p̃, q)

converges to S(p,q) due to the law of large numbers. Since S(p,q) ≥ S(p,p) is assumed, the
estimator of p is obtained as the minimum solution of S(p̃, q) with respect to q over a statistical
model. The estimator q̂ is called the optimum score estimator [21]. The estimator using the
strictly proper scoring rule is a special case of M-estimation [26], and its statistical properties
have been deeply investigated [33].

When two proper composite scoring rules are equivalent in probability in the sense of Defini-
tion 2.2, they produce the same estimator.

3. Hölder scores

In this section, we propose a class of composite scoring rules, named Hölder scores, a part of
which is not represented as the Bregman score. The relation between the Hölder scores and
Bregman scores is also presented.

3.1. Definition of Hölder score

Bregman scores are widely used for statistical inference [2,11,29,32], since one can substitute the
empirical probability distribution into the Bregman score. Under a regularity condition, Bregman
scores produce statistically consistent estimators based on the outcomes. Especially, the density
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power score and γ -score are used for robust estimation [3,20]. In this section, we propose a class
of composite scoring rules called Hölder scores. One can also substitute the empirical probability
distribution into the Hölder score. As shown later, the Hölder score is not included in the class of
Bregman scores.

Definition 3.1 (Hölder score). The Hölder score with a nonnegative parameter γ is defined as
follows:

1. For a given γ > 0, let φ :R+ → R be a function such that φ(z) ≥ −z1+γ for all z ≥ 0 and
φ(1) = −1 hold. Then, for F = L+

1+γ , the Hölder score is defined as

S(f,g) = φ

( 〈fgγ 〉
〈g1+γ 〉

)〈
g1+γ

〉
, f, g ∈F .

2. For γ = 0, the Hölder score is defined as

S(f,g) = 〈−f logg + g〉, f, g ∈ F ,

where F is a subset of L+
1 such that f logg is integrable for all f,g ∈F .

We prove the basic property of the Hölder score.

Theorem 3.1. The Hölder score is a proper composite scoring rule.

The proof of Theorem 3.1 is found in Appendix A. Theorem 3.1 ensures that the Hölder score
leads to the associated divergence, that is referred to as the Hölder divergence.

The Hölder score with γ > 0 is represented as the composite scoring rule (2.1) with S0(ω,g) =
g(ω)γ and T (c, g) = φ(c/〈g1+γ 〉)〈g1+γ 〉. The name of Hölder score comes from the fact that
Hölder’s inequality is used to prove the nonnegativity of the Hölder divergence. The entropy of
the Hölder score is S(f,f ) = −〈f 1+γ 〉, which is in agreement with the Tsallis entropy [31] up
to an affine transformation.

An appropriate choice of the function φ produces the composite scoring rule equivalent with
the density power score or γ -score. Indeed, the Hölder score with the lower bound φ(z) = −z1+γ

yields S(f,g) = −〈fgγ 〉1+γ /〈g1+γ 〉γ that is equivalent with γ -score. The density power score
is equivalent with the Hölder score with φ(z) = γ − (1 + γ )z.

3.2. Bregman scores and Hölder scores

Let us consider the relation between the Bregman scores and Hölder scores. We assume the
differentiability for Bregman scores. The definition of the differentiability is shown below.

Definition 3.2 (Differentiability of potential function). Let G be the potential function of the
Bregman score on the convex set F . If the limit

lim
ε→0

G((1 − ε)f + εg) − G(f )

ε
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exists for any f,g ∈ F such that there exists δ > 0 satisfying (1 − ε)f + εg ∈ F for all ε ∈
(−δ, δ), the potential function G is called differentiable. The corresponding Bregman score (resp.
divergence) is called the differentiable Bregman score (resp. divergence).

The differentiability above makes our analysis rather simple. For nondifferentiable Bregman
scores, we will need more involved argument such as the convex analysis in Banach spaces.
From the practical viewpoint, differentiable Bregman scores will be preferable, since the standard
nonlinear optimization techniques are directly applicable to obtain the optimum score estimator.

Theorem 3.2. Let the function φ in the Hölder score be continuous on R+.

1. Suppose that the differentiable Bregman score with the potential function G(f ) is equiva-
lent with the Hölder score with γ > 0. Then, G(f ) is given as G(f ) = 〈f 1+γ 〉κ/(1+γ ) up
to a positive constant factor, where κ ≥ 1.

2. Suppose that the differentiable and separable Bregman score with the potential function
G(f ) is equivalent with the Hölder score with γ > 0. Then, G(f ) is given as G(f ) =
〈f 1+γ 〉 up to a positive constant factor.

The proof is shown in Appendix B.
Remember that the KL score is a differentiable and separable Bregman. Hence, the intersection

of (separable) Bregman score and Hölder score is equivalent with the KL score or the (separable)
Bregman score associated with the potential function presented in the above theorem.

For the potential function G(f ) = 〈f 1+γ 〉κ/(1+γ ) with γ > 0 and κ ≥ 1, the corresponding
Bregman score is given as

S(f,g) = 〈
g1+γ

〉κ/(1+γ )
(

1 − 1

κ
− 〈fgγ 〉

〈g1+γ 〉
)

. (3.1)

The above Bregman scores include the density power score (κ = 1 + γ ) and γ -score (κ = 1) in
each equivalent class. The Hölder score corresponding to the Bregman score (3.1) is given by the
function φ(z) defined as

φ(z) = −κ(1+γ )/κ |z − 1 + 1/κ|(1+γ )/κ sign(z − 1 + 1/κ), (3.2)

where sign(z) is the sign function taking z/|z| for z �= 0 and 0 for z = 0. In Section 5.1, we show
a statistical interpretation of the proper composite scoring rule (3.1).

4. Affine invariance of Hölder divergence

Affine transformation of the observed data is often used in statistical analysis. Let � = R
d , B

be the Borel set of �, and m be the Lebesgue measure on (�,B). The affine transformation is
defined as the map ω �→ σ−1(ω − μ) of ω ∈ � with an invertible matrix σ ∈ R

d×d and a vector
μ ∈ R

d . The normalization is a typical example of the affine transformation. For the observed
data ω1, . . . ,ωn ∈R

d , let the vector μ be the sample mean of the observations, and the matrix σ
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be the diagonal matrix such that the kth diagonal element is equal to the sample-based standard
deviation of the kth component of the observed data. Then, each element of the transformed
data, σ−1(ω1 − μ), . . . , σ−1(ωn − μ), has zero sample-mean and unit sample-variance. This
transformation enables the fair comparison of the intensity of each component in statistical sense.
As another benefit, the normalization often makes the numerical computation stable.

