RESTRICTIONS OF ISOTOPIES AND CONCORDANCES

L. S. Husch and T. B. Rushing

If X and Y are polyhedra and h_0 and h_1 are piecewise-linear (PL) homeomorphisms of X onto Y, a *concordance* (weak isotopy, pseudo-isotopy) between h_0 and h_1 is a PL homeomorphism

H:
$$X \times I \rightarrow Y \times I$$
 $(I = [0, 1])$

such that $H(x, 0) = (h_0(x), 0)$ and $H(x, 1) = (h_1(x), 1)$ for all $x \in X$. If, in addition, $H(x, t) = (h_t(x), t)$ for all $(x, t) \in X \times I$, then H is called an *isotopy*. If $A \subset X$, a concordance or isotopy H between h_0 and h_1 is *fixed on* A if $H(x, t) = (h_0(x), t)$ for all $(x, t) \in X \times I$.

Let M be a simply-connected PL manifold, and let m be an interior point of M. In [1], H. Gluck showed that if h_0 and h_1 are two isotopic (concordant) homeomorphisms of M, each of which leaves m fixed, then $h_0 \mid M - \{m\}$ and $h_1 \mid M - \{m\}$ are isotopic (concordant) homeomorphisms of M - $\{m\}$. We generalize as follows.

THEOREM. Let Q^q be a PL q-dimensional manifold, and let M^m be a compact, connected, m-dimensional polyhedron with $q \ge m-3$. Suppose that one of the following three properties is satisfied.

- a) Q is (m+1)-connected with q > 2m + 3.
- b) Q is (m+1)-connected, and M is a closed, (2m-q+2)-connected PL manifold.
- c) Q is (k+1)-connected, and M is a PL manifold with k-spine K^k $(k < n, q \ge m+k+2)$.

Let $f: M^m \to int \ Q^q$ be a PL embedding. If h_0 and h_1 are PL homeomorphisms of Q that are the identity on $f(M^m)$ and are isotopic (concordant), then there exists an isotopy (concordance) between h_0 and h_1 that is fixed on $f(M^m)$.

Remark. This theorem can be generalized to consider the case where f is an allowable embedding. We shall assume familiarity with either [3] or [7].

1. CONCORDANCES

Let $H: Q \times I \to Q \times I$ be a concordance between h_0 and h_1 . Define $F: M \times I \to Q \times I$ by F(x, t) = (f(x), t). To prove the theorem in this case, it suffices to find a PL homeomorphism $h: Q \times I \to Q \times I$ such that $h \mid Q \times \{0, 1\}$ is the identity map and hHF = F, since hH is the desired concordance.

In case a), the existence of such an h is a well-known corollary of the general-position theorem. In case b), one applies Theorem 4 of [2]. The case where M is a bounded manifold is handled by techniques from the unpublished works of J. Dancis, J. F. P. Hudson, and R. Tindell. We sketch a proof, for the sake of completeness.

Since Q is (k + 1)-connected, there exists a PL homotopy f_t : $M \times I \to Q \times I$ such that $f_0 = F$ and $f_1 = HF$. We may assume that there exists an $\epsilon > 0$ such that

Received April 23, 1969.

 $f_t = f_0$ for $t \in [0, \varepsilon]$ and $f_t = f_1$ for $t \in [1 - \varepsilon, 1]$, and that

$$f_t \mid M \times ([0, \varepsilon] \cup [1 - \varepsilon, 1]) = f_0$$
.

Define f': $(M \times I) \times I \rightarrow (Q \times I) \times I$ by $f'(x, t) = (f_t(x), t)$. Move f' into general position, keeping

$$f' \mid (M \times I) \times ([0, \varepsilon] \cup [1 - \varepsilon, 1]) \cup M \times ([0, \varepsilon] \cup [1 - \varepsilon, 1]) \times I$$

fixed. Let S and B denote the singular set and branch set of f', respectively. Since

$$\dim B + \dim K \times I < m + 2$$
,

we may assume that $B \cap K \times I \times I = \emptyset$ and that $f' \mid K \times I \times I$ is a PL embedding. One can easily find a regular neighborhood U of $K \times I \times I$ in $M \times I \times I$ such that

- i) f' | U is a PL embedding,
- ii) there exists a $\delta > 0$ such that

$$M \times I \times ([0, \delta] \cup [1 - \delta, 1]) \cup M \times ([0, \delta] \cup [1 - \delta, 1]) \times I$$

is contained in U.

