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Fractional Integrals and Riesz Transforms Acting on
Certain Lipschitz Spaces

M. Ramseyer, O. Salinas, & B. Viviani

Abstract. We make a unifying approach to the study of map-
ping properties of fractional integrals and Riesz transforms acting on
spaces of functions f satisfying

sup
B

(
1

w(a, r)

(
1

|B|
∫
B

|f − mBf |q
)1/q)

< ∞,

where w is a nonnegative functional defined on the family of balls
B ⊂ R

n with center a and radius r . So, at the same time, we are able
to treat such cases as BMO, Lipschitz spaces, and spaces of func-
tions with variable smoothness among others. Results about pointwise
smoothness related to these spaces are included as well.

1. Introduction

Let w : Rn × R+ → R+ be a measurable function. For given 1 ≤ q < ∞, we
define the space BMOw,q as the set of locally integrable functions f on R

n such
that

1

w(a, r)

(
1

|B|
∫

B

|f (x) − mBf |q dx

)1/q

≤ C (1.1)

for some C > 0 and for every ball B ⊂ R
n with center a and radius r , where mBf

is the average of f over B , namely mBf = |B|−1
∫
B

f (y)dy. As it can be easily
seen, the expression

‖f ‖w,q = sup
B⊂Rn

{
1

w(a, r)

(
1

|B|
∫

B

|f (x) − mBf |q dx

)1/q}

turns out to be a seminorm for this space. Then, BMOw,q modulo constants is
a Banach space. The space BMOw,1 was introduced by Nakai and Yabuta [19],
although a version defined on the n-dimensional torus had already appeared in
Janson [14] in connection with the identification of pointwise multipliers of the
space of functions with mean oscillation controlled by a positive, nondecreasing
function ϕ, that is, BMOϕ (see [23]). The general BMOw,q , 1 ≤ q < ∞, was
introduced in [20], where a complete study on their pointwise multipliers is done.
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As in [20], we suppose the following properties of w. We assume that there
exists a positive constant C such that

w(x, t1) ≤ Cw(x, t2), ∀x ∈ R
n,∀t1 < t2. (1.2)

w(x,2t) ≤ Cw(x, t), ∀x ∈ R
n,∀t > 0. (1.3)

|x − y| < t ⇒ w(x, t) ≤ Cw(y, t), ∀x, y ∈R
n,∀t > 0. (1.4)

As a first remark, since w(x, t) satisfies (1.2) and (1.3), the definition of BMOw,q

through inequality (1.1) over cubes with center a and sidelength r instead balls
is clearly equivalent. On the other hand, we say that the one-variable function
w(x, ·) satisfies the doubling condition if (1.3) holds for each x.

The spaces BMOw,q provide an adequate setting to make a unifying approach
to the study of several well-known spaces. For instance, a particular case of (1.1)
can be found in [17], where the authors prove a weighted extension of the result
that the Hilbert transform is a bounded map of L∞ into BMO. Also, taking q = 1
and w(x, t) = �(t)t−n

∫
B(x,t)

v(y) dy with a positive and locally integrable func-
tion v and assuming certain properties on � : R+ → R

+, we get the BMO�(v)

of [13]. For �(t) = tn, we recover the weighted BMO space of Muckenhoupt and
Wheeden [18]. When v ≡ 1, we get the classical BMO (� ≡ 1), the Lipschitz
integral spaces (�(t) = tβ , β > 0), and, for a more general φ, the spaces BMO�

considered by Spanne [23]. (See [3] and [16] in addition.)
The case w(x, t) = tα−n‖χB(x,t)‖p′(·), where 0 < α < n, p′(·) = p(·)/(p(·) −

1), and ‖ · ‖p(·) denotes the norm in the variable Lebesgue space Lp(·) (see [15]),
has a special interest since the spaces BMOw,q are the spaces Lq

α,p(·) introduced
in [22], which, under a natural condition on p(·), turn out to coincide with Lα,p(·)
(see Corollary 2.22). In turn, the space Lα,p(·) has been identified (see Thms. 1.11
and 1.13 in [22]) as a suitable target space for the fractional integral operator
acting on certain Lp(·).

Some particular cases of the spaces (1.1) are useful in the study of regularity
of solutions of elliptic PDEs (see, e.g., [1; 2], and [22]).

The main purpose of our article is to make a unifying approach to the study of
mapping properties of fractional integrals and Riesz transforms in relation to the
spaces BMOw,q , so that this approach includes all the aforementioned particular
cases. In addition, we prove some properties of these spaces such as, for instance,
a pointwise characterization.

The structure of the article is as follows. Section 2 contains properties of the
BMOw,q spaces in general (Section 2.1) and the particular case Lα,p(·) (Sec-
tion 2.2). In Section 3 we present our main results related to the boundedness of
the fractional integral. Finally, Section 4 is devoted to the boundedness of Riesz
transforms.

2. Properties of the Spaces BMOw,q and L
q

α,p(·)
In this section we prove some useful properties of the spaces involved. We start
by recalling some definitions and properties related to real functions. They will
be important tools in our results.
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Definition 2.1. Let h : R+
0 → R

+
0 be a function. We say that h is of upper type

β > 0 if there exists a positive constant c such that

h(st) ≤ csβh(t)

for all s ≥ 1 and t > 0. We also say that h is of lower type β > 0 if the last
inequality holds for all 0 < s ≤ 1 and t > 0. We say that h satisfies the doubling
condition if there exists a constant c such that h(2t) ≤ ch(t) for all t > 0.

Definition 2.2. We say that h is quasi-decreasing if there exists a constant c

such that h(t2) ≤ ch(t1) whenever t1 < t2.

The proofs of the following lemmas are easy and left to the reader.

Lemma 2.3. Let h be a function of upper type β with 0 < β ≤ 1. Then h satisfies
the doubling condition. Moreover, h(t)/t is quasi-decreasing.

Lemma 2.4. Consider a function h such that h(t)/tβ is quasi-decreasing for some
0 < β ≤ 1. Then h is of upper type β . Moreover, h satisfies the doubling condition.

2.1. The Space BMOw,q

Now we study conditions on the function w : Rn × R+ → R+ under which the
functions belonging to BMOw,q satisfy some kind of pointwise smoothness. Con-
versely, we also see that, under certain hypothesis on w, this smoothness implies
that w belongs to BMOw,q .

