ON A NONLINEAR VOLTERRA EQUATION
Kenneth B. Hannsgen

1. INTRODUCTION
We study the asymptotic behavior of solutions of the integrodifferential equation

t
(1.1) x\(t) = 5 alt - 7)g(x(T)dT - b(t) + £(H) (0 <t < )
0

(primes denote differentiation with respect to t), where a(t) satisfies the conditions

a(t) € C(0, ») N L;(0, 1); a(t) is nonnegative, nondecreasing,
(1.2)
and convex on (0, ©); and 0 < a(0+) < .

The functions g and f will be subject to the conditions

(1.3)  g(x) e Cl-w, ©), xg(x)>0, G(x)=jxg(g)dg—»eo (|x] — )
0

and

o0

(1.4) ft) e C[0, ©), Kg = SO |f(t)| at < .

We first find conditions ensuring that all solutions x(t) of (1.1) satisfy the condi-
tion
(1.5) lim x(t) = 0.

t— o0

Our result extends a theorem of J. J. Levin and J. A. Nohel [6, Theorem 1(ii)],
which deals with the case where a(t) € C[0, «) and (-1)ka(k)(t) >0
(0<t<o; k=0,1, 2, 3).

For the linear case (g(x) = x) with £(t) =0 and b(t) = constant, we showed in [3]
that there exist kernels aft), satisfying (1.2), for which a solution x(t) does not
satisfy (1.5); indeed there exists a nonconstant periodic function w(t) such that
[x(t) - w{t)] » 0 as t — «. These kernels satisfy the equation

(1.6) alt) = 69+ 22 6y (1 - M)

k=1 ktg
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where 6. > 0 and tg> 0. In studying the nonlinear equation (1.1) with kernels aft)
that satisfy (1.6), we find asymptotic behavior similar to that found by Levin and
Nohel in [5] for the delay equation

t
1
x(t) = -g [R - (t - 7)]elx(7))dT,
t-R
where R is a positive constant. Our proof of this result is adapted from [5].
Note that when a(t) satisfies conditions (1.2), we may write ([7, p. 230])
t

a(t) = a(°°)+S a(r)dr,
(1.7) o

where a(t) is a nonpositive, nondecreasing function for which a(t) = a{t+).

When a(0) < «, we obtain the equation

t
(1.8) xn(t) +a(0)gl®) = - | aft- r)g(r))ar - b(t) - 1)
0

from (1.1) by differentiation. We also introduce the differential equation
(1.9) x"(t) +a(0) g(x(t)) = 0

and the equivalent system

(1.10) x'=y, y =-a(0)gx).

In connection with equations (1.9) and (1.10), we use the notation of [5]. We let
o(t) = o(t, tg, @, B) denote the solution of (1.9) for which ¢(tg) = @ and ¢'(tg) = B.
Then x = ¢(t), y = ¢'(t) is the solution of (1.10) that passes through the point (a, B)
at t =tg. For (a, B) # (0, 0), let p = p(a, B) > 0 denote the (common) least period
of all solutions of (1.10) passing through (o, B). For each pair (a, B), let

e, B) = {(x, y)| x= ¢, tog, @, B), y=¢'%, tog, @, B) (-0 <t tg<w)}.

Then I'(o, B) is the orbit of (1.10) passing through (@, 8). Finally, for any two pairs
(@1, B1) and (@2, B2), we define D(a;, B1; @2, B2) as the closed, connected set
whose boundary is composed of the two curves I'(a;, B1) and I'(az, B2).

In the following, K denotes a finite, a priori bound; its value may change from
line to line. By LAC [T, ©) we denote the class of functions that are absolutely con-
tinuous on every bounded subinterval of [T, «).

THEOREM 1. (i) Let a(t) satisfy the conditions (1.2), and let a(t) be as in
(1.7). Assume that the hypotheses (1.3) and (1.4) hold. In addition, suppose that

(1.11) |g(x)| < K;(1+G(x) (]xl < w)  for some K| < o,

(1.12) b(t) € LAC[0, =),
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there exists c(t) € LAC[0, ©) such that b2(t) <aft)e(t) (0 <t <)
(1.13) and [b'(t)]% <aft)c'(t) a.e.om 0 <t <o,
If x(t) is a solution of (1.1) on 0 <t < e, then
(1.14) |x(t)] < Mg (0<t<w) for some Mg <.
(ii) In addition, suppose that