The affine transformation of data, ω �→ σ−1(ω − μ), induces the transformation of the proba-
bility density,

p(ω) �→ pσ,μ(ω) = |detσ |p(σω + μ).

Let q be a statistical model to estimate the probability density p. Then, the statistical model
for the affine transformed data is given as qσ,μ. Let q̂ be the estimator of p based on the orig-
inal data {ω1, . . . ,ωn}, and q̂σ,μ be the estimator based on the transformed data, {σ−1(ω1 −
μ), . . . , σ−1(ωn − μ)}. It will be natural to require that the estimator is transformed in a consis-
tent way, when the data is transformed, that is, the equality

( q̂ )σ,μ = q̂σ,μ (4.1)

should hold. The estimators enjoying (4.1) do not essentially depend on the choice of the units in
the measurement. In the present paper, the estimator satisfying (4.1) is called the affine invariant
estimator. In a formal mathematical description, the term invariant decision rule or equivariant
estimator is used to denote the estimator that changes in a consistent way under data transforma-
tions [5].

A simple way of obtaining the affine invariant estimator is to use the composite scoring rules
satisfying the equality S(p,q) = S(pσ,μ, qσ,μ). However, the equality is not necessity. In the be-
low, we introduce proper composite scoring rules and associated divergences that provide affine
invariant estimators.

Definition 4.1 (Affine invariant divergence; affine invariant proper composite scoring rule).
Let S be a proper composite scoring rule on F , and D be the associated divergence. The diver-
gence D is affine invariant if there exists an R

◦+-valued function h(σ,μ) of the invertible matrix
σ ∈R

d×d and the vector μ ∈R
d such that the equality

h(σ,μ)D(pσ,μ, qσ,μ) = D(p,q) (4.2)

holds for any pair of probability densities p,q ∈ P and arbitrary affine transformation. The
function h is called the scale function. The proper composite scoring rule S inducing the affine
invariant divergence is called the affine invariant proper composite scoring rule.

Remark 4.1. The affine invariance of the divergence is equivalent with the condition that there
exist functions h(σ,μ) and k(σ,μ,p) such that h(σ,μ)S(pσ,μ, qσ,μ) + k(σ,μ,p) = S(p,q)

holds for the proper composite scoring rule S. Indeed, (4.2) leads to h(σ,μ)S(pσ,μ, qσ,μ) −
h(σ,μ)S(pσ,μ,pσ,μ)+S(p,p) = S(p,q). The affine invariance of the proper composite scoring
rule is described by using the function k.
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We briefly prove that the affine invariant proper composite scoring rule provides the affine
invariant estimator. Let S be an affine invariant proper composite scoring rule, and q̂ be the
optimum score estimator obtained by solving the minimization problem minq∈M S(p,q) on a
statistical model M. Then, the inequalities,

D(p, q̂ ) ≤ D(p,q) and D
(
pσ,μ, ( q̂ )σ,μ

) ≤ D(pσ,μ, qσ,μ)

hold for all q ∈ M. On the other hand, q̂σ,μ is the minimum solution of minqσ,μ D(pσ,μ, qσ,μ),
when the model {qσ,μ | q ∈ M} is used. Therefore, the equivariant property (4.1) holds, if the
optimal solution is unique.

It is straightforward to verify that the Hölder divergence is affine invariant. Indeed, for the
Hölder divergence D(p,q) with γ > 0, we have

D(pσ,μ, qσ,μ) = φ

( 〈pσ,μq
γ
σ,μ〉

〈q1+γ
σ,μ 〉

)〈
q1+γ
σ,μ

〉 + 〈
p1+γ

σ,μ

〉
= φ

( |detσ |γ 〈pqγ 〉
|detσ |γ 〈q1+γ 〉

)〈
q1+γ

〉|detσ |γ + 〈
p1+γ

〉|detσ |γ

= |detσ |γ D(p,q).

Therefore, the scale function is given as h(σ,μ) = |detσ |−γ . In the same way, we can confirm
that the KL divergence is also affine invariant with the scale function h(σ,μ) = 1. This result
indicates that the optimum score estimator using Hölder score provides the affine invariant esti-
mator.

Conversely, we prove that the Hölder score is characterized by the affine invariance. In the
beginning, let us introduce some assumptions.

Assumption 4.1 (Basic assumption on � and F ). Let � = R
d , B be the Borel set of �, and

m :B →R+ be the Lebesgue measure on (�,B). The set F includes the following function set,

F0 :=
{
f ∈ L+

0

∣∣∣ {
ω ∈ � | f (ω) > 0

} = (0,1)d ,and there exist a, b ∈ R

such that 0 < a < f (ω) < b for all ω ∈ (0,1)d

}
,

that is, F0 ⊂F ⊂ L+
0 holds.

The subset (0,1)d in the above assumption can be replaced with any subset with a finite
measure.

For proper composite scoring rules, we assume the following conditions.

Assumption 4.2 (Assumption on the proper composite scoring rule). For the proper composite
scoring rule S(f,g), we assume three conditions:

(a) S(f,g) has the form of

S(f,g) = ψ
(〈
f U(g)

〉
,
〈
V (g)

〉)
for all f,g ∈F , (4.3)
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where U and V are real-valued functions on R+ and ψ is a function on a subset of
R

2, that is, S is the proper composite scoring rule (2.1) with S0(ω,g) = U(g(ω)) and
T (c, g) = ψ(c, 〈V (g)〉). For all f,g ∈ F , the functions f (ω)U(g(ω)) and V (g(ω)) are
integrable.

(b) The functions U,V :R+ → R are second order continuously differentiable on R
◦+, and

they are not constant function on R
◦+. For the function V , the equality limz↘0 V (z) = 0 =

V (0) holds, and the limit limz↘0 V ′(z) exists.
(c) Let DU,V and EU,V be subsets of R2 defined as

DU,V = {(〈
f U(g)

〉
,
〈
V (g)

〉) ∈ R
2 | f,g ∈ F

}
,

EU,V = {(〈
f U(f )

〉
,
〈
V (f )

〉) ∈R
2 | f ∈F

}
,

respectively. For arbitrary point x ∈ DU,V , there exists an open neighbourhood of x on
which ψ is second order continuously differentiable. For arbitrary point x ∈ EU,V , there
exists an open neighbourhood of x on which the gradient vector (ψ1,ψ2) does not vanish.