Proposition 2.5 (Pointwise condition). Let 1 ≤ q < ∞, and let w(x, t) be a
function satisfying (1.2). Then, for every f ∈ BMOw,q , we have

|f (x) − f (y)| ≤ C‖f ‖w,q

∫ 4|x−y|

0
(w(x, t) + w(y, t))

dt

t
(2.1)

for some constant C > 0 and for almost all x, y ∈ R
n.

Proof. Let x, y be Lebesgue points of f in R
n. Taking B = B(x, |x − y|) and

B ′ = B(y, |x − y|), we have

|f (x) − f (y)| ≤ |f (x) − mBf | + |f (y) − mB ′f | + |mB ′f − mBf |.
We only estimate the first term on the right-hand side since the second is similar.
Letting Bi = B(x,2−i |x − y|) for each integer i and using the hypothesis on w,
we get

|f (x) − mBf | ≤ lim
k→∞

(
|f (x) − mBk

f | +
k−1∑
i=0

|mBi+1f − mBi
f |

)

≤ C

∞∑
i=0

(
|Bi |−1

∫
Bi

|f (z) − mBi
f |q dz

)1/q
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≤ C‖f ‖w,q

∞∑
i=0

w(x,2−i |x − y|)

= C‖f ‖w,q

∞∑
i=0

∫ 2−i+1|x−y|

2−i |x−y|
w(x,2−i |x − y|)dt

t

≤ C‖f ‖w,q

∫ 2|x−y|

0
w(x, t)

dt

t
. (2.2)

Finally, denoting 2B = B(x,2|x − y|), we have

|mB ′f − mBf | ≤ |mB ′f − m2Bf | + |m2Bf − mBf |
≤ C‖f ‖w,q

∫ 4|x−y|

0
w(x, t)

dt

t
.

This completes the proof. �

Remark 2.6. If, in addition, w(x, t) satisfies the doubling condition (1.3), then
we obtain

|f (x) − f (y)| ≤ C‖f ‖w,q

∫ |x−y|

0
(w(x, t) + w(y, t))

dt

t
(2.3)

for almost all x, y ∈ R
n.

Proposition 2.7. Let w be a measurable function satisfying (1.3). Suppose that,
for some 1 ≤ q < ∞,

�q(x, r)
.=

(
1

rn

∫
B(x,r)

(∫ r

0
w(z, t)

dt

t

)q

dz

)1/q

is finite for all x ∈ R
n and r > 0. If a measurable function f satisfies the pointwise

condition (2.1), then f ∈ BMO�q,q . Moreover, if there exists a constant C > 0,
independent of x and r , such that

�q(x, r) ≤ Cw(x, r), (2.4)

then f ∈ BMOw,q .

Proof. The finiteness of �q(x, r) implies that the right-hand side of (2.1) is finite
a.e. Moreover, it is not difficult to see that f is locally integrable. In order to prove
that f ∈ BMO�q,q , we will prove that∫

B

|f (y) − mBf |q dy ≤ C�q(x, r)q |B| (2.5)

for every ball B = B(x, r). In fact,∫
B

|f (y) − mBf |q dy

≤ C

∫
B

(
1

|B|
∫

B

∣∣∣∣
∫ 4|y−z|

0
(w(y, t) + w(z, t))

dt

t

∣∣∣∣dz

)q

dy
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≤ C

∫
B

(∫ 8r

0
w(y, t)

dt

t
+ 1

|B|
∫

B

∫ 8r

0
w(z, t)

dt

t
dz

)q

dy

≤ C

∫
B

(∫ 8r

0
w(y, t)

dt

t

)q

dy + C|B|1−q

(∫
B

∫ 8r

0
w(z, t)

dt

t
dz

)q

≤ C

∫
B

(∫ 8r

0

w(z, t)

t
dt

)q

dz,

where in the last step the Hölder inequality was applied. Thus, using the doubling
condition on w, we have (2.5). Moreover, if (2.4) holds, then it is clear that f ∈
BMOw,q , and the proposition is proved. �

Propositions 2.5 and 2.7 allow us to get the following theorem.

Theorem 2.8. Let w be a measurable function satisfying (1.2) and (1.3). More-
over, suppose that (2.4) holds for some 1 ≤ q < ∞. Then BMOw,1 = BMOw,s for
every 1 ≤ s ≤ q .

Proof. By Hölder’s inequality it is clear that BMOw,s ⊂ BMOw,1. On the other
hand, if f ∈ BMOw,1, then by Proposition 2.5 f satisfies (2.1). In view of Propo-
sition 2.7, we have that f ∈ BMOw,q . Hence, again by Hölder’s inequality, the
theorem follows. �

The next proposition gives sufficient conditions on w for inequality (2.4).

Proposition 2.9. Let w be a measurable function. If w is of lower type β > 0 on
the second variable, then inequality (2.4) holds for every 1 ≤ q < ∞.

Proof. Let B = B(x, r). Then by a change of variable we have∫
B

(∫ r

0

w(z,u)

u
du

)q

dz =
∫

B

(∫ 1

0

w(z, rt)

t
dt

)q

dz

≤ C

∫
B

(∫ 1

0
tβ−1 dt

)q

w(z, r)q dz

≤ C

∫
B

w(x, r)q dz ≤ Cw(x, r)qrn.

This completes the proof. �

We note that Theorem 2.8 uses the pointwise condition (2.1) and hypothesis (2.4).
However, in the case w ≡ 1, neither of them is valid, and it is well known that
BMO1,1 = BMO1,q for every 1 ≤ q < ∞. So it is natural to wonder what other
properties of w can assure the same coincidence of spaces. In order to give an
answer, we first state the following result of Franchi, Pérez, and Wheeden [10].

Definition 2.10. For a number 1 ≤ t < ∞, we say that a function w satisfies
the Dt -condition if there exists a positive constant c such that, for each ball B =
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B(x, r) and any family {Bi} of pairwise disjoint subballs of B ,∑
i

w(xi, ri)
t rn

i ≤ ctw(x, r)t rn, (2.6)

where xi and ri are the center and the radius of Bi , respectively. We denote by
‖w‖ the smallest constant c for which (2.6).

