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MASS MINIMIZERS AND CONCENTRATION

FOR NONLINEAR CHOQUARD EQUATIONS IN RN

Hongyu Ye

Abstract. In this paper, we study the existence of minimizers to the fol-

lowing functional related to the nonlinear Choquard equation:

E(u) =
1

2

∫
RN
|∇u|2 +

1

2

∫
RN

V (x)|u|2 −
1

2p

∫
RN

(Iα ∗ |u|p)|u|p

on S̃(c) = {u ∈ H1(RN ) |
∫
RN V (x)|u|2 < +∞, |u|2 = c, c > 0},

where N ≥ 1, α ∈ (0, N), (N + α)/N ≤ p < (N + α)/(N − 2)+ and

Iα : RN → R is the Riesz potential. We present sharp existence results

for E(u) constrained on S̃(c) when V (x) ≡ 0 for all (N + α)/N ≤ p <
(N + α)/(N − 2)+. For the mass critical case p = (N + α+ 2)/N , we show

that if 0 ≤ V ∈ L∞loc(RN ) and lim
|x|→+∞

V (x) = +∞, then mass minimizers

exist only if 0 < c < c∗ = |Q|2 and concentrate at the flattest minimum

of V as c approaches c∗ from below, where Q is a groundstate solution of
−∆u+ u = (Iα ∗ |u|(N+α+2)/N )|u|(N+α+2)/N−2u in RN .

1. Introduction

In this paper, we consider the following semilinear Choquard problem:

(1.1) −∆u− µu = (Iα ∗ |u|p)|u|p−2u, x ∈ RN , µ ∈ R,

where N ≥ 1, α ∈ (0, N), (N + α)/N ≤ p < (N + α)/(N − 2)+, here (N + α)/

(N − 2)+ = (N + α)/(N − 2) if N ≥ 3 and (N + α)/(N − 2)+ = +∞ if N=1, 2.
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The Riesz potential Iα : RN → R is defined as (see [26])

Iα(x) =

Γ

(
N − α

2

)
Γ

(
α

2

)
πN/22α

1

|x|N−α
, for all x ∈ RN \ {0}.

Problem (1.1) is a nonlocal one due to the existence of nonlocal nonlinearity.

It arises in various fields of mathematical physics, such as quantum mechanics,

physics of laser beams, physics of multiple-particle systems, etc. When N = 3,

µ = −1 and α = p = 2, (1.1) turns to be the well-known Choquard–Pekar

equation

(1.2) −∆u+ u = (I2 ∗ |u|2)u, x ∈ R3,

which was proposed as early as in 1954 by Pekar [25], and by a work of Choquard

1976 in a certain approximation to Hartree–Fock theory for one-component

plasma, see [14], [16]. Equation (1.1) is also known as the nonlinear station-

ary Hartree equation since if u solves (1.1) then ψ(t, x) = eitu(x) is a solitary

wave of the following time-dependent Hartree equation:

iψt = −∆ψ − (Iα ∗ |ψ|p)|ψ|p−2ψ in R+ × RN ,

see [7], [21].

In the past few years, there are several approaches to construct nontrivial

solutions of (1.1), see e.g. [5], [14], [17], [18], [20], [21], [27] for p = 2 and [22], [23].

One of them is to look for a constrained critical point of the functional

(1.3) Ip(u) =
1

2

∫
RN

|∇u|2 − 1

2p

∫
RN

(Iα ∗ |u|p)|u|p

on the constrained L2-spheres in H1(RN ):

S(c) = {u ∈ H1(RN ) | |u|2 = c, c > 0}.