By the uniqueness theorem of regular neighborhoods, we may assume that f' is a PL embedding of $(M \times I) \times I$ into $(Q \times I) \times I$. Hence f_0 and f_1 are allowably concordant keeping $M \times \{0, 1\}$ fixed [2]; thus, by Corollary ii of [2], f_0 and f_1 are ambient isotopic keeping $Q \times \{0, 1\}$ fixed. Let ϕ_t be this ambient isotopy; $h = \phi_1$ is the desired PL homeomorphism.

2. Δ -SETS

We need the theory of Δ -sets due to C. P. Rourke and B. J. Sanderson [6] (or the quasi-simplicial sets of C. Morlet [5]). A Δ -set is essentially a semi-simplicial set without the degeneracies. We recall some of the basic definitions and results.

Let Δ^n denote the standard n-simplex with ordered vertices v_0, v_1, \cdots, v_n . The ith *face map* $\partial_i \colon \Delta^{n-1} \to \Delta^n$ is the order-preserving, simplicial embedding that omits v_i . Let Δ denote the category whose objects are Δ^n (n = 0, 1, \cdots) and whose morphisms are generated by the face maps. A Δ -set is a contravariant functor from Δ to the category of sets. A Δ -map between Δ -sets is a natural transformation between the functors.

If X is a Δ -set, then $X^k = X(\Delta^k)$ is the set of k-simplexes, and the maps $\partial_i = X(\partial_i)$ are called face maps. We shall be interested in pointed Δ -sets in which we distinguish a simplex $*^k \in K^k$ for each k and designate $* \subset K$ as the sub- Δ -set of K consisting of these simplexes with $\partial_i *^k = *^{k-1}$.

With each ordered, simplicial complex K, we associate a Δ -set, also designated by K, whose k-simplexes are order-preserving, simplicial embeddings of Δ^k into K.

Let $\Lambda_{n,i} = Cl$ (bdry $\Delta^n - \partial_i \Delta^{n-1}$). A Δ -set X is called a Kan Δ -set if every Δ -map $f: \Lambda_{n,i} \to X$ can be extended to a Δ -map $f_l: \Delta^n \to X$.

If X is a Kan Δ -set and P is a polyhedron, a map f: $P \to X$ is a Δ -map f: $K \to X$, where K is an ordered triangulation of P. The maps f_0 and f_1 (f_i: $P \to X$) are homotopic if there exists a map F: $P \times I \to X$ such that $F \mid P \times \{i\} = f_i$ (i = 0, 1). [P; X] denotes the set of homotopy classes. We need the following two propositions, which were proved by Rourke and Sanderson [6].

PROPOSITION 1. Each homotopy class in [P; X] is represented by a Δ -map f: K \rightarrow X, where K is some ordered triangulation of P.

PROPOSITION 2. Let Q be a subpolyhedron of P, and let

h:
$$Q \times I \cup P \times \{0\} \rightarrow X$$

be a Δ -map to a Kan Δ -set X; then h extends to a Δ -map h': $P \times I \rightarrow X$.

Let Iⁿ denote the PL n-cell. If X is a pointed Kan Δ -set, then the nth homotopy group of X is given by the expression

$$\Pi_n X = [I^n, bdry I^n; X, *],$$

where the quantity in brackets denotes the homotopy class of Δ -maps of pairs.

A Δ -map Π : $E \to B$ is called a *Kan fibration* if for all integers i and n, for each Δ -map f: $\Lambda_{n,i} \to E$, and for each extension f_1 : $\Delta^n \to B$ of Πf , there exists an extension f' of f such that $f_1 = \Pi f'$.

