SOME INVARIANTS OF p-GROUPS
R. A. Beaumont and R. S. Pierce

1. INTRODUCTION

The purpose of this paper is to define and study a certain system of invariants
of primary abelian groups without elements of infinite height. The invariants take
the form of ideals in the Boolean algebra P(w) of all subsets of the set w of finite
ordinals. It is natural to consider the existence and uniqueness of p-groups with a
given associated invariant. The main results of the paper are concerned with the
existence problems.

All of the groups considered in this paper are assumed to be p-primary abelian
groups, where p is some fixed prime. Most of the notation is taken from [3] and
[6]. If x € G, the height hg(x) is defined to be the maximum k such that x € pkG if
this maximum exists, and hg(x) = = if x € p*G for all k. The subgroup of all
x € G with hg(x) = « is denoted by G!. A subgroup H of G is pure in G if
hy;(x) = hg(x) for all x € H. We shall denote by fo(k) the kth Ulm invariant of G:

f5(k) = dim (p*G N G[p]/p**' G N G[p]).

It is convenient to adjoin the definition f5(e) = dim (G:1 N Glp]).

We consider cardinal and ordinal numbers in the sense of von Neumann; that is,
an ordinal number is a set, namely, the set of all smaller ordinals. Cardinal num-
bers are ordinal numbers that are not equivalent to any smaller ordinal. The cardi-
nal number of the set X is denoted by |X| The set of all subsets (the power-set) of
X is represented by P(X). The symbol w denotes the first infinite ordinal, that is,
the set of all finite ordinals. The letter ¢ represents the cardinal number of the
continuum. The symbols C and D denote inclusion in the wide sense. Finally, it is
convenient to write w' to denote the set w U {00} .

2. THE INVARIANTS
We first define a general class of invariants, then focus our attention on one of
particular interest.
2.1 Definition. I(G) = {k € wt | fg(k) # 0}.

Evidently, fg(k) # 0 if and only if p¥G N G[p]/p¥*1 G N G[p] # 0, that is, there
is an x € G[p] such that hg(x) = k. Moreover, fg() # 0 if and only if there is a
nonzero x € G[p] with hg(x) = «. Hence:

2.2 LEMMA. I(G) = {hg(x) | x € G[p], x # 0}.
2.3 COROLLARY. If H is a purve subgroup of G, thern I(H) c I(G).

2.4 COROLLARY. If H and K ave purve subgroups of G such that
I(H) N I(K) =@, then HN K = 0.
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Proof. Suppose that 0+ x € H[p] N K[p]. Then hy;(x) = hg(x) = hk(x) belongs to
both I(H) and I(K), which contradicts I(H) n I(K) = 0. Thus, HN K = @.

2.5.LEMMA. If H and K are pure subgroups of G such that I(H) N I(K) = 9,
then H + K is pure in G, the sum H + K is divect, and I(H + K) = I(H) U I(K).

Proof. Let 0+ 2z € (H+ K)[p]. Then z=x+y (x € H, y € K). To prove that
H + K is pure, it suffices to show that hyy, ik (z) > hg(z). If x =0 or y = 0, this is
clear because of the purity of H and K. Assume that x+# 0 and y # 0. Then
p(x + y) = 0 implies that px = -py € H N K = 0 by Corollary 2.4. By Lemma 2.2,

hc;(x) = hyy(x) € I(H) and hg(y) = hik(y) € I(K).
Since I(H) N I(K) = @, it follows that hg(x) # hg(y). Therefore,
hg(z) = hg(x + y) = min{hg(x), hg(y)} = min {hy(x), hg®)}
< min {hy, g ®), by, O}
< hpygE+y) = hyyg (2).
Consequently, H + K is pure in G. Since HN K = 0 by Corollary 2.4, it follows that

H+K=H®K, and fy, g (k) = fiy(k) + fx(k). Therefore, I(H + K) = I(H) U I(K).

