A Remark on Quasiconformal Mappings
on Carnot Groups

G. D. Mostow

1. Introduction

In a letter of May 1991, A. Koranyi and M. Reimann informed me that a
result of theirs on the theory of quasiconformal mappings on the Heisenberg
groups contradicted inequality (20.17) in my monograph [2] which is asserted
there without proof and used in the proof of Proposition 21.3. The latter
proposition deals with the extension of a certain mapping ¢ between hyper-
bolic space over the division algebra K(K:=R, C, H := quaternions, or O:=
octonions) to their boundaries at infinity. The boundary map ¢, had previ-
ously been proved to be a quasiconformal mapping over K. Proposition 21.3
asserts that ¢ is absolutely continuous on almost all curves of a specified type.

The boundary minus one point is the free action orbit of any maximal uni-
potent subgroup of the isometry group of the hyperbolic space. In case K=
C, the unipotent group is the Heisenberg group; for a general K, it is a two-
step unipotent Carnot group.

Proposition 21.3 is an essential step in proving strong rigidity for locally
hyperbolic spaces over K. This paper offers a correction of the proof of
Proposition 21.3 via bypassing the faulty inequality (20.17). The method used
can be generalized directly to simplify the definition of quasiconformal map-
pings on two-step Carnot groups. In [2] the notion of quasiconformal map-
ping on the boundary of hyperbolic space is defined in terms of the boundary
“semimetric”. Subsequently, Pansu (in [3]), and Koranyi and Reimann (in
an earlier version of [1]) studied a similar notion of quasiconformal mapping
with respect to a “Carnot-Carathéodory metric”, which required an extra
“doubling hypothesis”. In Section 4 it is pointed out that, as a result of the
method used here, the extra doubling hypothesis is superfluous. This method
was subsequently adopted by Koranyi and Reimann in [1].

2. Setting the Stage

Occurring in the proof of Proposition 21.3 are two commuting fibrations =¥
and 7y by Hopf fibers and by quarter great R-circles respectively. The point
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of the Koranyi-Reimann observation is that the flow along the 7 fibers
can distort the boundary semimetric dy unboundedly and thus contradicts
(20.17), an inequality on the base space of wr. The proof can be corrected
by two small modifications which we explain below. Most of the argument
remains the same.

For the convenience of the reader, we list the relevant definitions, con-
tinuing the notation of [2].

X = H§, hyperbolic n-space over K;

k=dimK;
Xy=boundary of X=8", m=nk—1;
G=Aut X;

0 =origin of X in the model of §20 as a ball in K”;
G, = stabilizer of 0. G, preserves the standard Euclidean metric of K” as
well as the function d¥ on K" x K" and its restriction dy to Xy x X,

(the boundary semimetric; cf. (20.14), (20.15)). The boundary ball
K(p,s):={qe Xy; do(p,q) <s}.

Fix a point pye X, let L denote the K-line through p,, and let L* de-
note the orthogonal complement to L with respect to the standard Euclidean
metric on K”. Fix a point gye L* N X}, and let L, denote the K-line through
qo- Let K denote the subgroup of G, which stabilizes each of the K-lines
that contain a point of the great R-circle through py, go. Set H =G, ;, the
stabilizer of L in Gy, and H,_ , , the fixer of py, qo in H. Set 'K ={xeK;
Xx=1}.

If K=R, C, or H, then K =K. H, ,. (direct product). If K=0, the de-
scription is more intricate: H = Spm8 acting on L via even 5-spinors. Let
Spin7, = H,, , Spin7,= H, , and let Spin7; denote the subgroup of Spin 8
acting on (Rpg+Rgp)® O via identity ® spinor representation of Spin7.
Spin 75 is the image of Spin7, via the triality automorphism of order 3.
H,  4,=Spin7;NSpin 7, = G, C Spin 73, the exceptional group G, being the
group of algebra automorphisms of the octonions. Here K = Spin7; and
K/Hp, 4.=Kpo=LNX,.

Let T denote the one-parameter subgroup of G, which stabilizes Rp,+ Rgg,
is the identity on (L+L,)*, and centralizes K; T is a circle group parame-
terized by angle of rotation 0<¢<2w. Set T, ={teT;0<t<x/2}, Ty=a
(nonempty) compact subset of T,. Tp, is the great R-circle through po,
qo, and H), , fixes each point of Tp,. The fibration 7g: X, —Y of (20.15)
has fibers hT,py,, he H. The group H permutes the great R-circles and
htpo=tpy with t € T, implies that he H,, , CK and hence th= hi for all

he H, , and te€T,. Thus Y:=wg(X.)=H/H, qo“’S"‘_le(”‘”k—l, Set
X] HTIPO- Then X] H/Hpo qOXTl and 7I'R(X1) =

The erroneous inequality (20.17) is used only once in the proof of Propo-
sition 21.3, on page 164 line 13, to justify (21.20):

1(Po(E(Y, 5)))

S’n+k—2

lim sup
s—0

where p denotes the standard S measure on Xj,.