In this way, the parameter µ ∈ R will appear as a Lagrange multiplier and such

solution is called a normalized solution. By the following well-known Hardy–

Littlewood–Sobolev inequality: For 1 < r, s < +∞, if f ∈ Lr(RN ), g ∈ Ls(RN ),

λ ∈ (0, N) and 1/r + 1/s+ λ/N = 2, then

(1.4)

∫
RN

∫
RN

f(x)g(y)

|x− y|λ
≤ Cr,λ,N |f |r|g|s,

we see that Ip(u) is well-defined and a C1 functional. Set

(1.5) Ip(c
2) = inf

u∈S(c)
Ip(u),

then minimizers of Ip(c
2) are exactly critical points of Ip(u) constrained on S(c).
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Normalized solutions for equation (1.2) have been studied in [14], [17]. In this

paper, one of our purposes is to get a general and sharp result for the existence

of minimizers for minimization problem (1.5).

To state our main result, we rely on the following interpolation inequality

with the best constant: For (N + α)/N < p < (N + α)/(N − 2)+,

(1.6)

∫
RN

(Iα ∗ |u|p)|u|p

≤ p

|Qp|2p−2
2

(∫
RN

|∇u|2
)(Np−(N+α))/2(∫

RN

|u|2
)(N+α−(N−2)p)/2

,

where equality holds for u = Qp, where Qp is a nontrivial solution of

(1.7) −Np− (N + α)

2
∆Qp +

N + α− (N − 2)p

2
Qp = (Iα ∗ |Qp|p)|Qp|p−2Qp,

for x ∈ RN . In particular, Q(N+α+2)/N is a groundstate solution, i.e. the least

energy solution among all nontrivial solutions of (1.7). Moreover, when p =

(N + α+ 2)/N , all groundstate solutions of (1.7) have the same L2-norm (see

Lemma 3.2 below).

For p = (N + α)/N , recall from [15] the Hardy–Littlewood–Sobolev inequal-

ity with the best constant:

(1.8)

∫
RN

(Iα ∗ |u|(N+α)/N )|u|(N+α)/N

≤ 1

|Q(N+α)/N |
(2(N+α))/N
2

(∫
RN

|u|2
)(N+α)/N

with equality if and only if

u = Q(N+α)/N , where Q(N+α)/N = C(η/(η2 + |x− a|2))N/2,

C > 0 is a fixed constant, a ∈ RN and η ∈ (0,+∞) are parameters. Then our

first result is as follows:

Theorem 1.1. Assume that N ≥ 1, α ∈ (0, N) and (N + α)/N ≤ p <

(N + α)/(N − 2)+.

(a) If p = (N + α)/N , for any c > 0,

I(N+α)/N (c2) = − N

2(N + α)

(
c

|Q(N+α)/N |2

)2(N+α)/N

and I(N+α)/N (c2) has no minimizer.

(b) If (N + α)/N < p < (N + α+ 2)/N , then Ip(c
2) < 0 for all c > 0,

moreover, Ip(c
2) has at least one minimizer for each c > 0.

(c) If p = (N + α+ 2)/N , then there exists c∗ := |Q(N+α+2)/N |2 such that
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(i) I(N+α+2)N (c2) =

0 if 0 < c ≤ c∗,
−∞ if c > c∗,

(ii) I(N+α+2)/N (c2) has no minimizer if c 6= c∗,

(iii) each groundstate of (1.7) is a minimizer of I(N+α+2)/N (c2∗),

(iv) there is no critical point for I(N+α+2)/N (u) constrained on S(c) for

each 0 < c < c∗.

(d) If (N + α+ 2)/N < p < (N + α)/(N − 2)+, then Ip(c
2) has no mini-

mizer for each c > 0 and Ip(c
2) = −∞.

Remark 1.2. Theorem 1.1 can be viewed as a consequence of [14, Theorem 9]

for p = 2 and [22, Theorem 1]. However, we still state and prove Theorem 1.1

here, using an alternative method, since our result is more delicate and it provides

a framework to our subsequent considerations.

Remark 1.3. (a) Since until now the uniqueness (up to translations) of the

positive solution to (1.7) is only proved for the case α = p = 2, see e.g. [3],

[11] and [13], it follows that if N = 4 and α = 2, then up to translations,

the minimizer of I(N+α+2)/N (c2∗) is unique and there exists no critical point for

I(N+α+2)/N (u) constrained on S(c) for each c 6= c∗.