Let us explain the assumption (4.3). In general, the composite scoring rule S(f,g) is described
as a functional of g. Hence, the assumption (4.3) is a strong restriction on the class of composite
scoring rules. On the other hand, all separable Bregman scores and Hölder scores are expressed
by the form of (4.3). In addition, the proper composite scoring rules of the form (4.3) are not
included in the class of Bregman scores. In practice, the composite scoring rule (4.3) is tractable,
since it can be calculated via integrals.

In Assumption 4.2(b), we assumed V (0) = 0 in order to guarantee the integrability of the
function whose support is not equal to �. More precisely, let Z = {ω ∈ R

d | f (ω) = 0} with
m(Z) = ∞, then 〈V (g)〉 = ∫

Z
V (0)dm + ∫

�\Z V (g)dm will not be finite unless V (0) = 0. In
Assumption 4.2(c), we assumed that the gradient vector (ψ1,ψ2) does not become the zero vector
at (〈f U(f )〉, 〈V (f )〉). If this assumption does not hold, we need a more involved argument to
derive analytic properties of the functions U and V . For the sake of simplicity, we introduce
Assumption 4.2(c).

The functions U and V of the affine invariant proper composite scoring rules are determined
by Theorem 4.1.

Theorem 4.1. Let S be an affine invariant proper composite scoring rule. Suppose that As-
sumption 4.1 and Assumption 4.2 hold. Then, the functions U and V in (4.3) are given as
U(z) = zγ + c and V (z) = z1+γ with γ > 0, or U(z) = − log z + c and V (z) = z up to a
constant factor, where c ∈ R is a constant.

The proof is found in Appendix C.1. For each possibility of U and V , the composite scoring
rule is identified in the following theorem.

Theorem 4.2. Let S be an affine invariant proper composite scoring rule. Suppose that Assump-
tion 4.1 and Assumption 4.2 hold.

1. Let us define U(z) = − log z + c and V (z) = z in (4.3). Then, S(f,g) is equivalent in
probability with the KL score.
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2. For γ > 0, let us define U(z) = zγ + c and V (z) = z1+γ in (4.3), and let F be F =
L+

1+γ . Then, S(f,g) is equivalent in probability with the Hölder score with γ > 0 and a
function φ.

The proof is found in Appendix C.2.
In the first case of Theorem 4.2, the integrability of f logg is assumed for f,g ∈ F such that

F0 ⊂F , implying that {ω ∈ � | f (ω) > 0} = (0,1)d holds for all f ∈F .
Theorem 3.2 and Theorem 4.2 lead to the fact that the density power score is characterized by

the differentiable, separable and affine invariant Bregman score. Let us consider the equivalence
class of proper composite scoring rules induced by Definition 2.2. The proper composite scoring
rule of the form (4.3) includes the differentiable and separable Bregman score, and the affine
invariant proper composite scoring rule of the form (4.3) is Hölder score. Therefore, as shown in
Theorem 3.2, the intersection of the differentiable and separable Bregman scores and the Hölder
scores is given by the density power score.

5. Applications of Hölder scores

We use Hölder scores for regression and robust estimation, and investigate the corresponding
statistical properties.

5.1. Asymptotically unbiased estimation for regression problems

We use composite scoring rules for the estimation of conditional probabilities or regression
functions. Let x and y be the explanatory variable and objective variable, respectively. Sup-
pose that the i.i.d. samples (xi, yi), i = 1, . . . , n are observed from the joint probability density
p(y|x)r(x), where p(y|x) is the conditional probability density of y given x and r(x) is the
marginal probability density of x. Our concern is to estimate p(y|x) from the samples, and the
estimation of the marginal probability r(x) is not required.

To estimate p(y|x), let us define a statistical model M, that is a set of conditional probability
densities. Suppose that p(y|x) is realized by the model M, that is, p(y|x) ∈ M. On each input
vector x, the discrepancy between p(y|x) and q(y|x) ∈ M is measured by S(p(·|x), q(·|x)),
where S is a proper composite scoring rule. By averaging S(p(·|x), q(·|x)) with respect to the
marginal distribution, we obtain the averaged scoring rule

S̄(p, q|r) :=
∫

S
(
p(·|x), q(·|x)

)
r(x)dm(x) (5.1)

which is regarded as the loss of the estimate q(y|x) ∈ M under the probability density
p(y|x)r(x). From the definition of the proper composite scoring rule, the minimum solution
of the averaged scoring rule with respect to q ∈ M is attained at q(y|x) = p(y|x).

Let us consider the empirical approximation of S̄(p, q|r). If S̄(p, q|r) is represented as the
expectation with respect to the joint probability p(y|x)r(x), S̄(p, q|r) can be approximated by
the empirical mean of the samples. Otherwise, we need an estimate of the conditional probability
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p(y|x) to obtain an approximation of S̄(p, q|r). Clearly, the later case is not practical, since our
purpose is to estimate p(y|x).

Suppose that for any r(x), the averaged scoring rule S̄(p, q|r) is represented as the expectation
for the probability p(y|x)r(x). Then, S is a Bregman score, that is, S(p(·|x), q(·|x)) is expressed
as the expectation with respect to p(·|x). If the Bregman score that is equivalent in probability
with the Hölder score is used, the affine invariant estimator is obtained for the estimation of the
conditional probability. Here, the affine transformation of the objective variable is considered.

Theorem 3.2 shows that the Bregman score that is equivalent in probability with the Hölder
score is of the form (3.1). Given samples (x1, y1), . . . , (xn, yn), the optimum score estimator
using (3.1) is the minimum solution of

min
q∈M

1

n

n∑
i=1

〈
q(·|xi)

1+γ
〉κ/(1+γ )

(
1 − 1

κ
− q(yi |xi)

γ

〈q(·|xi)1+γ 〉
)

, (5.2)

where γ > 0, κ ≥ 1, and 〈q(·|x)1+γ 〉 = ∫
�

q(y|x)1+γ dm(y). The optimization problem (5.2)
provides the Fisher consistent estimator of the conditional probability. The estimator with the
density power score (resp. γ -score) is obtained by setting κ = 1 + γ (resp. γ = 1). A family of
scoring rules including the density power score and γ -score was proposed by [10]. The proper
composite scoring rule (3.1) is different from the existing one.