If B is a basic subgroup of G, then fg(n) = f5(n) for all nonnegative integers n.
Thus, if G has no elements of infinite height, then I(G) = I(B). Moreover, since B
is a direct sum of cyclic p-groups, I{B) consists of those k for which one of the
summands of B has order pk*! (see [3, p. 109]). From this observation, it follows
that I(G) consists of all k such that G has a cyclic direct summand of order pk+l,

2.6 Definition. A class # of p-groups will be called residual if
(1) # is closed under isomorphism,
(2) # is closed under finite direct sums, and

(3) if G € # and X c I(G), then there exists a pure subgroup H of G such that
H e £ and I(H) = X.

Examples of residual classes of p-groups are (a) the class of all direct sums of
cyclic p-groups, (b) the class of all p-groups without elements of infinite height,
(c) the class of all bounded p-groups, (d) the class of all closed (torsion-complete)
p-groups.

2.7 Definition. Let # be a residual class of p-groups. For any p-group G,
define

$(G; ) = {1(A) | A is a pure subgroup of G and A € &} .
From Definitions 2.6 and 2.7 and Lemmas 2.3 and 2.5, we obtain the main result

of this section.

2.8 THEOREM. S(G; ) is an ideal in the Boolean algebra of all subsets of
I(G).

It is obvious that S(G; #) is invariant under isomorphism of p-groups. That is,
if G = H, then S(G; ) = S(H; R).

It is useful to note a trivial consequence of Definition 2.7.
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2.9 LEMMA. If H is a pure subgroup of G, then I(H; &) C I(G; &#).

The particular residual class in which we are interested is the class Z of all
closed p-groups. With this understood, it is possible to write S(G) instead of
S (G; ) without danger of confusion. Moreover, the only groups henceforth con-
sidered are groups without elements of infinite height.

3. FIRST EXISTENCE THEOREM

In this section, we give a method of constructing for any basic group B and any
ideal & in P(I(B)) a group G without elements of infinite height, such that J(G) is
the given ideal #. Moreover, if & contains all finite subsets of I(B), then B is a
basic subgroup of G.

Let B = Z, ¢, @ B;, where B; is a direct sum of cyclic groups of order pitl
(or B; = 0). Note that

IB) = {icew|B;#0}.
Let B denote the closure (or torsmn completion) of B, that is, the torsion subgroup
of the complete direct sum 21 w @ B;. The elements of B can be regarded as in-
finite sums Zje b;, where b; € B;, and O(b;) (the order of b;) has a bound inde-
pendent of i. This representation of the elements of B is unique, once the decom-
position B = Z @ B; is specified. Define a mapping

8: B — P(I(B))

by
(1) 5(Z1;) = {ie1®)|b;#0}.

The definition of & naturally depends on the decomposition B = Z® B;. However
we shall assume that a decomposition is given and fixed once and for all

For an ideal < of P(I(B)), define
(2) 6(#) = {xeB|ox)e #}.

3.1 THEOREM. @(;ﬁ) is a pure subgroup of B,and S(G(F)) = S
Proof. If x,y € &(#), then
d(x - y) c 8(x) U b(y) € 4.
Hence X -y € 8(F). Therefore, &(¥) is a subgroup of B. Suppose that x € B and

p x € 6(), that is, 6(pkx) € 4. Let x = Zb;, where b; € B;. Define c; = b; if
P b # 0, and c; = 0 otherwise. Let y = Z c;. Clearly, y € B and

o(y) = 6(p¥x) € &,

so that y € ®(#). Moreover, pXy = pXx. This shows that & (&) is pure in B. For
I € 4, define

—B-I: {X€§|5(X)CI}.
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Clearly, B c (). Moreover, By = §((I)), where (I) denotes the principal ideal in
P(I(B)) generated by I. Thus, By is a pure subgroup of B, and hence it is a pure
subgroup of ®(&). Moreover,

— —_ *
B;=BNX @ B;

is the torsion subgroup of Z}¢; @ B;. That is, B; is the closure of By = Z;¢; ® B,.
Therefore, I = I(B) = I(By) € S(®(#)). This proves that & c I(&(#)). To reverse
the inclusion, it suffices to prove the following fact: If I € J(®(#)), then there
exists x € ®&(#) such that 6(x) D I. Suppose that I= {il, i,, }, where

i} <ip < ---. Since I € JI(G(¥)), there exists a closed pure subgroup H of &(¥)
such that I(H) = I. Hence, for each k> 1, there exists a yi € H such that pyx = 0
and hy;(yy) = hg(yy) = ix. Consequently,

Yk = E bj,k’
i2 ik

where b; . € By, pb; i =0 for all j, and bik,k # 0. Define the sequence x,, X,, ---
inductively by the rule that x; = y;, and for k> 1,

From this definition it is clear that iy, ip, -+, ix are in 6(xy), and x3, x5, *-- con-
verges to an element x € B. Since H is closed, x € Hc ®(#). Moreover, I c 6(x).
This completes the proof of the theorem.