(b) For N ≥ 3 and (N + α+ 2)/N < p < (N + α)/(N − 2), it has been

proved in [12] that for each c > 0, Ip(u) has a mountain pass geometry on S(c)

and there exists a solution (uc, µc) ∈ S(c) × R− of (1.1) with Ip(uc) = γ(c),

where γ(c) denotes the mountain pass level on S(c).

By Theorem 1.1, p = (N + α+ 2)/N is called the L2-critical exponent for

(1.5). In order to get critical points under the mass constraint for such L2-critical

case, we add a nonnegative perturbation term to the right-hand side of (1.3),

i.e. consider the following functional:

(1.9) E(u) =
1

2

∫
RN

|∇u|2 +
1

2

∫
RN

V (x)|u|2

− N

2(N + α+ 2)

∫
RN

(Iα ∗ |u|(N+α+2)/N )|u|(N+α+2)/N ,

where

(V0) V ∈ L∞loc(RN ), inf
x∈RN

V (x) = 0 and lim
|x|→+∞

V (x) = +∞.

Based on (V0), we introduce a Sobolev space

H =

{
u ∈ H1(RN )

∣∣∣∣ ∫
RN

V (x)|u|2 < +∞
}

with its associated norm

‖u‖H =

(∫
RN

(|∇u|2 + |u|2 + V (x)|u|2)

)1/2

.
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Theorem 1.4. Assume that N ≥ 1, α ∈ (0, N) and (V0) holds. Set

(1.10) ec = inf
u∈S̃(c)

E(u),

where S̃(c) = {u ∈ H | |u|2 = c}. Let c∗ be given by Theorem 1.1.

(a) If 0 < c < c∗, then ec has at least one minimizer and ec > 0.

(b) Let N − 2 ≤ α < N if N ≥ 3 and 0 < α < N if N = 1, 2, then for each

c ≥ c∗, ec has no minimizer. Moreover,

ec =

0 if c = c∗

−∞ if c > c∗.

(c) lim
c→(c∗)−

ec = ec∗ .

We also study concentration phenomena of minimizers of ec as c converges

to c∗ from below. Let uc be a minimizer of ec for each 0 < c < c∗, then, by (1.6)

and Theorem 1.4, we see that
∫
RN V (x)|uc|2 → 0 as c → (c∗)

−, i.e. uc can

be expected to concentrate at the minimum of V . To show this fact, besides

condition (V0), we assume that there exist m ≥ 1 distinct points xi ∈ RN and

qi > 0 (1 ≤ i ≤ m) such that

(V1) V > 0 in RN \ {x1, . . . , xm} and µi := lim
x→xi

V (x)

|x− xi|qi
∈ (0,+∞).

Set q := max{q1, . . . , qm}. Let {ck} ⊂ (0, c∗) be a sequence such that ck → c∗ as

k → +∞.

Theorem 1.5. Suppose that N ≥ 1, α ∈ [N − 2, N) if N ≥ 3 and α ∈ (0, N)

if N = 1, 2, and (V0) and (V1) hold. Then there exist a sequence {yk} ⊂ RN

and a groundstate solution W0 of the following equation:

(1.11) −∆W0 +W0 = (Iα ∗ |W0|(N+α+2)/N )|W0|(N+α+2)/N−2W0, x ∈ RN ,

λ := min
1≤i≤m

{
λi

∣∣∣∣ λi =

(
qiµi
2c2∗

∫
RN

|x|qi |W0(x)|2
)1/(qi+2)}

,

such that up to a subsequence

(1.12) lim
k→+∞

eck
[1− (ck/c∗)2(α+2)/N ]q/(q+2)

=
λ2c2∗(q + 2)

2q

(
N

α+ 2

)q/q+2

and

(1.13)