PROPOSITION 3. A Kan fibration of Kan Δ -sets has the homotopy lifting property for maps of polyhedra.

3. SPACES OF PL EMBEDDINGS

Let $\operatorname{Aut}(Q)$ be the Δ -set whose r-simplexes are homeomorphisms $h\colon Q\times\Delta^r\to Q\times\Delta^r$ such that h is level-preserving (that is, $\rho h=\rho$, where ρ is the projection along the second factor). Define $\partial_i h=h \mid Q\times\partial_i \Delta^{r-1}$. Let $\operatorname{Aut}(Q \bmod f(M))$ be the sub- Δ -set of $\operatorname{Aut}(Q)$ consisting of r-simplexes h such that $h\mid f(M)\times\Delta^r$ is the identity map.

Let PL(M, Q) be the Δ -set whose r-simplexes are PL embeddings h: $M \times \Delta^r \to Q \times \Delta^r$ such that h is level-preserving. Define $\partial_i \ h = h \mid M \times \partial_i \ \Delta^{r-1}$.

The proof of the following proposition is easy.

PROPOSITION 4. Aut (Q), Aut (Q mod f(M)), and PL (M, Q) are Kan Δ -sets.

Define Π_f : Aut (Q) \rightarrow PL (M, Q) by $\Pi_f(h) = hf_1$, where h is an r-simplex of Aut (Q) and $f_1(x, y) = (f(x), y)$ for $(x, y) \in M \times \Delta^r$.

PROPOSITION 5. Π_f : Aut (Q) \rightarrow PL (M, Q) is a Kan fibration.

Proof. Suppose we have the following commutative diagram of Δ -maps:

$$\Lambda_{n,i} \xrightarrow{g} Aut(Q)$$

$$\downarrow \cap \qquad \qquad \downarrow \Pi_f$$

$$\Delta^n \xrightarrow{g_1} PL(M, Q).$$

It follows that g_1 can be represented as a level-preserving PL embedding $g_1 = M \times \Delta^n \rightarrow Q \times \Delta^m$.

By Remark 2 of [3, p. 154], there exists a level-preserving PL homeomorphism G: $Q \times \Delta^n \to Q \times \Delta^n$ such that $Gf_1 = g_1$. Hence G is an n-simplex of Aut(Q). Let

$$\widetilde{\mathbf{G}} = (\mathbf{G}^{-1} \mid \mathbf{Q} \times \boldsymbol{\Lambda}_{\mathbf{n,i}}) \circ \mathbf{g} \colon \mathbf{Q} \times \boldsymbol{\Lambda}_{\mathbf{n,i}} \ \to \ \mathbf{Q} \times \boldsymbol{\Lambda}_{\mathbf{n,i}} \ .$$

Note that $\widetilde{G}f \mid M \times \Lambda_{n,i} = G^{-1} \operatorname{gf} \mid M \times \Lambda_{n,i} = G^{-1} \operatorname{g}_{l} \mid M \times \Lambda_{n,i} = f_{l} \mid M \times \Lambda_{n,i}$. Hence $\widetilde{G}: \Lambda_{n,i} \to \operatorname{Aut}(Q \operatorname{mod} f(M))$ is a Δ -map that can be extended to

$$\widetilde{G}_1: \Delta^n \to \operatorname{Aut}(\mathbb{Q} \mod f(\mathbb{M})).$$

Set $g'_1 = G\widetilde{G}_1$: $Q \times \Delta^n \to Q \times \Delta^n$. Then g'_1 is the desired extension.

Let C(M,Q) be the Δ -set whose r-simplexes are continuous, level-preserving maps $g\colon M\times \Delta^r\to Q\times \Delta^r$. Choose the base-point Δ -set * of C(M,Q) as follows. Set * $^r=f_1\colon M\times \Delta^r\to Q\times \Delta^r$, as defined above. The boundary operators are defined naturally.