3.2 COROLLARY. Let J= Uleﬂ 1. Then ZJEJ @ Bj is a basic subgroup of
s().

Proof. If x € Zjeg @ Bj, then 8(x) is a finite subset of J. Hence,
n
ox) c U 1p @ e ).
k=1

Therefore 6(x) € &, and x € 8(¥#). Thus, Zjey @ Bj is a subgroup of &(¢). It suf-
fices to prove that 8(F)/ 2Zjes @ Bj is divisible. Since B/B is divisible, and since
if x € ®&(#) the representation x = Zies(x) b; (0(x) € #) is unique, this result fol-
lows by a standard argument.

The following fact is an immediate consequence of Corollary 3.2.

3.3 COROLLARY. If ¢ contains all finite subsets of 1I(B), then B is a basic
subgroup of G(F).

As an application of Theorem 3.1, we can give an example of two primary groups
that have the same basic subgroup, are quasi-isomorphic, but are not isomorphic.
(The question whether such groups exist was raised by Professor L. Fuchs at the
New Mexico State University Conference on Abelian Groups in June, 1962.) For the
purpose of this construction, let B be a standard basic group, that is, let fx(k) = 1
for all k € w. Let E denote the set of all finite even ordinals, and let O be the set
of all finite odd ordinals. Define
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{scw| sn o is finite},

&
()
I

N
o
I

{scw| SN E is finite} .

Then ®(#.) consists of all Z; -, b; in B such that b; = 0 for almost all odd i, and
8(#o) consists of all Z; -~ b; in B such that b; = 0 for almost all even i. Itis
obvious that p®(J,) is isomorphic to &(#,). Thus, &8(F;) and &(F.) are quasi-
isomorphic. However, these groups are not isomorphic, since I(®(F,)) = #; and
S(e(g) =o,.

4, SECOND EXISTENCE THEOREM

In the remainder of the paper, we consider only groups that have a standard
basic subgroup, that is, groups G such that f5(k) = 1 for all k € w. All of the re-
sults that we obtain are valid more generally for unbounded groups G such that
fG(k) < 1 for almost all k. This generalization is trivial and only requires slightly
more elaborate notation.

The following notation will henceforth be standard:
B= 2 @{b}, o) =rp™,
i<w
denotes a standard basic group, and B is the closure of B. The notation 6(x) and
& (#) introduced in Section 3 will refer to this decomposition of B.

The ideals in which we shall be most interested are those containing all finite
subsets of w. Such ideals will be called free. It follows from Corollary 3.3 that if
g is a free ideal, then B is a basic subgroup of &(#). In this case B/ &(¥) is
divisible.

The problem to be considered is the following: For a given ideal ¢, is there a
pure subgroup G of B such that I(G) = 4, and B/G has a rank one? The following
lemma, useful in this investigation, is well known (see [3, p. 94]).

4.1 LEMMA. If K is a pure subgvoup of G, then the natuval mapping of G|p]
into (G/K)|[p] induces an isomorphism

G[pl/K[p] = (G/K)[p].

4.2 THEOREM. Let 4 be a maximal (proper) ideal of P(w). Then B/ &(.4)
has rank one.

Proof. By Lemma 4.1, it is sufficient to prove that B[pl/ & (#) [p] is one-
dimensional. For a subset K of w, define

ieK
Then every element x € B[p] has a unique representation

X = X¢p + 2%, + -+ (p-1)x
Kl K, p )Kp-l’
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where K;, K3, -++, K,_) are disjoint subsets of w. Moreover, if x £ & (), then
there exists an r (1<r<p-1) such that K, £ . Suppose that x and y are in
B[p] and not in ®(#). Let

X =X +2xKZ+---+(p—1)xK L’

P_

y =Xy, + ZXL2+ v+ (p - 1)XLP_1

Suppose that K.. £ A and L, £ 4. Choose an integer t such that rt=s (mod p).
Then

K, NL,Ndx-y) = P.