It is not difficult to see that the Dt -condition implies the Ds -condition for every
1 ≤ s < t .

Theorem 2.11 ([10], Theorem 2.3). Let B0 = B(x0, r0) be a ball in R
n. Suppose

that w satisfies the Dt -condition for some 1 ≤ t < ∞. Let f be a measurable
function defined on 17B0 and such that

1

|B|
∫

B

|f (y) − fB |dy ≤ ‖f ‖w,1w(x, r) (2.7)

for every ball B = B(x, r) ⊂ 17B0. Then

sup
λ>0

λ

( |{x ∈ B0 : |f − fB0 | > λ}|
|B0|

)1/r

≤ C‖w‖‖f ‖w,1w(x0,17r0), (2.8)

where the constant C is independent of f and B0.

Corollary 2.12. Let 1 < t < ∞. Under the hypotheses of Theorem 2.11, we
have (

1

|B0|
∫

B0

|f (y) − fB0 |q dy

)1/q

≤ C‖w‖‖f ‖w,1w(x0,17r0) (2.9)

for every 1 < q < t , where the constant C is independent of f and B0.

Now, in view of Theorem 2.11 and its corollary, we are able to prove the following
result.

Theorem 2.13. Let w be a measurable function satisfying (1.2), (1.3), and (1.4).
Then, the spaces BMOw,q coincide for all 1 ≤ q < ∞.

Proof. It is easily seen that BMOw,q ⊂ BMOw . On the other hand, if f ∈ BMOw ,
then by Corollary 2.12 we have to see that w satisfies the Dq -condition for every
1 ≤ q < ∞. In fact, let B be a ball, and {Bi} a family of pairwise disjoint subballs
of B . Then, from the hypotheses on w we have∑

i

w(xi, ri)
qrn

i ≤ C
∑

i

w(xi, r)
qrn

i ≤ C
∑

i

w(x, r)qrn
i

≤ Cw(x, r)q
∑

i

|Bi | ≤ Cw(x, r)q |B| = Cw(x, r)qrn.

Then the spaces coincide. �
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2.2. The Space L
q

α,p(·)
Here we consider the spaces L

q

α,p(·) defined in the previous section. We denote
by p−(
) and p+(
) the infimum and supremum of p(·) over a subset 
 of Rn.
We only write p− and p+ in the case 
 = R

n. The following lemma shows very
useful relations between the norm of a characteristic function of a ball and its
Lebesgue measure.

Lemma 2.14. Let B = B(x0, r) be a ball in R
n.

(a) There exist positive constants a1 and a2 such that if r < 1, then

a1|B|1/p−(B) ≤ ‖χB‖p(·) ≤ a2|B|1/p+(B).

(b) There exist positive constants b1 and b2 such that if r > 1, then

b1|B|1/p+(B) ≤ ‖χB‖p(·) ≤ b2|B|1/p−(B).

In the setting of variable exponent Lebesgue spaces, it is common to assume the
following log-Hölder conditions on the exponent functions p(·):

LH0 : ∃c0 > 0/ |p(x) − p(y)| ≤ c0

log(e + 1/|x − y|) , ∀x, y ∈R
n;

LH∞ : ∃p∞, c1 > 0/ |p(x) − p∞| ≤ c1

log(e + |x|) , ∀x ∈R
n.

Remark 2.15. In [5], Proposition 4.57, it is proved that LH0 and LH∞ imply that
there exists a constant C > 0 such that

‖χB‖p(·)‖χB‖p′(·) ≤ C|B| (2.10)

for every ball B ⊂ R
n. Considering this inequality and applying Hölder’s inequal-

ity, we easily see that w(x, ·) = ‖χB(x,·)‖p(·) satisfies the following doubling con-
dition:

‖χB(x,2t)‖p(·) ≤ C‖χB(x,t)‖p(·), (2.11)

where the constant C is independent of x and t . Obviously, p′(·) has the same
property.

Definition 2.16. If inequality (2.11) holds, then we say that the exponent func-
tion p(·) satisfies the doubling condition.

In connection with these log-Hölder continuity properties, we state two impor-
tant lemmas, whose proofs can be found in several articles; see, for instance,
[9; 7; 11; 4].

Lemma 2.17. Let p+ < ∞. Then the following conditions are equivalent:

(a) The function p(·) satisfies LH0.
(b) There exists a constant C such that

|B|p−(B)−p+(B) ≤ C

for every ball B ⊂ R
n.
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Lemma 2.18. Let p(·) be an exponent function satisfying LH∞. Then, there exists
a constant c such that

c−1|B|1/p∞ ≤ ‖χB‖p(·) ≤ c|B|1/p∞

for every ball B with radius greater than or equal to 1/4.

The following three technical lemmas give some properties of the particular func-
tion w(x, t) = tα−n‖χB(x,t)‖p′(·).

Lemma 2.19. Let p(·) be an exponent function such that p− ≥ n
α

and satisfying
LH0 and LH∞. Then w(x, t) = tα−n‖χB(x,t)‖p′(·) is quasi-increasing as a func-
tion of t .

Proof. We will see that there exists a constant C > 0 such that, given 0 < s < t ,
we have

tα−n‖χB(x,t)‖p′(·) ≤ Csα−n‖χB(x,s)‖p′(·), (2.12)

where C does not depend on x. For this, we divide the proof into three parts.

(a) If 1 < t < s, by Lemma 2.18 and the hypotheses on p(·) we have

w(x, t) = tα−n‖χB(x,t)‖p′(·) ≤ Ctα−ntn−n/p∞ = Ctα−n/p∞

≤ Csα−n/p∞ ≤ Csα−n‖χB(x,s)‖p′(·) = Cw(x, s).

(b) Now, if t < s < 1, then by Lemma 2.14 with p′(·) instead of p(·) and
Lemma 2.17, taking into account that p−(B(x, t)) ≥ p−(B(x, s)), we have

w(x, t) = tα−n‖χB(x,t)‖p′(·)
≤ Ctα−ntn−n/p−(B(x,t))

≤ Csα−n/p−(B(x,t))

≤ Csα−n/p+(B(x,s))(sn/p+(B(x,s))−n/p−(B(x,s)))

≤ Csα−n‖χB(x,s)‖p′(·) = Cw(x, s).