(1.15) xg(x)>0 (x#0)
and that either

S (a) a(0) = a(0+) < o,

(1.16) (b) £(t) € LAC[R, =) for some R <, and
2 lf1(t)] + |b'(t)] <K a.e.om R<t< e,
or
{(a) a(t) € Ly(0, =),
(1.17)
(b) [ft)] <K (0 <t <),

Finally, suppose (1.5) does not hold.
Then theve exist a 6 > 0 and sequences {ﬁk}f::l and {6k}§=1 such that

(1.18) §1 >0, &y > Ek+ 6, GkZO (k=1, 2, eee)
and
[>e] . t,
(1.19) aft) = a(e) + 2 ak(1 —m—l—n—i——gl‘i)
k=1 k

Moveover, if A =1{k| & >0}, then

t
(1.20) lim S gx(t))dr =0 (ke A).
t—gk

(iii) Suppose the hypotheses of parts (i) and (ii) are satisfied; assume fuvther

that f(t) € LAC[R, «),

(1.21) lim (ess sup |£'(7) - b'(7)|) = 0,
t—oo tJ7 Lo

and

(1.22) g(x) is locally Lipschitzian

367

(in other wovds, for each positive number A theve exists a number N = N(A) such
that |g(x1) - glxz)| <N lxl - le wheneveyr kxll + lxz] < A). Let Q be the limit

set (for t — ) of the curve x = x(t), y = x'(t). Then
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(1.23) Q@ = D(a,, B); @y, By) for some pairs (o, B1) and (a,, B,).

Moveover, there exists a positive number L such that

(1.24) £y =iL for some integer j=jk) (k€ A)
and
(1.25) L = p(a, B) with (@, B) € Q, (a, B) # (0, 0).

If in addition

(1.26) [th®)] + |t2alt)] <K (0<t <)
and
(1.27) By = - S Za(t)dt < o,

0

then theve exists a paiv (aq, Bg) Such that
(1.28) Q = Iag, Bo);
and whenever (a, ) € Q and 0 < K3 < «, then the relations

(1.29) lim [ max |xUt+nL)- ¢80t t , @, 8)|]=0 (i=0,1)
n-— o OStSKB

hold for some sequence {t,} (0 <t, =tyla, B) <pla, B)).

As in [6], we may use the estimate (1.14) to prove the existence of a solution x(t)
of (1.1) on 0 <t < o0,

As in [6], we may omit condition (1.11) in Theorem 1 if f(t) = b(t) = 0. A. Halanay
[1] treated this case of (1.1) under the hypothesis that a(t) - £y e~ %t defines a posi-
tive kernel for some £, > 0 and a > 0.

Suppose now that a(t) satisfies conditions (1.2) and that a(R) = 0 for some posi-
tive number R. Consider the functional differential equation

t
(1.30) x'(t) = -Il{ alt - 7)gx(7))dr - b(t) + £(t)
t-R

with initial data x(t) = ¢(t) (-R <t < 0), where ¥(t) is a prescribed function in
C[-R, 0]. Setting
1 0
) = 10 - 5 § aft - m)gw(r))dr,
min {O, t-R }

one sees that (1.30) is of the form (1.1), so that Theorem 1 applies. When

f(t) = b(t) = 0, we can obtain a stronger result (see [5, Theorems 1 and 2]) by apply-
ing our method to the energy function introduced by Levin and Nohel in [5] (the meth-
od of J. K. Hale [2] will also work).
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To prove parts (i) and (ii) of Theorem 1, we combine Lemma 2 with the method
used by Levin in [4] and by Levin and Nohel in [6]. Similarly, one can generalize the
other theorems of [6] to the case of convex kernels a(t).

2. LEMMAS

LEMMA 1. Let a(t) satisfy conditions (1.2), and let a(t) be as in (1.7). Then

(1) tat) =0 as t— 0+,
1
(i) B1=—§ tat)dt < «,
0
(i) B,(v) = 5°° tda(t) < o (> 0),
t 1
(iv) -t2a(t) < 2 S a(r)dr < 2 S a(t)dr (0<t<1), and
0 0
) (e
v B, = teda(t) < «.
3 0

Proof. The assertions (i), (ii), and (iii) are easily obtained with the aid of condi-
tions (1.2) and (1.7) and integration by parts. The inequality

a(r) = a(t) - St a(s)ds > a(t) - a@®)ft - 7] (O<7<t<1)
T

t
implies the relation S a(r)dr > talt) - t2a(t)/2, so (iv) holds. By (iv), t2a(t) — 0
0
as t — 0+; this, together with (ii) and integration by parts, yields (v). This com-
pletes the proof of Lemma 1.