Since . is maximal, it follows that 0(tx - y) € 4 and tx - y € 8(#)[p]. This shows
that B[pl/ ®(#) [p] is one-dimensional and proves the theorem. (The group G(.#)
can be considered as the torsion subgroup of an ultraproduct of the cyclic factors of
B (see [2]). It is easy to give'a proof of Theorem 4.2 based on the fundamental
theorem of the first-order language of ultraproducts (Theorem 2.2 of [2]).)

It follows in particular from Theorem 4.2 that there are 2° nonisomorphic pure
subgroups G of B such that B € G and B/G = Z(p®), since there are 2° free,
maximal ideals in P(w) (see [4]), and if .# and .# are distinct, free, maximal
ideals, then ®&(.#) is not isomorphic to (55(./!’) (because o(@s(ﬂ)) = Jl # N =
«S((Si(e/")))

We shall prove shortly that for a group of the form & (J), B/ ®(¥) has rank one
only if 4 is a maximal ideal. To obtain this result we use a special case of a lemma
to be used in the proof of the main result of the next section.

4.3 LEMMA. Let A be a pure, closed subgvoup of B. Let z € B[p]. Then there
exists an x € A[p] such that 6(z - x) N I(A) = .

Proof. Let I(A) = {iy, iz, +--}, where i < ip < ---. By Lemma 2.2, there exist
Y1, ¥2, *** in A[p] such that hg(yy) = ha(yy) = ix. Consequently,
Vi = 2 uj kP’ bj,
i>ik
where U i is an integer and p does not divide uik,k° Without loss of generality, it
can be assumed that Ui Lk = 1. Suppose that
2 v pJ bj,
jEW

where vj is an integer. A sequence xi, Xp, --- of elements of A[p] can be defined
by induction such that

j
2 w; 1 0’bj,
jew

where the w; o are integers such that W ﬂ =W  for k< ¢ and j< iy, and
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It is clear that the sequence x, x;, *** converges in the p-adic topology of B to an
element x of order p. Since A is closed, x € A, If

E wJprJ’
jew
then w; = Vi for all k. Hence, 8(z - x) N I(A) = 0.

4.4 LEMMA. Let & be anideal in P(w). Let A be a pure, closed subgroup of
B. Define § = {R N I(A)| R € &}, so that g is an ideal of P(I(A)). Then

|(Alp] + (£ [p)/ 6(Hpl| > [PEAN/F |-

Proof. Let {R.|t € T} be a set of representatives of the classes of P(I(A))/ 4 .
Thus, Ry C I(A) for all t, and if s # t, then

[Ry N (I(A) - RG] U [Rg N(I(A) -R)] £ 4 .

Moreover, |T[ |P(I(A))/£ [ By Lemma 4.3 there exists, for each t € T, an ele-
ment x, € A[p] such that 6(x,) N I(A) = R;. If t# s, then

6(xs - x¢) D [R¢ N (I(A) - Rg)] U [Rg N (I(A) - Ry)].
Therefore, 6(xg - x) £ 4, and x5 - x¢ £ ®(F). This shows that

[(alp] + &(F)[p])/ &(#)[p]]| > |T],

which proves the lemma.

In the proof of Lemma 4.4, if s# t and R g and R; do not belong to 4, then
O(uxs - vx¢) £ < unless uxg = vX¢ = 0. From this remark, it follows that if
P(I(A)) /# contains more than two elements, then (A[p]+ &(#)[p])/ & (#)[p] is not
one-dimensional.

4.5 THEOREM. Let  be an ideal of P(w) such that the rank of B/ &(¥) is
one. Then ¥ is a maximal proper ideal of P(w).

Proof. If & is not maximal, then P(w)/& contains at least two nonzero ele-
ments. In this case, B[p]/®(#)[p] has dimension greater than one. Thus, by
Lemma 4.1, the rank of B/® (#) (which equals the dimension of (B/® (#))[p]) is
greater than one.