< oo a.e. yey,
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3. The Modifications

Our first modification in the proof of Proposition (21.3) is to change lim sup
to liminf in the definition of 7(y) in (21.19); hereafter,

#polE(,5))

sm+k—2 (21'19’)

7(y):=liminf
50

An examination of the proof of Proposition 21.3 reveals that (21.20) was
used only once: in the justification of inequality (21.26). Inasmuch as the
inference there that (Nt)"+* =2 <y, (E)+a is valid for any sequence of ¢
converging to zero, inequality (21.26) follows equally well from the new
(and weaker than in [2]) inequality

T7(y)<oo a.e. yevt. (21.20")

It remains only to justify this assertion.
Recall from page 154 the inequality relating the boundary ball with the
polydisc (with respect to the boundary semimetric dy) for small s:

Do(p,s/2) CK(p,s) CDy(p,s)-
For any y € wg(X;) and s > 0 suitably small, on page 164, line 4, we defined
E(y,s):={p e Xo; do(p, q) <s for some q € hT] py};

here y=hT, py, he H; by abuse of notation, we write y=hT; p, for y=
ﬁR(th po) Thus

E(y: S) = th K(pOs S)s
so that _
hT1Dy(py,s/2) CE(y,s) C hT\Dy(py, s).

The second modification in the proof of Proposition 21.3 is to exploit the
composite fibering wgew K. Set

Xo'=m"(Xo) = P!
7% Xy - X& is a Gy-map. Set
X\ =x¥(X) = HT, pg', p = 7 (po)
= (H/K)x T,

The map «X: X, > XX is an H-map. The Hopf fibers (='K) which meet
T} po are orbits of the group K, each orbit being isomorphic to K/H,, , . The
fibration 7 ¥ of X; descends to wg(X;):=Y, and we denote the induced fiber
map Y — Y ¥ by #X also. The map Y — Y ¥ is equivalent to H/H, .. — H/K.
Set £ = wgom X = wXKomrg.

For any he H and f € T}, set

y=mgr(htpy),  D(y,s)=hT\Dy(py,s),
yE=7%), DX s)=£D(y,s).
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For any y¥ e YX, set
K, Ky _ 1: w(do(t Dk (¥, 5)))
TR =lmse = ETDRGK )

By the usual theorem on differentiability of completely additive finite-valued
set functions defined on all closed subsets of the metric space YX, 7¥(y¥) < o
a.e.on YK,

For two families of sets f(s) and g(s), we write f(s) ~ g(s) if there exist
positive constants b; and b, with f(bs) < g(s) < f(b,s) for all small s. For
convenience, define

KS:=(x¥*)"'xXS for SCX,,
£S:=¢71tS for SC X,
and

B,(S) :=tubular neighborhood of radius r

around the subset S with respect to the standard Euclidean metric on Xj,.
Thus, for y=hT, py with he H,

ShTiDo(po, 5)))
TK( K) = lim su :u'((PO( 1470\ F0> .
4 s—0 P w(*hT1Do(po, 5))

Set {; =inf{¢; ¢t € T}}. We note that, given A > 1,
K[B;(tpo)] C KB)s(po) C *[Bs(1po)]

and
[By(tpg)) C¥[B.s(T1 po)l, c=1/sinty,

for all ¢ € T} and all sufficiently small s > 0. This yields, for any 7 € T;,
tDo(1po, 5) C *K(tpg, 25) C [ By5(tpo)] C X[ Bacs(T1 Po)1 C KBios(Th Do)

for all sufficiently small s > 0.
On the other hand, for any f € T},

$[Do(2pg, $)1 D U *[Dy(2pg, $)1 D U ¥[By/2(200)]1 D K- By /o) (T; po)-

teT, teT,
Consequently,
{[Do(tpy, s)] ~ KB(T, po) = KT By(po) = T KB,(po)
~T1KDy(po, s)
= KT Dy(py, s).

Furthermore, for any ¢> 1, given g, g’e K and ¢, '€ T, with

D(gtpo, s)NDy(g't'py, S)

nonempty and with s sufficiently small, we have g’pye B.2(gpo); for lo-
cally, the system of subspaces (cf. [2, p. 152]) which define the polydiscs D,
is approximated asymptotically by a product structure whose polydiscs have
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radius s%/2 along the K-fibers of X,,. Thus, given ¢> 1, for all sufficiently
small s (i.e., s <e¢,.) we have that

gT1Dy(po,s)Ng T\ Dy(py, s) is nonempty implies g’pg € B.s2(gpo)- ()
We have seen above that for y = AT p, with he H,
E(y,s):=hT1K(py,s) ~ hTiDy(py, s).