LEMMA 2. Suppose x(t) € C'[0, «) and |x(t)| + |x'(t)] <K (0 <t < ). Let
a(t) and g(x) satisfy conditions (1.2), (1.3), and (1.15), and let a(t) be as in (1.7).

Let
Ho = § | ettsna “sar
= x(s))ds a(r),
0 t-7 s !

[>o]
and suppose that S H(t)dt < . Then either (1.5) holds, or the conclusions of
0

Theorem 1(ii) hold.
Proof. For 0<y; <y, <« and t> y,, define
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v2 t 2
S(t; vy, ¥2) = (x(s))ds | da(7).
1 2 5;1 ‘i_T g\X T
Then
(2.1) 0 < 8t y1, y2) LHRE) (y2<t<=).

Since |x(t)| is bounded and g(x) is continuous, there exists a finite number M
such that |g(x(t))] <M (0 <t < «). Using Lemma 1(iii), we find that

)

¥l

y2 t

j g(x(s))ds |[g(x(t)) - g(x(t - 7))]da(r)
t

-7

d
a S vy, v2)| =2

(2.2)
< 4AM®B,(y)) (0 <y, <y, < ).

O
From (2.1), (2.2), the mean-value theorem, and the inequality S H(t)dt < o, we

0
conclude that {
(2.3) St; y1,y2) 20 ast—oo  (0<y; <yp <),

Now suppose that (1.5) does not hold. Then there exist a positive constant A and }
a sequence {tn} such that t, T « and |x(tn)| > . The inequality Ix'(t)l <K, to-
gether with conditions (1.3) and (1.15), implies the existence of positive constants o
and 17 such that Ig(x(t))l > n provided Itn - t[ < 6 for some n.

Now write a(t) = B(t) + y(t), where B(t) is continuous and y(t) is the saltus func-
tion of a(t). Then B(t) and y(t) are nonpositive, nondecreasing functions.

Suppose either B(t) is not identically 0 or »(t) has discontinuities at t; and t,
(0 <t; <t, <« and t, - t; < 6). Then there exist positive numbers v; and vy
such that 0 <v, - v; <26 and

(2.4) p = min {a(vz) - a(vy - €), alv; +€) - a(vy)} > 0,

where € = (v, - v{)/4. On the other hand, we shall show that p = 0, contrary to (2.4).
Set vg = (v} +v2)/2 and T, =t, +vg. Then lTn - T -ty = |vo - 7| < 6 when
vy £ 7 L vp. Thus, for each sufficiently large n, either the inequality
gx(T, - 7)) >1n (vi £ 7 <vy) or the inequality gx(T, - 7)) < -1 (vi < 7<LVy)
holds. Since
Tn

S0 eenas = g, - 1)),

dr T,-T
we have for each sufficiently large n either the inequality
Tn

{7 ebxtenas

Typ-T

or the inequality
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T

{7 extnas

Th-7

>en  (vp-e<T7<V).

We conclude that S(T,; vy, v) > p(en) 2 for sufficiently large n. Relation (2.3) im-
plies that p = 0. Thus 8 =0, and

(2.5) alt) = yt) = 2 1y, (0<t<),
t<€k

where v <0, Ekyk> —0, 0< &y, and &4 > Ek+06 (k=1,2, ---). Note also that

k & 2
(2.6)  S(t; £ /2, &) = (0, &) = - 2 ')’j(jl g(x(s))ds) k=1,2,).
j=1 t

-&;

Setting k = 1 in (2.6) and arguing as above, we obtain the inequality £; > 6. Us-
ing (1.7) and (2.5), we obtain relation (1.19) with &, = -£, v, (set & = 0 for large Kk,
if there are only finitely many 7yy). An inductive argument, involving relations (2.3)
and (2.6) and the fact that v; <0, yields (1.20). This completes the proof of Lem-
ma 2,