The estimator (5.2) is the equivariant estimator under the affine transformation. Provided the
data (xi, yi), i = 1, . . . , n, let (ξ(xi), σ

−1(yi − μ)), i = 1, . . . , n be the transformed data, where
ξ is a one-to-one mapping and σ−1(y − μ) is the affine transformation of y. When the model
|detσ |q(σy + μ | ξ(x)) defined from q ∈ M is used to the transformed data, the estimator is
given by |detσ |̂q(σy + μ | ξ(x)), where q̂(y|x) is the estimator obtained by (5.2) based on the
original data.

5.2. Robust estimation using Hölder scores

The Bregman scores such as the density power scores and γ -scores are used for robust estimation
[3,20]. Let us consider the robustness property of Hölder scores. In robust statistics, the main
concern is to develop statistical methods that are not affected by outliers or other small departures
from model assumptions.

The robustness of the estimator is quantified by the breakdown point, influence function and
so forth [24]. Here, the influence function is used to analyze the robustness of the optimum
score estimators. Let us introduce the influence functions briefly. Let pθ(x) be a probability
density on R

d with a finite dimensional parameter θ ∈ � ⊂ R
k , and δz(x) be the shifted Dirac’s

delta function having the point mass at x = z, that is conventionally regarded as a probability
density. Given the probability density pε(x) = (1 − ε)pθ (x) + εδz(x), let θε be the minimizer of
minθ̄∈� S(pε,pθ̄ ), where S is a proper composite scoring rule. For ε = 0, the optimal solution
is θ0 = θ . The parameter θε is the optimum score estimator under the contamination δz. The
influence function of the optimum score estimator against the contamination δz is defined as

IF(z; θ, S) = lim
ε→+0

θε − θ

ε
.
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The influence function IF(z; θ, S) provides several measures of the robustness for the optimum
score estimator.

An example is the gross error sensitivity supz ‖IF(z; θ, S)‖, where ‖ · ‖ is the Euclidean norm.
The estimator that uniformly minimizes the gross error sensitivity over the parameter space is
called the most B(ias)-robust estimator. The most B-robust estimator minimizes the worst-case
influence of outliers. For the one-dimensional normal distribution, the median estimator is the
most B-robust for the estimation of the mean value [24]. Let pθ(x) be the probability density of
the one-dimensional normal distribution with the mean θ ∈R and the unit variance. For the model
pθ(x), the scoring rule producing the median estimator is given by the expectation of S0(x,pθ ) =
(−2 log(

√
2πpθ(x)))1/2 = |x − θ |. For general statistical models, however, this scoring rule will

not be proper, and may not be well-defined.
In this section, our main concern is another robustness measure called redescending property.

The estimator satisfying

lim‖z‖→∞
∥∥IF(z; θ, S)

∥∥ = 0 for all θ ∈ �

is called the redescending estimator [24,28]. The redescending property is preferable for stable
inference, since the influence of extreme outliers tends to zero. Note that the most B-robust
estimator is not necessarily the redescending estimator, and vice versa.

It is known that under the normal distribution, the γ -score has the redescending property, while
the density power score does not [20]. In the following theorem, we present the necessary and
sufficient condition that the optimum score estimator using the Hölder score has the redescending
property for general statistical models.

Theorem 5.1. Suppose that the function φ(z) in the Hölder score is second order continuously
differentiable around z = 1. For the statistical model pθ(x), θ ∈ � ⊂ R

k , let sθ (x) ∈ R
k be the

Fisher’s efficient score function of the model, that is, (sθ (x))i = ∂
∂θi

logpθ(x), i = 1, . . . , k. Let
us assume the following conditions:

1. The limiting condition lim‖z‖→∞ pθ(z) = 0 holds for all parameter θ .
2. There exists γ > 0 satisfying the followings:

(a) pθ ∈ L+
1+γ holds for all θ .

(b) lim‖z‖→∞ pθ(z)
γ sθ (z) = 0 holds for all parameter θ .

(c) Let I ∈R
k×k be the Hessian matrix of φ(〈pθ∗pγ

θ 〉/〈p1+γ
θ 〉)〈p1+γ

θ 〉 at θ = θ∗ ∈ �, that
is,

Iij = ∂2

∂θi ∂θj

{
φ

( 〈pθ∗pγ
θ 〉

〈p1+γ
θ 〉

)〈
p

1+γ
θ

〉}∣∣∣∣
θ=θ∗

, (5.3)

for i, j = 1, . . . , k. The Hessian matrix I is invertible at any θ∗ ∈ �.
(d) For any θ∗ ∈ �, the integral under the measure m and the differential with respect to

θ for the functions 〈p1+γ
θ 〉 and 〈pθ∗pγ

θ 〉 are interchangeable in the vicinity of θ = θ∗.

In addition, there exists a parameter θ such that the integral 〈p1+γ
θ sθ 〉 is not equal to

the zero vector.
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Then, the optimum score estimator using Hölder score with γ > 0 satisfies the redescending
property for arbitrary statistical model satisfying the above conditions if and only if φ′′(1) =
−γ (1 + γ ) holds. All such estimators have the same asymptotic variance.

The proof is deferred to Appendix D.
The Hölder score equivalent in probability with the γ -score satisfies φ′′(1) = −γ (1 + γ ).

Hence, for general parametric models, the optimum score estimator using γ -score has the re-
descending property. The Hölder scores with φ′′(1) = −γ (1 + γ ) include non-Bregman scores,
implying that non-Bregman scores can be useful for statistical inference.

Based on the above argument, the γ -score is characterized by the following three conditions,
(i) affine invariance, (ii) applicability to regression problems, and (iii) redescending property.
Indeed, the function φ in (3.2) satisfies φ′′(1) = −γ (1 + γ ) + (κ − 1)(1 + γ ), and φ′′(1) =
−γ (1 + γ ) holds only for κ = 1, that is, the case of γ -score. A characterization of γ -score is
also presented in [20]. Comparing to the argument in [20], our characterization is more directly
connected with the statistical properties of the optimum score estimator.