5. THIRD EXISTENCE THEOREM

We return to the problem of constructing pure subgroups G of B for which B/G
has rank one and S (G) is a prescribed ideal. The notation of the last section is
continued. In particular, B denotes a standard basic group.

5.1 LEMMA. Let BCc HC B. Let P C Blp] be such that H[p] c P. Then theve
exists a pure subgroup G of B such that Hc G and G[p] = P.

Proof. Let 7 be the natural homomorphism of B onto B/B. Let K = 7(P + H).
There exists a subgroup L of B/B such that L is divisible, L. D K, and L[p] = K[p]
(see [3, p. 66]). Let G = 7~1(L). Clearly, G is pure in B, G DH, and G[p] D> P.

If x € G[p], then 7(x) € L[p] = K[p]. Hence, n(x) = 7(y) + n(z), where y€P, z €H.
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Consequently, x - (y + 2) =w € BC H, so that x -y =z + w € H. Moreover,
p(z + W) = p(x - y) = 0. Thus, z + w € H[p] € P. Therefore, x € P.

The following lemma is of some interest in its own right. The proof uses a
technique introduced to abelian group theory by Crawley in [1].

5.2 LEMMA. Let V be a vector space over a field F. Suppose that ¢ is an
infinite cardinal number. Let {Wg | £ < B} be a family of subspaces of V indexed
by the cavdinal number B < o, such that dim Wg > o for all § < 3. Then theve
exists a subspace U of V such that Up W for all £ < B, and V/U is one-
dimensional.

Proof. Let e+ 0 be in V. We prove by induction the existence of a sequence
{x,; | £ < B} of elements of V with Xt € Wg, such that the space Uﬁ spanned by
{e-x¢| £ < B} does not contain e. Choose x; € W, so that {xg, e} is linearly
independent. Then the space U; spanned by e - x5 does not contain e. Assume
that the elements have been specified for n < £ (where £ is an ordinal less than
B) in such a way that the spaces spanned by {e - Xp | n <€} (€< &) do not contain
e. Then the space Uz spanned by {e - x5 | 7 < £} does not contain e. Moreover,
the space Ug + Fe has dimension at most [5 I + 1. Since B is a cardinal number
and & < B, it follows that

lEl+1<B+1<e+1 =a<dim We.
Hence Ug + Fe p W¢. Choose xg in Wg so that x¢ £ Ug + Fe. Then
e £Ug + Fle - xg).

Consequently x; satisfies the conditions of the inductive definition. Let Ug be the
subspace of V spanned by {e - Xg | £ <B}. Then e ¢ Ug, while e - x¢ € Ug for all
& < B. Let U be a subspace of V that is maximal with respect to the properties
UD Ug and e £ U. Then V/U is one-dimensional and x¢ ¢ U for all £ (since
otherwise e = x¢ + (e - x¢) € U). Thus, U W¢g for all & <.

5.3 COROLLARY. Let V be a vecltor space over the field ¥. Suppose that o
is an infinite cavdinal number. Let Uy be a subspace of V, and let {WS | £ < g}
be a family of subspaces of V indexed by the cardinal number B < o, such that
dim [(W¢ + Ug)/Ugl > a for all § < B. Then theve exists a subspace U of V such
that U D Uy, Up Wg for all £ < B, and V/U is one-dimensional.

5.4 THEOREM. Let < be a free ideal in P(w) such that evevy nonzevo prin-
ctpal ideal of P(w)/# has the cavdinal numbey c¢. Then therve exists a puve sub-
group G of B such that B C G, B/G = Z(p™), and F(G) = 4.

Proof. Apply Corollary 5.3, where V = B[p], F is the prime field of character-
istic p, @ = ¢, Ug = &(#)[p], and the family {Wg | £ < B} consists of all subspaces
of B[p] of the form A[p] (A a pure, closed subgroup of B such that I(A) £ 4). To
show that the hypotheses of Corollary 5.3 are satisfied, observe that the cardinal
number of the set of all pure, closed subgroups of B is at most ¢ (since each one is
uniquely determined by a countable subgroup of B and there are no more than ¢
countable subsets of B). Consequently, it is possible to index the set of all such
A[p] by a cardinal number B < ¢. By Lemma 4.4, if A is a pure, closed subgroup
of B, then

[(Alp] + &(#)[p])/ & () [p]] > |PAA)Y/ & |,
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where 4 ={I(A)Nn R| R € #}. Since I(A) ¢ 4, it follows that P(I(A)) /4 is iso-
morphic to a nonzero principal ideal of P(w)/#, so that by assumption its cardinal
number is c¢. Consequently,

dim [(Wg + Up)/Upl = [(Wg + Up)/Up| = ¢ .