We now prove assertion (21.20") by contradiction. Suppose (21.20’) were
false. Then there would exist a subset Hy of H with positive measure such
that for all #e Hy, there is a subset Cy in K/H,, , of measure equal to
¢; measure (K/H), ,), ¢, >0, satisfying 7(hgT; py) = o for all ge C,, (note
that g¢p, is well-defined for all ge K/H,, ., t€T) and 7X(hK T po) finite.
For any s > 0, let U; denote the ball of radius s2/2 about the identity coset
H, . in K/H, . with respect to the K-invariant metric induced from the
K-fibers.

Choose any he Hy. By a standard result, it is possible to extract from
the family of translates {gU;; ge C,} a disjoint subfamily C; such that
{8Uy3s; gUs € C4} covers Cy,. By (%), if gUs Ty Do(p, s) meets g'U; Ty Do(po, )
with g,g’e K then g 'g’e Uyzes Hp,, q,- Hence we can extract a subfamily
C; of translates of U, such that

(@) tgU;T\Dy(py,s); gU; € C;} is a disjoint family, and
(b) {&UvsesT1Do( Do, 5); 8Us € €} covers C, Ty Do(po, S)-

Given any A> 0 however large and any g € Gy, there is an H,, , invariant

neighborhood Uj of radius s2/2 of the identity coset of K /H, 4, such that
w(eo(hgU; T1Dy( o, $))) > Ap(hgUs Ty Do( po, S))

for all s<e, , where ¢, ,>0. Let C, ,={ge Cy; e,=1/n}. Then C, j ex-
pands to C, as n— o0, so no generality is lost in assuming that C, = C,,
that is, e, , =1/n for all ge C,,.

Now for any s, choose a family C; of translates of U, centered at points
of C, satisfying the disjointness property (a) and the covering property (b).
Then

#(ﬂoo(h UUe gUsTlDo(Po,S)» = >, wloo(hgU;T1Dy( py, S)))
8l e €
>A > w(gUsT1Do(pog, s))

8Use C;
>Ac;, 3 m(gUysesTiDo(pos ),
gUse €

where ¢, is a positive constant independent of s. This last term is greater
than Acy, u(hCT\Dy(pg, s)) = Ac,ciu(hKT Dy py, s)). Thus we obtain

wleo(*[HTiDo( o, 35)1) > pleo(hKT1 Do(Po, 5))) > Acy ¢ p(hK T Do(Pos 5))
> AC3 Czcly,(g[thDO(p(), S)])
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for all small s, where c; is a constant independent of s. This implies that, for
y=hT, po with he Hy, 7¥(y¥)> A for arbitrary A. This contradiction es-
tablishes (21.207).

Deleting (20.17) and the paragraph following (21.20) (which appeals to
(20.17) of [2], the proof of Proposition 21.3 remains the same. In this modified
proof, Lemma 20.3 becomes superfluous, for we needed Lebesgue’s theorem
on differentiation of set functions on the space wgow ¥ (X7) in which the balls
are standard, in contrast with wg(X;).

4. Implication for the Theory of Quasiconformal
Mappings on Carnot Groups

Quasiconformal mappings between Carnot groups have been studied by
Pansu in [3]. Special examples of Carnot groups are the maximal unipotent
subgroups of simple Lie groups of R-rank 1. Before Pansu’s paper, the usual
definition of a quasiconformal mapping f: X — X’ between metric spaces
was taken to be a homeomorphism f such that

: max gy, y)=r d(f(X), f(¥))
H(x):=1
e S e = A0, ()

is uniformly bounded on X.

For Carnot-Carathéodory metrics on Carnot groups, Pansu has imposed
an additional condition, which Koranyi-Reimann (in their study of Heisen-
berg groups) have formulated as the doubling hypothesis:

: (fly;d(x,y)=<2r})
D =1 r
() HP..SSp w(fly,d(x,y)=<r})

is uniformly bounded; here p is a bi-invariant measure on Carnot groups.

Hitherto, the only correct proofs of the “absolute continuity on lines”
property for quasiconformal mappings of Carnot groups made use of the
doubling hypothesis. The method used in [2] applies as indicated there to
the maximal unipotent subgroups of R-rank 1 simple groups. That meth-
od, modified as in Section 1, yields the desired absolute continuity property
of quasiconformal mappings between Carnot groups which are two-step
nilpotent.

It is natural to conjecture that it is possible to drop the doubling hy-
pothesis for quasiconformal homeomorphisms f: N — N’ between Carnot-
Carathéodory spaces, retaining only the hypothesis on H, and still deduce
the desired absolute continuity properties.
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