6. Conclusion

We introduced the Hölder scores, a class of proper composite scoring rules, and presented their
characterization based on the affine invariance of the associated divergences. We showed the re-
lation between the Hölder scores and the conventional proper scoring rules, that is, the Bregman
scores, and derived a class of Bregman scores (3.1) that is represented as the mixture form of the
density power score and γ -score. We also proved that the intersection of the separable Bregman
scores and Hölder scores is equivalent with the density power score. Furthermore, we applied
the Hölder scores to statistical inference including regression problems and robust parameter es-
timation. Among the equivalent class of composite scoring rules, the Hölder scores applicable
to regression problems are given by the intersection of Bregman scores and Hölder scores. The
Hölder scores outside of the intersection will not produce asymptotically unbiased estimators for
the regression problems. In robust parameter estimation, the redescending property was inves-
tigated for Hölder score. We proved that the Hölder score satisfying the mild condition on the
function φ yields the robust estimator against extreme outliers. In the class of Hölder scores, only
the γ -score provides the robust and asymptotically unbiased estimator for regression problems.

As shown in robust estimation in Section 5.2, the Hölder score other than Bregman score can
be useful for statistical inference. In this paper, we focused on proper composite scoring rules of
the form (4.3). An expansion of (4.3) may provide a wider class of affine invariant proper com-
posite scoring rules. The final goal on this line is to specify all the affine invariant proper com-
posite scoring rules, and to reveal its statistical properties. It is also an interesting future work to
identify the composite scoring rules inducing equivariant estimators under a data-transformation
other than the affine transformation. Another interesting research direction is to investigate the
class of equivariant estimators defined from the proper local scoring rules, which depend on the
predictive density through its value and the values of its derivatives [15,18,30]. The proper local
scoring rules provide practical estimators under large dimensional statistical models, since they
can be computed without knowledge of the normalizing constant of the probability densities. The
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invariance of the proper local scoring rules under data-transformations is an important feature to
understand the statistical properties of the associated estimators.

Appendix A: Hölder divergence

Proof of Theorem 3.1. The Hölder score with γ = 0 is the KL score, which is a strictly proper
score as shown by many authors. Let us consider Hölder score S(f,g) with γ > 0 defined on
F = L+

1+γ . Provided f ∈ F and gγ ∈ L+
1+1/γ for g ∈ F , the Hölder’s inequality leads to〈

fgγ
〉 ≤ 〈

f 1+γ
〉1/(1+γ )〈

g1+γ
〉γ /(1+γ )

for all f,g ∈ F .

The equality holds if and only if f and g are linearly dependent. From the inequality φ(z) ≥
−z1+γ for z ≥ 0, we have

S(f,g) − S(f,f ) = φ

( 〈fgγ 〉
〈g1+γ 〉

)〈
g1+γ

〉 + 〈
f 1+γ

〉
≥ −

( 〈fgγ 〉
〈g1+γ 〉

)1+γ 〈
g1+γ

〉 + 〈
f 1+γ

〉
≥ 0 (Hölder’s inequality).

Suppose that S(p,q) = S(p,p) holds for the probability densities p,q ∈ P . Then, the equality
of Hölder’s inequality should hold. Therefore, p and q are linearly dependent, that is, there exists
a constant c ∈ R such that p = cq holds. For the probability densities, the constant c should be 1,
and we obtain p = q . �

Appendix B: Bregman scores and Hölder scores

Proof of Theorem 3.2. We prove the first case. Suppose that there exists a strictly monotone
increasing function ξ such that

−G(g) −
∫

G∗
g(ω)

(
f (ω) − g(ω)

)
dm(ω) = −ξ

(−φ
(〈
fgγ

〉
/
〈
g1+γ

〉)〈
g1+γ

〉)
(B.1)

for all f,g ∈ F = L+
1+γ . Here, the expression −ξ(−φ(〈fgγ 〉/〈g1+γ 〉)〈g1+γ 〉) is used instead of

ξ(φ(〈fgγ 〉/〈g1+γ 〉)〈g1+γ 〉) for a simple expression of the potential function. Substituting f into
g, we have G(f ) = ξ(〈f 1+γ 〉). For δ ∈ R, the function A(δ) = 〈|f + δh|1+γ 〉 is differentiable
at δ = 0 for all f ∈ L+

1+γ and all h ∈ L1+γ , and A′(0) = (1 + γ )〈f γ h〉 holds [19], Chapter 8. In
addition, the differentiability of the potential G(f ) is assumed. We prove that the function ξ is
differentiable on R

◦+. Let a ∈ R be a real number with a small absolute value, and let us define
g = (1 + a)f ∈ F for a given f ∈ F . Then, (1 − ε)f + εg = (1 + aε)f ∈ F holds for ε with
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|ε| < δ, where δ is a small positive constant. Let the function A(ε) be A(ε) = G((1−ε)f +εg) =
ξ((1 + aε)1+γ 〈f 1+γ 〉). For all f ∈ F , A(ε) is differentiable at ε = 0. This implies that ξ(z) is
differentiable for z > 0.

We specify the expression of the function ξ . The (sub)gradient of G(g) = ξ(〈g1+γ 〉) at g ∈ F
is given as

G∗
g(ω) = (1 + γ )ξ ′(〈g1+γ

〉)
gγ (ω).

Let x = 〈g1+γ 〉 and z = 〈fgγ 〉/〈g1+γ 〉 for f,g ∈ F . Then, (x, z) can take any point in R
◦+ ×R

◦+.
The equation (B.1) is rewritten as

ξ(x) + (1 + γ )ξ ′(x)(xz − x) = ξ
(−φ(z)x

)
.

The continuous function φ satisfies the conditions in Definition 3.1, that is, φ(1) = −1 and
φ(z) ≥ −z1+γ for z ≥ 0. Hence, there exists a real number z0 such that 0 ≤ z0 < 1 and φ(z0) = 0.
Substituting z = z0, we obtain the differential equation of ξ(x),

ξ(x) + (1 + γ )(z0 − 1)xξ ′(x) = ξ(0).

The solution is given as

ξ(x) = ξ(0) + cx1/((1+γ )(1−z0)),

where c is a positive constant. For κ = 1/(1 − z0) ≥ 1, we have G(f ) = 〈f 1+γ 〉κ/(1+γ ) up to
an affine transformation with a positive factor. Note that 〈f 1+γ 〉κ/(1+γ ) with γ > 0 and κ ≥ 1 is
convex on F and strictly convex on P .

Let us consider the second case. Suppose that the potential function G(f ) = 〈f 1+γ 〉κ/(1+γ )

provides a separable Bregman divergence. Then, κ should be 1 + γ . �

Appendix C: Affine invariant divergences

Let � =R
d , B be the Borel set of �, and m :B → R+ be the Lebesgue measure on (�,B).

C.1. The functions U and V

We show the proof of Theorem 4.1. Let us consider a necessary condition that the function (4.3)
provides a proper composite scoring rule.