[
1−

(
ck
c∗

)2(α+2)/N]N/(2(q+2))

uck

·
([

1−
(
ck
c∗

)(2(α+2))/N]1/(q+2)

x+ yk

)
→
[(

α+ 2

N

)1/(q+2)

λ

]N/2
W0

((
α+ 2

N

)1/(q+2)

λx

)
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in L2Ns/(N+α)(RN ) for (N + α)/N ≤ s < (N + α)/(N − 2)+ as k → +∞. Here

W0 is, up to translations, radially symmetric about the origin. Moreover, there

exists xj0 ∈ {xi | λi = λ, 1 ≤ i ≤ m}, such that yk → xj0 as k → +∞.

Remark 1.6. (a) It has been proved in [22] that for α ∈ [N − 2, N) if N ≥ 3

and α ∈ (0, N) if N = 1, 2, each groundstate solution u of (1.11) satisfies

lim
|x|→+∞

|u(x)||x|(N−1)/2e|x| ∈ (0,+∞).

Hence λi ∈ (0,+∞).

(b) By Remark 1.3 (a), W0 = Q(N+α+2)/N if N = 4, α = 2 (see Remark 3.3

below).

The result of Theorem 1.5 is different from that in [19] studying E(u) by

replacing p = (N + α+ 2)/N with p < (N + α+ 2)/N , where one considered

the concentration behavior of minimizers as c→ +∞. Concentration phenomena

have also been studied in [24] and [4] by considering semiclassical limit of the

Choquard equation

−ε2∆u+ V u = ε−α(Iα ∗ |u|p)|u|p−2u in RN .

However, since the parameter is different, we need a different technique to obtain

our result.

The proof of Theorem 1.5 is based on optimal energy estimates of ec and∫
RN |∇uc|2 for each minimizer uc. The main idea to prove Theorem 1.5 comes

from [8], which was restricted to the case of local nonlinearities. But due to the

fact that our nonlinearity is nonlocal and that the assumption imposed on V is

more general than that in [8], the method used in [8] cannot be directly applied

here. It needs some improvements and careful analysis. First, by choosing

a suitable test function, we get that 0 < ec ≤ C1[1 − (c/c∗)
(2(α+2))/N ]q/(q+2) as

c→ (c∗)
− for some constant C1 > 0 independent of c. The lower bound now is

not optimal. The method in [8] which uses the perturbation term
∫
RN V (x)u2 to

remove the local nonlinearity term does not work in our case. To overcome this

difficulty, we notice that if there exists {εc} ⊂ R+ with lim
c→(c∗)−

εc = 0 such that

(1.14) C2 ≤
∫
RN

|∇w̃c(x)|2 ≤ C3,

where w̃c(x) = ε
N/2
c uc(εcx) and C3 > C2 > 0 are two constants independent

of c, then there exist {yc} ⊂ RN , xj0 ∈ {x1, . . . , xm}, a groundstate solution

W0 ∈ H1(RN ) to (1.11) and a constant β > 0 such that εcyc → xj0 and wc(x) :=

w̃c(x+ yc)→ (β)N/2W0(βx) in H1(RN ). Moreover, if

(1.15) lim
c→(c∗)−

1− (c/c∗)
2(α+2)/N

εq+2
c

= 1,
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then

lim
c→(c∗)−

ec
εqc

=
λ2c2∗(q + 2)

2q

(
N

α+ 2

)q/(q+2)

,

which implies that (1.13) holds. So it is enough to prove that (1.14) and (1.15)

hold. However, we cannot directly obtain (1.14) if we just take

εc =

[
1−

(
c

c∗

)2(α+2)/N]1/(q+2)

there. In other words, one should first obtain an optimal energy estimate of∫
RN |∇uc|2 (see Lemma 3.8 below). We succeeded in doing so by noticing that∫
RN |∇uc|2 → +∞ as c→ (c∗)

− and choosing suitable scalings. Such arguments

were also used in [9], [10] (see also [6]) to deal with local equations.