Thus, the hypotheses of Corollary 5.3 are all satisfied, and there exists a subspace
U of B[p] with &(#)[p] c U, dim[B[pl/U]l=1, and U p A[p] if A is a pure,
closed subgroup of B such that I(A) £ 4. By Lemma 5.1, there exists a pure sub-
group G of B such that B c ®(#) c G and G[p] = U. By Lemma 4.1 and the fact
that & is a free ideal, B/G = Z(p®). By Lemma 2.9 and Theorem 3.1,

I = (6(F)) c I(G).

On the other hand, if A is a pure, closed subgroup of G, then I(A) € 4. For if
I(A) £ &, then G[p] = U A[p], which is a contradiction. Consequently, I(G) = #.

It is natural to ask what ideals satisfy the condition of Theorem 5.4; that is, for
what ideals & of P(w) is it true that every nonzero principal ideal of P(w)/< has
cardinality ¢? Using some known results on Stone-Cé&ch compactification, we can
show that this condition is equivalent to the fact that P(w)/«# has no atoms.

It is known (see [4, p. 133]) that if N is a countably discrete space, and A is an
infinite closed subset of BN - N (where BN is the Stone-Cé&ch compactification of
N), then there exists a closed subspace B of A such that B is homeomorphic to
BN. If this fact is translated into algebraic terms, it is equivalent to the statement
that if 7 is any free ideal in P(w) such that P(w)/#4 is infinite, then there exists
an ideal o D 4 such that P(w)/o¢ is isomorphic to P(w). In particular, it follows
that |P(w)/4|= ¢. If P(w)/< has no atoms, then every nonzero principal ideal of
P(w)/«# is infinite. Since every such principal ideal is isomorphic as a Boolean
algebra to P(w)/# for a suitable ideal # D ¢, it follows that the nonzero principal
ideals of P(w)/«# have cardinality c¢. Conversely, it is obvious that if every non-
zero principal ideal of P(w)/# has cardinality ¢, then P(w)/# has no atoms.

5.5 COROLLARY. Let  be a free ideal in P(w) such that P(w)/F has no
atoms. Then theve exists a pure subgroup G of B with B C G such that
B/G = Z(p”) and I(G) = 4.

A particularly interesting case in which P(w)/.# has no atoms is that where %
is the ideal of all finite subsets of w. In this case the group G satisfying the condi-
tions Bc G ¢ B, G pure in B, B/G = Z(p®), S(G) = 4 has the property that it is
almost indecomposable. Specifically, if G = H® K, then either H or K is finite.
This follows from an observation of Crawley that if G is a pure subgroup of B such
that B/G has rank one, then for any direct decomposition G = H® K, either H or
K is closed. Indeed,

(H ® K)/G £ H/H® K/K,

so that either H=H or K = K. If also $(G) consists of only finite sets, then every
pure, closed subgroup of G is finite. Groups with this “indecomposability” property
have been constructed previously by Crawley and by Pierce (see [7, p. 308]). (The
construction given by Crawley in [1] to obtain a pure subgroup G of B having no iso-
morphic proper subgroups can easily be modified so that the group G also satisfies
the condition B/G = Z(p®). Such a group G cannot have an infinite closed direct

summand, since every infinite closed group contains a subgroup isomorphic to B.
This observation is due to John Irwin.)
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6. AN EXAMPLE