Lemma C.1. Under Assumption 4.1 and Assumption 4.2, the equality

V (z) = c

∫
zU ′(z)dz, z > 0

holds, where c ∈ R is a nonzero constant.
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Proof. Let A and B be disjoint measurable subsets of (0,1)d such that A ∪ B = (0,1)d , and
m(A) and m(B) are positive. For x = (x1, x2) ∈ R

◦+ × R
◦+, let us define the function class fx ∈

F0 ⊂F as

fx(ω) =
{

x1, ω ∈ A,
x2, ω ∈ B,
0, otherwise.

For x = (x1, x2) and y = (y1, y2), we have〈
fxU(fy)

〉 = x1U(y1)m(A) + x2U(y2)m(B),〈
V (fy)

〉 = V (y1)m(A) + V (y2)m(B).

Since S is a proper composite scoring rule, the inequality

ψ
(
x1U(y1)m(A) + x2U(y2)m(B),V (y1)m(A) + V (y2)m(B)

)
≥ ψ

(
x1U(x1)m(A) + x2U(x2)m(B),V (x1)m(A) + V (x2)m(B)

)
holds for x1, x2, y1, y2 > 0. Hence, we have

∂

∂yi

ψ
(
x1U(y1)m(A) + x2U(y2)m(B),V (y1)m(A) + V (y2)m(B)

)∣∣∣∣
y=x

= 0

⇐⇒ ψ1x1U
′(x1) + ψ2V

′(x1) = 0, ψ1x2U
′(x2) + ψ2V

′(x2) = 0,

for i = 1,2, where ψi is evaluated at (〈fxU(fx)〉, 〈V (fx)〉) ∈ R
2. From Assumption 4.2(c), the

gradient vector of ψ does not vanish. Therefore, the matrix(
x1U

′(x1) V ′(x1)

x2U
′(x2) V ′(x2)

)
is not invertible for all x1, x2 > 0. Thus, the equality

x1U
′(x1)V

′(x2) − x2U
′(x2)V

′(x1) = 0

should hold for all x1, x2 > 0. Since U is not a constant function on R
◦+, there exists x2 > 0 such

that U ′(x2) �= 0. Hence, we obtain the equalities,

V ′(z) = czU ′(z) and V (z) = c

∫
zU ′(z)dz, z > 0,

with a nonzero constant c. �

Below, we present the proof of Theorem 4.1.

Proof of Theorem 4.1. We assume � = R. Extension to the multi-dimensional case is straight-
forward. For a positive real number σ , let us consider the affine transformation ω �→ σω for
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ω ∈ R. This action induces the transformation of the probability density, p(ω) �→ pσ (ω) =
σp(σω). A simple calculation yields that the divergence D(pσ , qσ ) is given as

D(pσ , qσ ) = ψ
(〈
pU(σq)

〉
,
〈
V (σq)/σ

〉) − ψ
(〈
pU(σp)

〉
,
〈
V (σp)/σ

〉)
.

Let us define the function set V as

V = {
v ∈ L0 | v(ω) = 0 for all ω /∈ (0,1), 〈v〉 = 0, and ‖v‖∞ < 1

}
.

Let u(ω) be the probability density of the uniform distribution on the interval (0,1), that is, u(ω)

equals 1 on the interval (0,1) and 0 otherwise. For v ∈ V and ε with |ε| < 1, the function p = u+
εv ∈ F0 is also a probability density, where F0 is the function set defined in Assumption 4.1. Let
q(ω) be a probability density in F0. We see that D((u + εv)σ , qσ ) is second order continuously
differentiable with respect to σ and ε in the vicinity of (σ, ε) = (1,0). This is confirmed by the
dominating convergence theorem. Indeed, around (σ, ε) = (1,0), the functions, (u + εv)U(σq),
V (σq)/σ , (u + εv)U(σ (u + εv)) and V (σ(u + εv))/σ , and those derivatives are all bounded
on the interval (0,1), and they take zero on the outside of the interval (0,1). The scale function
h(σ ) is differentiable around σ = 1 because of the differentiability of D((u + εv)σ , qσ ) and the
equality h(σ ) = D(u + εv, q)/D((u + εv)σ , qσ ). The affine invariance of the divergence yields
the equality

∂

∂σ
h(σ )D

(
(u + εv)σ , qσ

) = 0 (C.1)

for all v ∈ V and arbitrary ε with |ε| < 1. Therefore, we have

∂2

∂ε ∂σ
h(σ )D

(
(u + εv)σ , qσ

)∣∣∣∣ σ = 1
ε = 0

= 0

for all v ∈ V . The equality above with some algebra produces∫
�

{
c1U

(
q(ω)

) + c2U
′(q(ω)

)
q(ω)

}
v(ω)dm(ω) = 0,

for all v ∈ V , where c1 and c2 are constants. In the above calculation, equalities such as
〈vU ′(u)〉 = 0 or 〈vV ′(u)〉 = 0 are used with the convention 0 × (±∞) = 0 in Lebesgue inte-
gration. Therefore, there exists another constant c3 such that the equality

c1U
(
q(ω)

) + c2U
′(q(ω)

)
q(ω) = c3

should hold for all ω ∈ (0,1). Here, q is an arbitrary probability density satisfying the inequality
0 < a < q(ω) < b on the support (0,1). Since a and b can take arbitrary positive numbers such
that 0 < a < 1 < b, the function U should satisfy the differential equation

c1U(z) + c2U
′(z)z = c3, z > 0.

Up to a constant factor, the solution is given as U(z) = zγ + c or U(z) = − log z + c. From
Lemma C.1, we conclude that the corresponding V is V (z) = z1+γ for U(z) = zγ + c, and
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V (z) = z for U(z) = − log z+c up to a constant factor. Since the equality limz↘0 V (z) = V (0) =
0 and the existence of limz↘0 V ′(z) are assumed in Assumption 4.2(b), the real number γ of
U(z) = zγ + c should be positive. �

C.2. The proof of Theorem 4.2

C.2.1. Proof of the case 1

Let the functions U and V in (4.3) be U(z) = − log z + c and V (z) = z.

Proof of the case 1 in Theorem 4.2. For U(z) = − log z + c and V (z) = z, the proper com-
posite scoring rule is given as S(f,g) = ψ(〈−f logg + cf 〉, 〈g〉). For the probability densities
p,q ∈ P ⊂ F , the proper composite scoring rule satisfies the inequality ψ(c − 〈p logq〉,1) ≥
ψ(c −〈p logp〉,1). Hence, the function ψ(·,1) should be strictly increasing, since −〈p logq〉 >

−〈p logp〉 holds for any distinct p, q in P . Therefore, S(f,g) is equivalent in probability with
the KL score. �

C.2.2. Proof of the case 2

We prepare some lemmas.