3. PROOF OF THEOREM 1

(i) For 0 <t <, define

1 t 2 t
E(t) = G(x(t)) +3 a(t)(S g(X(s))dS) + b(t) S g(x(s))ds
0 0

t
Lo - 1 SOH

t

-7

2
g(x(s))ds :l a(r)dr,

t

Fe) = | Jom)ar, v = 1+EOle 1T, ana
0
5& t 2
H(t) = (x(s))ds | da(T).
S ‘_S‘t_7 g(x(s))ds a(r

From conditions (1.2), (1.7), and (1.13), and from Lemma 1, we see that
0 < E(t), V(t), H(t) < ». Now define E](t) almost everywhere on 0 <t < « by the
expression

1 t 2
Ey(0) = g&O)®) +3 a(t)(SO g(x(s»ds)

t
+b'(t) SO gx(s))ds +3 ¢'(t) - 3 HEb).
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Then (1.1), together with integration by parts (justified where necessary by Lemma
1), yields the relation

E,(t) = {G(x(t)) + b(t) 5 g(x(7))dar +— c(t) %

104 St
2 dt

0 t-7

2
+= a(t)—(S g(x('r))d'r) .

Using Fubini’s theorem, integration by parts, and Lemma 1, we now find that

2
g(x(s))ds) a(r)dr

t
(3.1) Vi) = VO + | v,(r)ar,
0

where
-K, F(t)
Vi) = -K| |[£t)| V&) + E (t)e .
Inequality (1.11) shows that
-K; |t)] [1 + )] + gx(t))(t) < 0,

hence conditions (1.2), (1.13), and (1.4) imply the formulas

-K, K
(3.2) Vi) < —%H(t)e 17°0 <0 a.e.

and

G(x(t)) < l: 1 + G(x(0)) +-;- c(0) ] eK1¥o,

therefore, by (1.3), (1.14) holds. Relations (3.1) and (3.2), together with the in-
equality V(t) > 0, yield

(3.3) Sw H{t)dt < .
0

(ii) In view of (1.14), (3.3), the hypotheses, and Lemma 2, we need only show that
|x (t)l is bounded on 0 <t <,

If (1.16) holds, then a(t) € L;(0, ). Integration of (1.8), together with (1.16b)

t
and (1.1), shows that x'(t) - x'(0) = ‘S x"(7)dT, where lx"(t)l <K a.e. on
0

0<t<e. Thus |x'(t;) - x'(t,)] <K|t; - t,|; in view of (1.14) and the mean-value
theorem, boundedness of |x'(t)| follows.
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When (1.17) holds, we note first that (1.12) and (1.13) imply that Ib(t)l <K
(0 <t <), Then (1.1) and (1.17) show that x'(t) is bounded, as claimed. This
proves (ii).

(iii) We set M = supg < < |g(x(t))|. Then M is finite. Using (1.19), we can
write -

t ® t
h(t) = - SO ot - T)gl(r)ar = & ( glx(r))dr .

k=1 gk max{O,t-gk}
It follows that

+M 2 8, (E>E).
k=n+tl

25
|n@)| < 2 g—k
k=1 °k

t
{" gxtrnar

t-&y

In view of (1.20), we see that h(t) - 0 as t — «., Using (1.21), we may thus write
equation (1.8) as a system

x'(t) = yt), y'(@) = -a(0)gx(t)) + z(t),

where ess supt% T <L oo |z(7)| — 0 as t — «, and where y is absolutely continuous.
3 b

Assertions (1.23), (1.24), and (1.25) now follow from an argument adapted from [5,
pp. 38-41]; we give an outline indicating the modifications.

Using Gronwall’s inequality, we can find, for each (a, 8) € Q, sequences {t,}
and {T,} (t, » =, T, - © as n — «) such that

(3.4) lim ( max  (|x(t)- ¢t t,, o, B)| + |x'() - ¢'(t, t,, o, B)])) = O.
n—oo t JtJt +T,

An immediate consequence of (3.4) is that T'(e, B) C  if (@, B) € §, and an argu-
ment involving the definition of Q yields relation (1.23).