(c) Finally, suppose that t < 1 < s. By Lemmas 2.14 and 2.18 we get that

w(x, t) ≤ Ctα−n/p−(B(x,t)) ≤ C ≤ Csα−n/p∞ ≤ Cw(x, s).

The proof is complete. �

Lemma 2.20. Let p(·) be an exponent function satisfying LH0 and LH∞. Then
there exists C > 0 such that, for all t > 0,

‖χB(x,t)‖p′(·) ≤ C‖χB(y,t)‖p′(·)
whenever |x − y| < t .

Proof. It is not difficult to see that p′(·) satisfies LH0 and LH∞ whenever p(·)
does. Moreover, 1/p′∞ = 1 − 1/p∞. So, in order to prove the lemma, we are
going to consider two cases. First, suppose t > 1. By Lemma 2.18 we have

‖χB(x,t)‖p′(·) ≤ C|B(x, t)|1−1/p∞ = C|B(y, t)|1−1/p∞ ≤ C‖χB(y,t)‖p′(·).
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Now, suppose t ≤ 1. Since B(y, t) ⊂ B(x,2t) if |x − y| < t , by Lemmas 2.14
and 2.17 we have

‖χB(x,t)‖p′(·) ≤ C|B(x, t)|1−1/p−(B(x,t))

= C|B(x, t)|1−1/p+(B(y,t))|B(x, t)|1/p+(B(y,t))−1/p−(B(x,t))

≤ C|B(y, t)|1−1/p+(B(y,t))(|B(x, t)|p−(B(x,2t))−p+(B(x,2t)))1/p2−

≤ C‖χB(y,t)‖p′(·),
and the lemma is proved. �

Lemma 2.21. Let p(·) be an exponent function such that p− > n
α

. If p(·) satisfies
LH0 and LH∞, then ∫ r

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
≤ C

‖χB(x,r)‖p′(·)
rn−α

(2.13)

for every B = B(x, r), where C is independent of B .

Proof. Fix x ∈R
n. First, we suppose r ≤ 1. By Lemma 2.14 we have∫ r

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
≤ C

∫ r

0

|B(x, t)|1−1/p−(B(x,t))

tn−α

dt

t

≤ C

∫ r

0
tα−n/p−(B(x,r))−1 dt = Crα−n/p−(B(x,r)).

Now, again from Lemma 2.17 and Lemma 2.14 we get∫ r

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
≤ Crα−n/p+(B(x,r))(rn/p+(B(x,r))−n/p−(B(x,r)))

≤ C
‖χB(x,r)‖p′(·)

rn−α
.

On the other hand, if r > 1, then∫ r

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
=

∫ 1

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
+

∫ r

1

‖χB(x,t)‖p′(·)
tn−α

dt

t
. (2.14)

The previous estimate allows us to obtain∫ 1

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
≤ C.

Now, since αp− − n > 0 and (p−)′ = (p′)+, it is not difficult to see that (α −
n)(p−)′ + n ≥ 1. Then we get

1 < r(α−n)(p−)′+n = C|B(x, r)|r(α−n)(p−)′ = C|B(x, r)|r(α−n)(p′)+

< C

∫
B(x,r)

r(α−n)p′(y) dy = C

∫
Rn

(
χB(x,r)

r(n−α)

)p′(y)

dy.

So it follows that r(n−α) is a lower bound for ‖χB(x,r)‖p′(·). Then∫ 1

0

‖χB(x,t)‖p′(·)
tn−α

dt

t
≤ C

‖χB(x,r)‖p′(·)
rn−α

. (2.15)
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For the second term, by Lemma 2.18 the estimate is clear. In fact,∫ r

1

‖χB(x,t)‖p′(·)
tn−α

dt

t
≤ C

∫ r

1

|Bt |1−1/p∞

tn−α

dt

t
≤ C

∫ r

1
tα−n/p∞−1 dt

≤ Crα−n/p∞ ≤ C
‖χB(x,r)‖p′(·)

rn−α
. (2.16)

Finally, note that inequalities (2.14), (2.15), and (2.16) imply (2.13). �

Corollary 2.22. Let 0 < α < n, and let p(·) be an exponent function with
p− > n

α
such that conditions LH0 and LH∞ hold. Then Lα,p(·) = L

q

α,p(·) for
1 ≤ q < ∞.

Proof. By Hölder’s inequality it is clear that Lq

α,p(·) ⊂ Lα,p(·). On the other hand,
from Lemma 2.19, the hypotheses on p(·), and Proposition 2.5 we have that every
f ∈ Lα,p(·) satisfies the pointwise inequality (2.1). Moreover, the right-hand side
of this inequality is finite.

Now, for fixed 1 < q < ∞, from Lemmas 2.21 and 2.20 we have∫
B(x,r)

(∫ r

0

‖χB(z,u)‖p′(·)
un−α

du

u

)q

dz ≤ C

∫
B(x,r)

‖χB(z,r)‖q

p′(·)
r(n−α)q

dz

≤ C(rα−n‖χB(x,r)‖p′(·))qrn,

which states that (2.4) holds for w(x, r) = rα−n‖χB(x,r)‖p′(·). Then, Remark 2.15
and Proposition 2.7 ensure that f ∈ L

q

α,p(·), which finishes the proof. �

Now, if we consider an exponent function p(·) that does not necessarily verify
the log-Hölder conditions LH0 and LH∞, a different approach can be adopted.
However, a smaller range of q is obtained. In order to do this, we first recall (see
[15]) that we can write the representation of the norm given by

‖f ‖p(·) ≈ sup
g:‖g‖p′(·)≤1

∫
Rn

f (x)g(x) dx. (2.17)

In order to prove our previous statement, we need the following variable version
of Minkowski’s integral inequality. This result can be found in [5]; however, for
the sake of completeness, we include the proof here.

Proposition 2.23. Let p(·) be an exponent function, and f : Rn ×R
n → R be a

measurable function.

(a) Suppose that f (·, y) ∈ Lp(·) for a.e. y ∈ R
n and the mapping y →

‖f (·, y)‖p(·) is in L1. Then∥∥∥∥
∫
Rn

f (·, y) dy

∥∥∥∥
p(·)

≤ C

∫
Rn

‖f (·, y)‖p(·) dy,

where C only depends on the bounds of p(·).
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(b) Moreover, for 1 < q < p−, we have∥∥∥∥
(∫

Rn

|f (·, y)|q dy

)1/q∥∥∥∥
p(·)

≤ C

(∫
Rn

‖f (·, y)‖q

p(·) dy

)1/q

.