PROPOSITION 6. Under the conditions of the theorem, $\Pi_1(C(M, Q))$ is trivial.

Proof. It suffices to show that if

g:
$$M \times bdry \Delta^2 \rightarrow Q \times bdry \Delta^2$$

is a level-preserving map, then g can be extended to a level-preserving map g': $M \times \Delta^2 \to Q \times \Delta^2$. Let p be the projection $Q \times \text{bdry } \Delta^2 \to Q$. Then pg can be extended to g_0 : $M \times \Delta^2 \to Q$. Define g'(x, y) = (g_0 (x, y), y).

We can consider PL(M, Q) as a sub- Δ -set of C(M, Q).

PROPOSITION 7. If M is a compact, connected, m-dimensional polyhedron and Q is a PL, q-dimensional manifold ($q \ge 2m + i + 2$), then the homomorphism $\Pi_i(PL(M, Q)) \to \Pi_i(C(M, Q))$ induced by inclusion is an isomorphism.

This proposition follows easily from the following two propositions, which are generalizations to product spaces of the simplicial-approximation and general-position theorems. The proofs are easy.

PROPOSITION 8. Let M be a PL manifold without boundary, let Y be a PL manifold, and let P, Q (P \subseteq Q) be compact polyhedra. Suppose f: Q \rightarrow M \times Y is a continuous map such that f | P is PL. There exists a homotopy

$$h_t: M \times Y \rightarrow M \times Y \quad (t \in I)$$

such that

- i) $\rho_2 h_t = \rho_2$ for $t \in I$,
- ii) $h_t f \mid P$ is the identity for $t \in I$, and
- iii) $h_1 f: Q \to M \times Y$ is PL.

PROPOSITION 9. Let M be a PL manifold without boundary, let Y be a PL manifold, and let P, Q (P \subseteq Q) be compact polyhedra. Suppose f: Q \rightarrow M \times Y is a PL map such that f | P is a PL embedding. There exists a PL homotopy h_{\star} : M \times Y \rightarrow M \times Y (t \in I) such that

i)
$$\rho_2 h_t = \rho_2$$
 for $t \in I$,

- ii) $h_t f \mid P$ is the identity for $t \in I$, and
- iii) the singular set of h_1 f has dimension at most $2 \dim Q \dim (M \times Y)$.

4. ISOTOPIES

Let h_0 and h_1 be the isotopic PL homeomorphisms of Q that are the identity on $f(M^m)$. Let H be the isotopy. Then H represents a path in Aut(Q). Note that $\Pi_f(h_0) = \Pi_f(h_1)$; hence $\Pi_f H$ represents an element of $\Pi_1(PL(M,Q))$. By Propositions 6 and 7 and [4], $\Pi_1(PL(M,Q))$ is trivial. The path $\Pi_f G$ is homotopically equivalent to the base point $*^1 = f_1$ in PL(M,Q). By Proposition 3, this homotopy can be lifted to Aut(Q), which gives the desired isotopy between h_0 and h_1 .

REFERENCES

- 1. H. Gluck, Restriction of isotopies. Bull. Amer. Math. Soc. 69 (1963), 78-82.
- 2. J. F. P. Hudson, Concordance and isotopy of PL embeddings. Bull. Amer. Math. Soc. 72 (1966), 534-535.
- 3. ——, *Piecewise linear topology*. University of Chicago, Mathematics Lecture Notes, 1967.
- 4. L. S. Husch, Homotopy groups of PL-embedding spaces (to appear).
- 5. C. Morlet, Les méthodes de la topologie différentielle dans l'étude des variétés semi-linéaires. Ann. Sci. École Norm. Sup. 1 (1968), 313-394.
- 6. C. P. Rourke and B. J. Sanderson, On the homotopy theory of Δ -sets (to appear).
- 7. E. C. Zeeman, Seminar on combinatorial topology. Inst. Hautes Études Sci., Paris, 1963.

The University of Georgia Athens, Georgia 30601