Many ideals & in P(w) fail to satisfy the condition that P(w)/<# has no atoms.
For such ideals, we do not know whether there exist pure subgroups G of B (where
B is standard) such that B/G = Z(p®) and $(G) = 4. Particularly interesting is the
case in which & is .# N ., the intersection of two maximal ideals. For such
ideals, the method used to prove Theorem 5.4 may break down in an essential way.
The most important feature of the proof of Theorem 5.4 is the construction of a
vector space U between 6(#)[p] and B[p] such that A[p] U for every pure,
closed subgroup A of B with I(A) ¢ &. It is easy to see that if & is the intersec-
tion of two distinct maximal ideals, then B[p]/® (%) [p] is two-dimensional. Thus it
is not surprising that an extension U of &(%)[p], having the property A[p] ¢ U for
all pure, closed A C B with I(A) £ £, may not exist in this case. In this section we
give an example of such an ideal 4 and show that, nevertheless, for this particular
ideal there exists an extension G of &(¢) that is pure in B and satisfies
B/G = Z(p®) and $(G) = S. Thus, although it is possible that for any free ideal
¢ there exists a pure subgroup G of B such that B/G = Z(p®) and $(G) = 4, such
a group cannot always be constructed by suitably extending the socle of ®(#). The
following example is a modification of a group constructed by Hill (see [5, p. 311]).

Example. Let E={2n|new}, O={2n+1]| new}. Let #; be a free maxi-
mal ideal in P(E) such that

{nl n=2 (mod 4)} € M.

Define 4 = {A' l A e./lfl}, where A' = {n -3 | n €A} N w. Then A4 is a free
maximal ideal in P(O) such that

{n| n=3 (mod4)} € 4,.
Let
F={AUB|Ae;, Beu,}.

Then £ is a free ideal in P(w), and & is the intersection of the two maximal ideals
(#7, O) and (A, E). Let

B= 2, @ {b;}, where O(b;) = pitl.
i<w

As in Section 4, if S C w, we denote by xg the element Z;cg pibi of B[pl.

Suppose that &(.#)[p] is properly contained in U c B[p]. Then there exist dis-
joint sets Sy, S,, -, Sp_1 C E, and T, T, ---, Tp—l C O such that

(xg, + X)) + 2(x5, + X ) + =+ + (p - D(x Sp-1* pr_l) €U,
and
Sl USZU"' USP_I UT]. UT2U e U TP—l’é Z.
For convenience, let

SO = E—(SIUSZU"'U SP_]_) and T0=O—(T1UT2U"‘U TP_]_).
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Then there exists exactly one j (0 < j<p - 1) and exactlyone k (0 <k<p - 1)
such that SJ- £ & and Ty £ 4. Moreover, j and k are not both zero. It follows that
jXg + kxp € U, where j and k are not both zero. If k = 0, then j # 0 and it is easy
to see that U contains xg for all S ¢ E. Consequently, U D B_[p], where B, is the
pure, closed subgroup of B that is the closure of the subgroup generated by

{b,, | n< w}. Evidently, I(B_) = E ¢ 4. Thus, we can suppose that k # 0. Let A
be the closure in ﬁ___of the subgroup K of B generated by {jp3b2n+ kb, _3 l n> 2}.
Then A is pure in B, since K is pure in B. Moreover, K is a basic subgroup of A,
and since 0 < k < p, it follows that I(A) = O ¢ #. Notice that every element of

Alp] is of the form

jXe + kx + 2(jxe + kx + oee- + - 1)(x + kx
@ Sy 511) @ S, 512) (p ) Sp-l Si)-—l)’

where S3, S, -+, S,_; are disjoint subsets of E and Sj = {n - 3] n € Si}. It
S; €4, then S; € _F,, so that

x

s. + kxg, € 8(H[plcU.

1 1

If S; £ #),then E - §; €e#7,and O - 8{ = (E - S;)' €4,. Therefore,

jxg + kxgi = (jxg + kxg) - (ixg_g + kxg_g1) € U+ &(F)[p] = U.
1 1 1 1

Consequently, A[p] € U. To summarize, we have shown that for any group U with
& (%) [p] properly contained in U < B[p], there exists a pure, closed subgroup A of
B with I(A) £ 4, such that A[p] € U. The rest of the example will be devoted to
constructing a pure subgroup G of B with ®&(#) C G, satisfying B/G = Z(p®) and

- 3(G) = <.

For n > 1, define

4(k -
an
Note that O(u,) = p*™, and
(1) u, - p4.un+1 = by,_3 + Pby, € BC 6(¥).