Proof. By Hölder’s inequality and (2.17) we have∥∥∥∥
∫
Rn

f (·, y) dy

∥∥∥∥
p(·)

≤ C sup
g:‖g‖p′(·)≤1

[∫
Rn

(∫
Rn

f (x, y) dy

)
|g(x)|dx

]

≤ C sup
g:‖g‖p′(·)≤1

[∫
Rn

∫
Rn

f (x, y)|g(x)|dx dy

]

≤ C

∫
Rn

‖f (·, y)‖p(·) dy.

Now to prove (b), we observe that p(·)
q

is an exponent function with (
p(·)
q

)− > 1

and ‖f ‖q

p(·) = ‖f q‖p(·)/q whenever f ∈ Lp(·). Then, from (a) we get∥∥∥∥
(∫

Rn

|f (·, y)|q dy

)1/q∥∥∥∥q

p(·)
=

∥∥∥∥
∫
Rn

|f (·, y)|q dy

∥∥∥∥
p(·)/q

≤ C

∫
Rn

‖|f (·, y)|q‖p(·)/q dy

= C

∫
Rn

‖|f (·, y)|‖q

p(·) dy,

as desired. �

Proposition 2.24. Let 0 < α < n, and let p(·) be an exponent function with
p− > n

α
such that p′(·) satisfies the doubling condition. If a measurable function

f satisfies the pointwise condition

|f (x) − f (y)| ≤ C

∫ 2|x−y|

0

‖χB(x,t)‖p′(·) + ‖χB(y,t)‖p′(·)
tn−α

dt

t
(2.18)

for almost all x, y ∈ R
n, then f ∈ Lα,p(·).

Proof. Given r > 0 and x0 ∈ R
n, we consider the ball B = B(x0, r). In order to

prove that f ∈ Lα,p(·), we will see that∫
B

|f (x) − mBf |dx ≤ C|B|α/n‖χ2B‖p′(·). (2.19)

In fact, as in the proof of Proposition 2.7, from the hypothesis on f and from the
fact that p′(·) satisfies the doubling condition we get∫

B

|f (x) − mBf |dx ≤ C

∫
B

∫ 4r

0

‖χB(x,2t)‖p′(·)
tn−α

dt

t
dx

≤ C

∫ r

0

∫
B

‖χB(x,t)‖p′(·) dx
dt

tn−α+1
.
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Now, let q > 1 to be determined later. Applying the Hölder inequality, we have∫
B

|f (x) − mBf |dx

≤ C|B|1/q ′
∫ r

0

(∫
B

‖χB(x,t)‖q

p′(·) dx

)1/q
dt

tn−α+1

≤ C|B|1/q ′
∫ r

0

(∫
Rn

‖χB(x0,r)(x)χB(x,t)(·)‖q

p′(·) dx

)1/q
dt

tn−α+1
.

We claim that by taking q such that n
α

< q ′ < p− we have(∫
Rn

‖χB(x0,r)(x)χB(x,t)(·)‖q

p′(·) dx

)1/q

≤ Ctn/q‖χ2B‖p′(·) < ∞ (2.20)

for every 0 < t < r . Thus,∫
B

|f (x) − mBf |dx ≤ C‖χ2B‖p′(·)|B|1/q ′
∫ r

0
tn/q−n+α−1 dt

= C‖χ2B‖p′(·)|B|1/q ′
rα−n/q ′ = C‖χ2B‖p′(·)|B|α/n,

and so we get our result.
Now, it only remains to prove the claim. In terms of the theory of integration

for vector-valued functions, our claim says that χB(x0,r)(x)χB(x,t)(z) belongs to
the Bochner–Lebesgue space L

q

Lp′(·) (see [8], Chap. V.1), whose topological dual

space is L
q ′
Lp(·) . Then by duality we can write

‖χB(x0,r)(x)χB(x,t)(·)‖L
q

Lp′(·)

≤ C sup
‖gt (x,z)‖

L
q′
Lp(·)

≤1

(∫
Rn

∫
Rn

χB(x0,r)(x)χB(x,t)(z)gt (x, z) dx dz

)

≤ C sup
‖gt (x,z)‖

L
q′
Lp(·)

≤1

(∫
Rn

∫
Rn

χB(x0,r)(x)χB(z,t)(x)gt (x, z) dx dz

)
,

where in the last expression we use that χB(x,t)(z) = χB(z,t)(x). Now, taking into
account that for every fixed 0 < t < r , we have χB(x0,2r)(z) = 1 for all z ∈ B(x, t)

whenever x ∈ B(x0, r), we get

‖χB(x0,r)(x)χB(x,t)(z)‖L
q

Lp′(·)

≤ C sup
‖gt (x,z)‖

L
q′
Lp(·)

≤1

(∫
Rn

χB(x0,2r)(z)

∫
Rn

χB(z,t)(x)|gt (x, z)|dx dz

)

≤ Ctn/q sup
‖gt (x,z)‖

L
q′
Lp(·)

≤1

∫
2B

‖gt (·, z)‖q ′ dz

≤ Ctn/q‖χ2B‖p′(·) sup
‖gt (x,z)‖

L
q′
Lp(·)

≤1
‖gt (x, z)‖

L
p(·)
Lq′

.
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Finally, recalling that n
α

< q ′ < p−, by Proposition 2.23 we conclude that

‖χB(x0,r)(x)χB(x,t)(z)‖L
q

Lp′(·)

≤ Ctn/q‖χB2R
‖p′(·) sup

‖gt (x,z)‖
L

q′
Lp(·)

≤1
‖gt (x, z)‖

L
q′
Lp(·)

≤ Ctn/q‖χB2R
‖p′(·) < ∞. �

We note that if, in Proposition 2.24, p(·) is assumed to be constant in the interval
(n/α,n/(α − 1)+), then the pointwise condition (2.18) implies that f belongs
to the Lipschitz space of order 0 < β = α − n/p < 1 (see, in addition, [12] and
[23]).