Using (3.4), (1.20), (1.3), periodicity of ¢(t, ty, @, 8), and the identity
o(t + ty, to) = ¢(t, 0), we find, for (@, B) € @ and (@, B) # (0, 0), that

t
(3-5) S g(qb('r, tOs a, B))dT =0 (k € A; -0 < t: tO < °°) .
t-gy

Differentiation of (3.5), together with (1.9), yields the relation
ot + &, tg, @, B) = ¢t, tg, @, B) (ke A - <, tg <=);

hence &, = j(k; a, B)p(a, B) ((0, 0) # (o, B) € Q, k € A, j an integer). From (1.23)
and the continuity of p(a, 8) for (@, B8) # (0, 0), we conclude that j(k; a, 8) = j(k);
thus (1.24) and (1.25) hold.

t
For the final assertions, we claim first that -1 5 g(x(s))ds tends to 0 as
0
t — «, Choose £ > 0 and let k € A. Using (1.20), choose t' so large that the in-
equality t > t' implies that
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t

S g(x(s))ds
t

< g /2.
£y

Choose t" > t' so that t" > 2M(t' + £, )/e. Finally, for t > t", let n = n(t) be the in-
teger satisfying the condition t' <t - n§; <t'+ & . For such t we then have the
inequalities

t—nﬁk

§ eatonas

0

t

[ etxtsnas

t-nz'jk

< +

t
{ etxtsnas
0

< neg /2 + M@ + &) < st.

This proves our claim.
From (1.26) it now follows that

t 2
(3.6) b(t) +a(t)(5 g(x(s))ds) 50 ast— .
0

t
S g(x(s))ds
0

From (3.1), (3.2), and the fact that V(t) > 0, we see that the function V(t) de-
creases to Vg (Vg > 0) as t increases to . Then, by (1.4),

KiK
Et)>Vye © 0-1=E; (t— ).

From (1.13), we see that c(t) decreases to c(«) (c¢(«)> 0) as t increases to «.
Set Dy = Eg - ¢(«)/2, and define D(t) by the expression

t
-T

2
t
D(t) = G(x(t)) —21- S [ S g(x(s))ds] a(r)dr > 0.
0 t

Using (3.6) and the definition of E(t), we find that D(t) - Dy >0 as t — .
Let ¢4lt, tg) = ¢(t, tg, -A, 0) (0 <A <«). From the study of (1.10), it is well
known that

G(-A) = G(dA(t, to)) +-2;W [6h(t, t)]? (0<A<w, -0 <t ty< ).
This, together with (1.25) and the substitution
t
$1(t) - 't - 7) = -a(0) S e(o(s))ds ,
t-T

shows that

©) L t 2
W(t, ty, A) = G(olt, tg) +§2_I_: X l: 5 g( Als, to))dS:| dr

t-T
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- GA) t i O oyl to)Pdr
Za(OL ), #alr Bl

if Ae Q={A>0| (-A,0) € Q} and -» <t, tg <. As in [5], using (1.25), one can
show that on Q the last expression is a strictly increasing function of A alone.
Thus, by (1.23), to prove (1.28) we need only show that

(3.7) inf |Wi, to, A)-Dgl =0 (A€ Q).
-0 <t,tg <0

Note that inequality (1.26) implies that a(») = 0. Using relations (1.19), (1.24),
and (1.25), we compute the identities

3.(0) L t 2
oL S g(d)A(S, ty))ds dr

0 t-7T

__]; 5 a(kL—) kL, l: t
2 (k-1)L S

k=1 t-71

2
g(qu(S, to)) dS:| dr

]

0

2
0 t
_% S oa('r)[St T g(oa(s, to))ds:I d7 (A€ Q, - <t, t;<=).

Fix A € Q. For {t,} and {T,} asin (3.4), and for (a, B) = (-4A, 0), set
op =th + T. Then
IW(Un: tn, A) - DOI < |W(Un; th, A) - D(Un)l + iD(O‘n) - DOI

< |Ggalo,, tn) - Gx(o )]

1 Tn Gn 2 Un 2
+g)§ e [jcn_T NG tn»ds] [ Son-Tg(X(S»ds] ar
P On 2
+% S oz(T)I:S g(oals, tn))ds:, dr
Tn On-T
| eon on 2
+3 ST a(T)[SG g(x(s))ds] dr |+ |D(o,) - D]
n n~7

< max  |G(galt, t,) - G(x(t)| + £, NMBy
th<t<on

0
+M S 72| a(r)| dr + max |D(t) - D],
Tp t>tn
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where € = max,c <t<o |¢A(t t) - x(t)] B, is from (1.27), and N is a local

Lipschitz constant for g(x) By (1.27) and (3.4), we have (3.7), and therefore (1.28)
holds.

As in [5], relation (1.29) follows from (1.28) by means of an argument similar to
the proof of (3.4).

This completes the proof of Theorem 1.
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