Moreover, since 8(p3u;) = {4k | k> 1}, it follows that p3u; £ ®(#). Define G to
be the subgroup of B generated by {@Lﬂ), uj, up, *=-t. It follows from (1) that
G/®(¥) = Z(p™). Hence, G is pure in B. Moreover,

n

B/®(#) 2 Br/Bg N 8(F) @ Bo/Bg N 6(H)

Il

Br/8 i) @ By/G(4,) = Z(p°) @ Z(p™)

by Lemma 4.3. (B, is the closure of Zieg @ {bi}, 8 (A7) is the pure subgroup
of BE constructed from the ideal .#; by a definition analagous to (2) of Section 3,
and Bg and ®o(4,) are similarly defined.) It follows that B/G = Z(p™). Since"

& () is a pure subgroup of G, we have < = I(8(#)) € S(G). To show that

3(G) = 4, it is sufficient to prove that O £ I(G) and E £ S(G).

Suppose that O € I(G). Then by Lemma 4.3, there exists an x € G[p] satisfying
O C 6(x). By (1) we can write x = z + ru,, where z € &(), n> 1, and r is an
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integer not divisible by p4. Since px = 0, we see that rpup, = —bz € G(F). Hence by
(1), rpu, = 0. Therefore, n =1 and p3 divides r. Write r = p3s, where p does not
divide s. Then

X=2+8 2J p4k'1(b4k_3+pb4k) =z+s 2 p*p
k>1 k> 1

4k*

Thus, O c 6(x) c 8(z) U {4k | k> 1}. This implies that O C 6(z) € &, which is a
contradiction. Consequently, O £ J(G).

Suppose that E € J3(G). Let H be a pure, closed subgroup of G such that
I(H) = E. Then there exist elements w,, € H of the form
k-4
w, = 22 Ay WP+ by, + 2o Ay P by
k< 4n K> 4n

such that the closure in B of the group generated by the wn, for n> 1 is contained
in H. Note that
4n-2

P w =

4n-2 . 4n-
n a4n-2,np b4n

2
2t 3451 ,0P bgn_1+DP b4n

k-2
+ 20 ay P by .

By induction it is possible to construct a sum of the elements p‘m'z‘wn that has the
form

- - 4n - 4n-2
2 (cnp4n 5b4n-3*‘enp4n 4b4n-2+fnp " 3b4n-1+dnp n b4y,
n>2

where

d, =1 if ¢, =0 (mod pJ), and
(2)
d, =0 otherwise.

Since # contains the set {n | n=2 (mod4)} U {n | n = 3 (mod 4)}, it follows that
there exists an element

(3) x = 27 (enp*™ by, 3+ d,p ™ %byy)
n>2

with the ¢, and d,, related by (2), such that x € H+ &(#) C G. Note that O(x) < p3.
By an argument like the one given in the previous paragraph, this means that x can
be represented in the form x = z + rpu; (z € 8(#)). Thus, we have the identity

4n-2 4n-5
by -

-3 4n-2
@ z+ 2 (rp*™® b, 3+ Sp b,) = 22 (cpp n

n>1 ‘ n> 2

b4n-3*'dnp

Let 6(x) = A U B, where A € .4}, B € .4,. By the definition of .#,, it follows that
A' €.#4,. Therefore, A' UB € .4;,. Since {k ew | k=1 (mod 4)} £ .#,, there
exists an m € w suchthat m £ A'U B and m =1 (mod 4). Let n = (1/4)(m + 3).
Then 4n £ A and 4n - 3 £ B. Hence by (4),
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4n-3 4n-5
(5) rp b4n—3 = cnp b4n-3’
(6) rpf®-2b, = d p*"-Zb, .

By (2), if p> divides c,, then d, = 1. Therefore, r = 1 (mod p3), by (6). However,

it then follows from (5) that p3 cannot divide ¢,- On the other hand, if 33 does not
divide c_, then d,, = 0. Thus, by (6), p> divides r. Then by (5) ¢, p** 2by,_3 =0,
so that p3 divides c,. This contradiction proves that E ¢ I(G). Therefore,

I(G) = 4.
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