In view of Proposition 2.7, we get the following pointwise characterization of
Lα,p(·) without log-Hölder hypotheses on p(·).
Theorem 2.25. Let 0 < α < n, and let p(·) be an exponent function such that
p− > n

α
and p′(·) satisfies the doubling condition. The following conditions are

equivalent:

(1) f ∈ Lα,p(·).
(2) f satisfies (2.18).

Proof. By Proposition 2.24, clearly, (2) implies (1). In order to prove the con-
verse, we proceed in the same way as in Proposition 2.5, but this time considering
in (2.2) the properties of w(x, t) = tα−n‖χB(x,t)‖p′(·), that is, p′(·) satisfies the
doubling condition, and tα−n is decreasing. �

Theorem 2.26. Let 0 < α < n, and let p(·) be an exponent function such that
p− > n

α
. If p′(·) satisfies the doubling condition. Then Lα,p(·) = Ls

α,p(·) for every
1 ≤ s < n

n−α
.

Proof. By Hölder’s inequality, clearly, Ls
α,p(·) ⊂ Lα,p(·). On the other hand, if

f ∈ Lα,p(·), then by Corollary 2.25 f satisfies the pointwise estimate (2.18). In
view of Proposition 2.7 with w(x, t) = tα−n‖χB(x,t)‖p′(·), we only have to prove
(2.4). Taking s in (1, n

n−α
), we get

∫
B

(∫ r

0
tα−n−1‖χB(x,t)‖p′(·) dt

)s

dx

≤
(∫ r

0

(∫
B

t(α−n−1)s‖χB(x,t)‖s
p′(·) dx

)1/s

dt

)s

=
(∫ r

0
tα−n−1‖χB(x0,r)(x)χB(x,t)(z)‖Ls

Lp′(·) dt

)s

≤ C

(∫ r

0
tα−n−1tn/s‖χB(x0,r)‖p′(·) dt

)s
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= C‖χB(x0,r)‖s
p′(·)

(∫ r

0
tα−n−1+n/s dt

)s

= C‖χB(x0,r)‖s
p′(·)r

(α−n)srn

= C(‖χB‖p′(·)r(α−n))srn,

where α − n + n
s

> 0. Then Lα,p(·) = Ls
α,p(·) for every 1 ≤ s < n

n−α
, as desired.

�

3. Fractional Integrals on BMOw,q Spaces

In this section, we prove boundedness results for the fractional integral operator.
In order to do this, we consider the following definition.

Definition 3.1. Let w(x, t) be a measurable function. We say that w ∈ W∞ if
there exists a constant C > 0 such that∫ ∞

r

w(x, t)

t

dt

t
≤ C

w(x, r)

r
(3.1)

for all x ∈R
n and r > 0.

It should be noticed that condition (3.1) appears in the literature in differ-
ent contexts. See, for instance, [12; 6], and, in the particular case w(x, t) =
tα−n‖χB(x,t)‖p′(·), our paper [22].

Now, we prove a technical lemma that will be useful in getting one of our main
results.

Lemma 3.2. Let α be a real number, and let w be a measurable function satisfying
(1.2) and (1.3). If a function f belongs to BMOw,q for a some 1 ≤ q < ∞, then
we have ∫

B

|f (y) − mBf |
|x − y|n−α

dy ≤ C‖f ‖w,q

∫ r

0

tαw(x, t)

t
dt, (3.2)

where B = B(x, r), and C is not dependent on B .

Proof. Let x ∈ R
n and r > 0. We consider the ball B = B(x, r) and denote Bk =

B(x,2−kr), k ∈ N0. Then, we estimate

∫
B

|f (y) − mBf |
|x − y|n−α

dy =
∞∑

k=0

∫
Bk−Bk+1

|f (y) − mBf |
|x − y|n−α

dy

≤ C

∞∑
k=0

(2−kr)α|Bk|−1
∫

Bk

|f (y) − mBf |dy

≤ C

∞∑
k=0

(2−kr)α
k∑

j=0

(
|Bj |−1

∫
Bj

|f (y) − mBj
f |q dy

)1/q
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≤ C‖f ‖w,q

∞∑
k=0

(2−kr)α
k∑

j=0

w(x,2−j r)

= C‖f ‖w,q

∞∑
j=0

(2−j r)αw(x,2−j r)

≤ C‖f ‖w,q

∞∑
j=0

∫ 2−j r

2−j−1r

tαw(x, t)
dt

t

≤ C‖f ‖w,q

∫ r

0

tαw(x, t)

t
dt,

as desired. �

Remark 3.3. Note that conditions (1.2) and (1.3) are only applied in Lemma 3.2
to get the integral expression involving the function w(x, t). For the particular
case w(x, t) = �(t)t−n

∫
B(x,t)

v(y) dy, a similar expression can be proved with-
out assuming those hypotheses on the whole w(x, t). In that case we only need to
consider the properties of each factor.

Now, for a number σ ≥ 0, we denote wσ (x, t) = tσ w(x, t) (clearly, w0 = w). We
now prove the main theorem of this section.

Theorem 3.4. Let 0 < α < n, and letw be a nonnegative measurable function
satisfying conditions (1.2), (1.3), and (1.4). Now, if wα ∈ W∞, then the frac-
tional integral Iα can be extended to a linear bounded operator from BMOw,q

into BMOwα,q with 1 ≤ q < ∞ as follows:

Ĩαf (x) =
∫
Rn

(
1

|x − y|n−α
− 1

|y|n−α

)
f (y)dy, (3.3)

so that Ĩα is well defined on BMOw,q .

Proof. First, we prove that the extension of Iα to Ĩα is well defined. For this, we
take f ∈ BMOw,q , x ∈ R

n, r > |x|, and the ball B = B(0, r). We need to show
that |Ĩαf (x)| < ∞. Since the expression in brackets in (3.3) has zero integral over
R

n as a function of y, we get

Ĩαf (x) =
∫
Rn

(
1

|x − y|n−α
− 1

|y|n−α

)
(f (y) − m2Bf )dy = I1(x) + I2(x),

where I1 and I2 are the integrals over B(0,2r) and R
n − B(0,2r), respectively.