Lemma C.2. Suppose U(z) = zγ + c and V (z) = z1+γ . Under the assumption in Theorem 4.2,
there exists a function φ :R→ R and s ∈R such that the function ψ(x, y) in (4.3) is represented
as ψ(x, y) = φ((x − c)/y)ys up to a monotone transformation.

Proof. For U(z) = zγ +c, V (z) = z1+γ , we have S(p,q) = ψ(〈pqγ 〉+c, 〈q1+γ 〉) for p,q ∈P .
By replacing ψ(x + c, y) with ψ(x, y), the proper composite scoring rule on P is represented as
S(p,q) = ψ(〈pqγ 〉, 〈q1+γ 〉). For p,q ∈ P ⊂ L+

1+γ , the integrals 〈p1+γ 〉 and 〈pqγ 〉 are finite.
Let us consider the affine transformation ω �→ σω on � = R, where σ > 0. In the same way as
the derivation of (C.1) in the proof of Theorem 4.1, we have

∂

∂σ
h(σ )

{
ψ

(
σγ

〈
pqγ

〉
, σ γ

〈
q1+γ

〉) − ψ
(
σγ

〈
p1+γ

〉
, σ γ

〈
p1+γ

〉)}∣∣∣∣
σ=1

= 0,

where h(σ ) is the scale function. Let us define x = 〈pqγ 〉, y = 〈q1+γ 〉, z = 〈p1+γ 〉, and s =
− d

dσ
logh(σ )|σ=1 ∈ R. Then, we have

−sψ(x, y) + xψ1(x, y) + yψ2(x, y) = −sψ(z, z) + zψ1(z, z) + zψ2(z, z).

Note that (x, y, z) are independent variables in an open subset of R3. One can prove this fact by
using the implicit function theorem. Thus, the left side of the above equation should be a constant
for any (x, y) in an open subset of R2, since the right side is independent of (x, y). Hence, there
exists a real number b ∈ R such that

−sψ(x, y) + xψ1(x, y) + yψ2(x, y) = b.
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The general solution of this partial differential equation is found from Euler’s equation [15].
Here, we solve the above PDE by using the variable change. For the polar coordinate system
(r, θ) of R2 with x = r cos θ and y = r sin θ , the above PDE is expressed as

−sψ̄(r, θ) + r
∂

∂r
ψ̄(r, θ) = b, (C.2)

where ψ̄(r, θ) = ψ(r cos θ, r sin θ). All solutions are given by

ψ̄(r, θ) = φ̄(θ)rs +
{−b/s, s �= 0,

b log r, s = 0,

where φ̄(θ) is a function of θ . In the (x, y)-coordinate system, there exists a function φ such that

ψ(x, y) = φ(x/y)ys +
{

c1, s �= 0,
c0 logy, s = 0,

where c0, c1 ∈ R. Without loss of generality we set c1 = 0. For s = 0, we have eψ(x,y) =
eφ(x/y)yc0 . Hence, ψ(x, y) or eψ(x,y) can be expressed as the form of φ(x/y)ys with s ∈R. �

Let U(z) = zγ + c and V (z) = z1+γ with γ > 0 and c ∈ R. Then, Lemma C.2 ensures that for
f ∈P and g ∈F , the affine invariant proper composite scoring rule is of the form

H(f,g) = φ

( 〈fgγ 〉
〈g1+γ 〉

)〈
g1+γ

〉s (C.3)

with s ∈ R up to a monotone transformation. The sign of the parameter s is determined by the
following lemma.

Lemma C.3. For γ > 0, let F = L+
1+γ and P = {p ∈ F | 〈p〉 = 1}. Suppose that H(f,g) in

(C.3) is the proper composite scoring rule on P ×F , that is, H(f,g) ≥ H(f,f ) for all (f, g) ∈
P × F , and H(p,q) = H(p,p) for (p, q) ∈ P × P implies p = q . Then, s > 0 > φ(1) and
φ(z) ≥ φ(1)z(1+γ )s for z ≥ 0 hold.

Proof. Remember that the Hölder’s inequality is represented as〈
fgγ

〉 ≤ 〈
f 1+γ

〉1/(1+γ )〈
g1+γ

〉γ /(1+γ )
, f, g ∈F = L+

1+γ . (C.4)

The equality holds if and only if f and g are linearly dependent.
First of all, we prove φ(1) �= 0 and s �= 0. Suppose that φ(1) = 0 holds. Then, the equality

H(p,q) − H(p,p) = φ

( 〈pqγ 〉
〈q1+γ 〉

)〈
q1+γ

〉s = 0

holds for p,q ∈ P if and only if p = q . Let q be the probability density of the uniform dis-
tribution on (0,1)d ⊂ � = R

d . Then, arbitrary probability density p whose support is included
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in (0,1)d satisfies H(p,q) − H(p,p) = φ(1) = 0. This contradicts the assumption that H is
the proper composite scoring rule. Therefore, φ(1) �= 0 holds. Suppose s = 0. Then, the equal-
ity

H(p,q) − H(p,p) = φ

( 〈pqγ 〉
〈q1+γ 〉

)
− φ(1) = 0

holds for p,q ∈ P if and only if p = q . In the same way as above, setting q as the probabil-
ity density of the uniform distribution on (0,1)d yields the contradiction. Therefore, we obtain
s �= 0.

Next, we prove φ(0) ≥ 0 > φ(1). Let A and B be disjoint subsets of � = R
d , and suppose

that they have finite positive measures. Let p and q be the probability densities of the uniform
distribution on A and B , respectively. Then, we have 〈p1+γ 〉 = m(A)−γ , 〈q1+γ 〉 = m(B)−γ and
〈pqγ 〉 = 0. For the proper composite scoring rule H(p,q), the inequality

H(p,q) − H(p,p) = φ(0)m(B)−γ s − φ(1)m(A)−γ s ≥ 0

holds. For γ > 0 and s �= 0, m(A)−γ s and m(B)−γ s can take any positive real numbers inde-
pendently. Hence, the inequality φ(0) ≥ 0 ≥ φ(1) should hold. This result and φ(1) �= 0 lead to
φ(0) ≥ 0 > φ(1).