For I1, by Lemma 3.2 and condition (1.2) on w we have

|I1(x)| ≤
∫

B(0,2r)

|f (y) − mB(0,2r)f |
|y|n−α

dy +
∫

B(0,2r)

|f (y) − mB(0,2r)f |
|x − y|n−α

dy

≤
∫

B(0,2r)

|f (y) − mB(0,2r)f |
|y|n−α

dy +
∫

B(x,4r)

|f (y) − mB(x,4r)f |
|x − y|n−α

dy
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+ |mB(x,4r)f − mB(0,2r)f |
∫

B(0,2r)

dy

|x − y|n−α

≤ C‖f ‖w,q

∫ 2r

0

tαw(0, t)

t
dt + C‖f ‖w,q

∫ 4r

0

tαw(x, t)

t
dt

+ C‖f ‖w,qw(x,4r)rα

≤ C‖f ‖w,qrα(w(0,2r) + w(x,4r)) < ∞. (3.4)

Now, let us estimate I2(x) for each x ∈ B(0, r). Applying the mean value theorem,
we get

|I2(x)| ≤ C|B|1/n

∫
Rn−B(0,2r)

|f (y) − mBf |
|y|n−α+1

dy.

Then, letting Bk = 2kB = B(0,2kr), k ∈N, we have

|I2(x)| ≤ Cr

∞∑
k=1

∫
Bk+1−Bk

|f (y) − mBf |
|y|n−α+1

dy

≤ Cr

∞∑
k=1

(2kr)α−1|Bk+1|−1
∫

Bk+1

|f (y) − mBf |dy

≤ Cr

∞∑
k=1

(2kr)α−1
k+1∑
j=1

(
|Bj |−1

∫
Bj

|f (y) − mBj
f |q dy

)1/q

≤ C‖f ‖w,qr

∞∑
k=1

(2kr)α−1
k+1∑
j=1

w(0,2j r)

≤ C‖f ‖w,qr

∞∑
j=1

(2j r)α−1w(0,2j r)

≤ C‖f ‖w,qr

∞∑
j=1

∫ 2j+1r

2j r

tαw(0, t)

t

dt

t

≤ C‖f ‖w,qr

∫ ∞

r

tαw(0, t)

t

dt

t
.

Since wα ∈ W∞, we conclude that

|I2(x)| ≤ C‖f ‖w,qr
rαw(0, r)

r
= C‖f ‖w,qrαw(0, r). (3.5)

Finally, from (3.4) and (3.5) we have that |Ĩαf (x)| < ∞ for all x ∈R
n.

Let us show the boundedness of the operator Ĩα . To this aim, we observe that
from the properties of w, for x ∈R

n, r > 0, and 1 ≤ q < ∞, we have∫
B(x,r)

(∫ r

0

tαw(z, t)

t
dt

)q

dz

≤
∫

B(x,r)

w(z, r)q
(∫ r

0
tα−1 dt

)q

dz
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≤ Cw(x, r)q
∫

B(x,r)

rαq dz

≤ C(rαw(x, r))qrn.

So, this estimate proves that wα satisfies (2.4). Then, by Proposition 2.7, the proof
of the theorem will be complete as soon as we prove that for every function f in
BMOw,q , Ĩαf satisfies a pointwise inequality like (2.1) with wα instead of w.
In fact, for such a function and given x1, x2 points in R

n, considering the ball
B = B(x1,2|x1 − x2|), we have

|Ĩαf (x1) − Ĩαf (x2)| ≤
∫
Rn

∣∣∣∣ 1

|x1 − y|n−α
− 1

|x2 − y|n−α

∣∣∣∣|f (y) − mBf |dy

=
∫

B

+
∫
Rn−B

= I1 + I2.

Proceeding in a similar way as in (3.4) and (3.5), we get that

|Ĩαf (x1) − Ĩαf (x2)| ≤ C‖f ‖w,1

∫ 2|x1−x2|

0

tαw(x1, t) + tαw(x2, t)

t
dt, (3.6)

as desired. �

Corollary 3.5. Let α,β ∈ R
+ be such that 0 < α + β < 1, and let w(x, t) be

a nonnegative measurable function satisfying conditions (1.2), (1.3), and (1.4). If
wα+β ∈ W∞, then the fractional integral Iα can be extended to a linear bounded
operator from BMOwβ,q to BMOwα+β ,q with 1 ≤ q < ∞, as in (3.3).

Proof. It is clear that wβ(x, t) satisfies properties (1.2), (1.3), and (1.4) if w(x, t)

does. Then, applying Theorem 3.4 with wβ , we get the result. �

Remark 3.6. It is obvious that w ≡ 1 satisfies the hypotheses of the previous
corollary. Then the well-known classical results

Iα : BMO → Lip(α)

and

Iα : Lip(β) → Lip(α + β)

for β > 0 such that 0 < α + β < 1 are included.
Also, Theorem 3.4 and Corollary 3.5 recover the following results contained

in [12] (see Thm. 2.9 and Cor. 2.12):

Iα : BMO(v) → BMOα(v) whenever v ∈ H(α,∞),

Iα : BMOβ(v) → BMOα+β(v) whenever v ∈ H(α + β,∞),

where H(α,∞) is defined by

|B|1/n−α/n

∫
Rn−B

v(y)

|xB − y|n−α+1
dy ≤ C

1

|B|
∫

B

v(y) dy.
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In fact, it is easy to see that v ∈ H(α,∞) implies that w(x, t) = tα−nv(B(x, t))

satisfies (1.3) (see [12]), (1.4), and W∞ condition. As we have noted in Re-
mark 3.3, although condition (1.2) does not necessarily hold for this particular
w(x, t), we get the integral expression appearing in (3.6), that is,

|Ĩαf (x1) − Ĩαf (x2)|
≤ C‖f ‖w,1

∫ 2|x1−x2|

0

tα−nv(B(x1, t)) + tα−nv(B(x2, t))

t
dt,

which, in view of (1.3) (i.e., the doubling condition of the weight v), gives the
following inequality:

|Ĩαf (x1) − Ĩαf (x2)| ≤ C‖f ‖w,1

(∫
|z−x1|<2|x1−x2|

v(z)

|z − x1|n−α
dz

+
∫

|z−x2|<2|x1−x2|
v(z)

|z − x2|n−α
dz

)
.

By taking the double average over B this clearly implies that Ĩαf ∈ BMOα(v).

4. The Riesz Transforms

Let f be a locally integrable function. Recall that for each j ∈ {1, . . . , n}, the
Riesz transform operator is given by

Rj f (x) = lim
ε→0+

∫
|x−y|>ε

xj − yj

|x − y|n+1
f (y)dy.

It is well known that these operators are bounded in weighted Lp spaces (see [8]
for instance). Moreover, Morvidone [17] proved the boundedness of the Hilbert
transform as an operator between certain weighted spaces of functions with mean
oscillation controlled by a function ϕ, which generalized the results of Mucken-
houpt and Wheeden [18] and Peetre [21].

It is important to note that the hypotheses assumed by Morvidone are not con-
tained in ours because that author takes advantage of a better knowledge of the
structure of w(x, t) since just a particular case is considered.

Our next theorem gives a similar result for general functions w(x, t).

Theorem 4.1. Let 1 ≤ q < ∞, and let w be a measurable function satisfying
(1.2), (1.3), and (1.4). Suppose that w ∈ W∞. Then Rj can be extended to a
linear bounded operator Rj f (x) on BMOw,q as follows:

Rj f (x) = lim
ε→0+

∫
|x−y|>ε

[
xj − yj

|x − y|n+1
+ yj
(y)

|y|n+1

]
f (y)dy. (4.1)

Here 
(y) is the characteristic function of |y| > 1.

Proof. In view of Theorem 2.13, we have to prove the result only for 1 < q < ∞.
Now, let 1 < q < ∞ and f ∈ BMOw,q . First, we prove that Rj f (x) is well

defined over BMOw,q . It is not difficult to see that Rj 1 = 0. Using this, for each
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x ∈ B = B(0, r), we get

Rj f (x) = Rj (f − mBf )(x)

= lim
ε→0+

∫
|x−y|>ε
|y|<2r

[
xj − yj

|x − y|n+1
+ yj
(y)

|y|n+1

]
(f (y) − mBf )dy

+ lim
ε→0+

∫
|x−y|>ε
|y|>2r

[
xj − yj

|x − y|n+1
+ yj
(y)

|y|n+1

]
(f (y) − mBf )dy

= T1(x) + T2(x). (4.2)

For T1, by the definition of the operator,

|T1(x)| ≤
∣∣∣∣ lim
ε→0+

∫
|x−y|>ε
|y|<2r

xj − yj

|x − y|n+1
(f (y) − mBf )dy

∣∣∣∣
+ lim

ε→0+

∫
|x−y|>ε

1<|y|<2r

|f (y) − mBf |
|y|n dy < ∞.

Since (f (y)−mBf )χ2B ∈ Lq , the finiteness a.e. of the first term is a consequence
of the boundedness of Rj . For the second one, Lebesgue’s dominated convergence
theorem is applied to get the conclusion.

On the other hand, taking ε < r in T2, applying the mean value theorem, and
considering the increasing sequence of balls Bk = B(0,2kr), k = 1,2, . . . , we
have

|T2(x)| ≤ Cr

∫
|y|>2r

|f (y) − mBf |
|x − y|n+1

dy

≤ Cr

∞∑
k=1

∫
2kr<|y|<2k+1r

|f (y) − mBf |
|y|n+1

dy

≤ C

∞∑
k=1

1

2k

1

|Bk+1|
∫

Bk+1

|f (y) − mBf |dy

≤ C

∞∑
k=1

k+1∑
j=1

1

2k

(
1

|Bj |
∫

Bj

|f (y) − mBj
f |q dy

)1/q

= C‖f ‖w,q

∞∑
j=1

w(0,2j r)

∫ 2j+1r

2j r

1

2j

dt

t

≤ C‖f ‖w,qr

∫ ∞

r

w(0, t)

t

dt

t

≤ C‖f ‖w,qw(0, r) < ∞, (4.3)

where the last inequality holds because w ∈ W∞. Finally, taking a sequence {Bn}
of balls such that Bn ↗ R

n and applying the previous reasoning for each Bn, we
get that Rj f is finite a.e.
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Now, we prove the boundedness of the operator acting on BMOw,q . As for
(4.2), we consider g = f − mBf , g1 = gχ2B , and g2 = g − g1 with given B =
B(x0, r).

First, we study Rjg1. From the boundedness of the classical Riesz transform
we have∫

B

|Rj g1(x) − mB(Rj g1)|q dx =
∫

B

|Rj g1(x) − mB(Rj g1)|q dx

≤ 2q

∫
B

|Rj g1(x)|q dx

≤ C

∫
2B

|f (x) − mBf |q dx

≤ C‖f ‖q
w,qw(x0,2r)q |B|.

This and (1.3) allow us to conclude that

1

w(x0, r)

(
1

|B|
∫

B

|Rj g1(x) − mB(Rj g1)|q dx

)1/q

≤ C‖f ‖w,q .

On the other hand, for Rjg2, taking ε < r and then applying the mean value
theorem, by the same reasoning as used for (4.3) we have

|Rj g2(x) −Rj g2(z)| ≤
∫
Rn−2B

∣∣∣∣ xj − yj

|x − y|n+1
+ zj − yj

|z − y|n+1

∣∣∣∣|f (y) − mBf |dy

≤ Cr

∫
Rn−2B

|f (y) − mBf |
|x0 − y|n+1

dy

≤ C‖f ‖w,qr

∫ ∞

r

w(x0, t)

t

dt

t

≤ C‖f ‖w,qw(x0, r) < ∞.

Finally, by Hölder’s inequality we can write∫
B

|Rj g2(x) − mB(Rj g2)|q dx ≤ 1

|B|
∫

B

∫
B

|Rj g2(x) −Rj g2(z)|q dz dx

≤ C‖f ‖q
w,q

1

|B|
∫

B

∫
B

w(x0, r)
q dz dx

= C‖f ‖q
w,q |B|w(x0, r)

q .

So the theorem is proved. �

Remark 4.2. For w(x, t) = φ(t), the condition φ ∈W∞ implies that φ is of upper
type β with β < 1, as it is proved in Lemma (3.3) of [12], which in particular
establishes that φ satisfies (1.3). Hence, we can prove that if φ is a nonnegative
and nondecreasing function such that φ ∈ W∞, then Rj can be extended to a
bounded linear operator on BMOφ . This last result is contained in [21].
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