Let us consider the sign of s. Since H is the proper composite scoring rule, the inequality

H(f,g) − H(f,f ) =
{
φ

( 〈fgγ 〉
〈g1+γ 〉

) 〈g1+γ 〉s
〈f 1+γ 〉s − φ(1)

}〈
f 1+γ

〉s ≥ 0

holds for all f ∈ P and g ∈ F . There exist f ∈ P and g ∈ F such that

1 = 〈fgγ 〉
〈g1+γ 〉 <

( 〈f 1+γ 〉
〈g1+γ 〉

)1/(1+γ )

<
〈f 1+γ 〉
〈g1+γ 〉 (C.5)

holds, that is, the Hölder’s inequality strictly holds with 1 = 〈fgγ 〉/〈g1+γ 〉. For example, for
linearly independent functions, f ∈ P and g0 ∈ F , with 〈fg

γ

0 〉 �= 0, let g be g0〈fg
γ

0 〉/〈g1+γ

0 〉.
For f ∈P , g ∈F satisfying (C.5), we have the inequality

φ

( 〈fgγ 〉
〈g1+γ 〉

) 〈g1+γ 〉s
〈f 1+γ 〉s − φ(1) = φ(1)

( 〈g1+γ 〉s
〈f 1+γ 〉s − 1

)
≥ 0,

from the nonnegativity of H(f,g) − H(f,f ) and positivity of 〈f 1+γ 〉. From 0 < 〈g1+γ 〉/
〈f 1+γ 〉 < 1, φ(1) < 0 and s �= 0, the inequality above holds only when s > 0.

Suppose that there exists z0 > 0 such that φ(z0) < φ(1)z
(1+γ )s

0 holds. Choose f ∈ P and
g ∈F such that ( 〈fgγ 〉

〈g1+γ 〉
)1+γ

= 〈f 1+γ 〉
〈g1+γ 〉 = z

1+γ

0
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holds. This is possible by choosing, say, g = f/z0 ∈ F for some f ∈ P . For such f and g, we
have

H(f,g) − H(f,f ) = φ(z0)
〈
g1+γ

〉s − φ(1)
〈
f 1+γ

〉s
< φ(1)z

(1+γ )s

0

〈
g1+γ

〉s − φ(1)
〈
f 1+γ

〉s
= φ(1)

〈f 1+γ 〉s
〈g1+γ 〉s

〈
g1+γ

〉s − φ(1)
〈
f 1+γ

〉s
= 0,

in which 〈g1+γ 〉 > 0 is used. This is the contradiction. Therefore, the inequality φ(z) ≥
φ(1)z(1+γ )s should hold for all z > 0. From φ(0) ≥ 0 and (1+γ )s > 0, eventually the inequality
φ(z) ≥ φ(1)z(1+γ )s should hold for all z ≥ 0. �

Finally, we prove the case 2 of Theorem 4.2.

Proof of the case 2 in Theorem 4.2. From Lemma C.2 and Lemma C.3, the affine invariant
proper composite scoring rule is expressed as

H(p,q) = φ

( 〈pqγ 〉
〈q1+γ 〉

)〈
q1+γ

〉s for p,q ∈P,

with γ > 0, where φ(z) ≥ φ(1)z(1+γ )s for z ≥ 0 and s > 0 > φ(1) hold. The transformation us-
ing the strictly increasing function ξ(H) = |H/φ(1)|1/s sign(H) ensures that the proper compos-
ite scoring rule H is equivalent in probability with the Hölder score with γ > 0. The inequality
φ(z) ≥ φ(1)z(1+γ )s with φ(1) < 0 is transformed into φ(z) ≥ −z1+γ . �

Appendix D: Redescending property

For a differentiable real-valued function f (θ) of θ ∈R
k , let ∂f

∂θ
be the gradient column vector of

f (θ).

Proof of Theorem 5.1. Let us define pε = (1 − ε)pθ∗ + εδz(x) = pθ∗ + ε(δz(x) − pθ∗(x)),
and rz(x) be rz(x) = δz(x) − pθ∗(x). By using the implicit function theorem to the R

k-valued
function

(θ, ε) �−→ ∂

∂θ

{
φ

( 〈pεp
γ
θ 〉

〈p1+γ
θ 〉

)〈
p

1+γ
θ

〉}
around (θ, ε) = (θ∗,0), we obtain

IF
(
z, θ∗, S

) = −I−1 ∂

∂θ

{
φ′

( 〈pθ∗pγ
θ 〉

〈p1+γ
θ 〉

)〈
rzp

γ
θ

〉}∣∣∣∣
θ=θ∗

. (D.1)
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See [24], Section 4.2, for details. Hence, the estimator has the redescending property if and only
if

lim‖z‖→∞
∂

∂θ

{
φ′

( 〈pθ∗pγ
θ 〉

〈p1+γ
θ 〉

)〈
rzp

γ
θ

〉}∣∣∣∣
θ=θ∗

= 0

holds for any θ∗ ∈ �. From the assumption on φ, we have φ′(1) = −1 − γ . A calculation using
φ(1) = −1 and φ′(1) = −1 − γ yields that the derivative in the above is given as

∂

∂θ
φ′

( 〈pθ∗pγ
θ 〉

〈p1+γ
θ 〉

)〈
rzp

γ
θ

〉∣∣∣∣
θ=θ∗

= −φ′′(1)
〈rzpγ

θ∗〉
〈p1+γ

θ∗ 〉
∫

pθ∗(x)1+γ sθ∗(x)dm(x)

− γ (1 + γ )

∫
rz(x)pθ∗(x)γ sθ∗(x)dm(x),

in which the interchangeability of the integral and differential is used. From the assumption, the
limiting of ‖z‖ → ∞ leads to

lim‖z‖→∞
∂

∂θ

{
φ′

( 〈pθ∗pγ
θ 〉

〈p1+γ
θ 〉

)〈
rzp

γ
θ

〉}∣∣∣∣
θ=θ∗

= (
φ′′(1) + γ (1 + γ )

)∫
pθ∗(x)1+γ sθ∗(x)dm(x).

The expression above vanishes for all θ∗ if and only if the equality φ′′(1) = −γ (1 + γ ) holds.
The asymptotic variance of the estimator is determined from the influence function. Some

calculation shows that Hölder score affects the influence function via φ′′(1). Hence, the optimum
score estimators using Hölder scores with the same φ′′(1) have the same asymptotic variance.

�
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