Throughout this paper, we use standard notations. For simplicity, we write∫
Ω
h to mean the Lebesgue integral of h over a domain Ω ⊂ RN . Lp := Lp(RN )

(1 ≤ p < +∞) is the usual Lebesgue space with the standard norm | · |p. We

use “→ ” and “⇀ ” to denote the strong and weak convergence in the related

function space respectively. C will denote a positive constant unless specified.

We use “:=” to denote definitions. We denote a subsequence of a sequence {un}
as {un} to simplify the notation unless specified.

The paper is organized as follows. In Section 2, we determine the best con-

stant for the interpolation estimate (1.6) and give the proof of Theorem 1.1. In

Section 3, we prove Theorems 1.4 and 1.5.

2. Proof of interpolation estimate (1.6) and Theorem 1.1

In this section, we first prove the interpolation estimate (1.6). It is enough

to consider the following minimization problem:

Sp = inf
u∈H1(RN )\{0}

Wp(u),

where

Wp(u) =

(∫
RN

|∇u|2
)(Np−(N+α))/2(∫

RN

|u|2
)(N+α−(N−2)p)/2

∫
RN

(Iα ∗ |u|p)|u|p
.

Lemma 2.1 ([22, Lemma 2.4]). Let N ≥ 1, α ∈ (0, N), p ∈ [1, 2N/(N + α))

and {un} be a bounded sequence in L2Np/(N+α)(RN ). If un → u almost every-

where in RN as n→ +∞, then

lim
n→+∞

(∫
RN

(Iα ∗ |un|p)|un|p −
∫
RN

(Iα ∗ |un − u|p)|un − u|p
)

=

∫
RN

(Iα ∗ |u|p)|u|p.
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Lemma 2.2. (a) ([29], Brezis Lemma) Let Ω be an open subset of RN and

let {un} ⊂ Lp(Ω), 1 ≤ p <∞. If {un} is bounded in Lp(Ω) and un → u almost

everywhere on Ω, then

lim
n→+∞

(|un|pp − |un − u|pp) = |u|pp.

(b) ([29], Vanishing Lemma) Let r > 0 and 2 ≤ q < 2∗. If {un} is bounded

in H1(RN ) and

sup
y∈RN

∫
Br(y)

|un|q → 0, n→ +∞,

then un → 0 in Ls(RN ) for 2 < s < 2∗.

Lemma 2.3. Let N ≥ 1, α ∈ (0, N) and (N + α)/N <p<(N + α)/(N − 2)+,

then Sp has a minimizer Qp ∈ H1(RN ), where Qp is a nontrivial solution of

equation (1.7) and

Sp =
|Qp|2p−2

2

p
.

Proof. The lemma can be viewed as a consequence of Proposition 2.1 in [22]

and Theorem 9 in [14], but we give an alternative proof here. The idea of the

proof comes from [28] (see also [2]), but some details are delicate.

Since Wp(u) ≥ 0 for any u ∈ H1(RN ) \ {0}, Sp is well-defined. Let {vn} ⊂
H1(RN ) \ {0} be a minimizing sequence for Sp, without loss of generality, we

can assume that ∫
RN

|∇vn|2 =

∫
RN

|vn|2 = 1.

Up to a subsequence, let

δ := lim
n→+∞

sup
y∈RN

∫
B1(y)

|vn|2.

If δ = 0, then by Lemma 2.2, vn → 0 in Ls(RN ), 2 < s < 2∗. Hence by the

Hardy–Littlewood–Sobolev inequality (1.4),

Wp(vn) =
1∫

RN

(Iα ∗ |vn|p)|vn|p
→ +∞,

which is a contradiction. So δ > 0 and there exists a sequence {yn} ⊂ RN such

that

(2.1)

∫
B1(yn)

|vn|2 ≥
δ

2
> 0.

Up to translations, we may assume that yn = 0. Since {vn} is bounded in

H1(RN ), by (2.1), there exists vp ∈ H1(RN )\{0} such that vn ⇀ vp in H1(RN ).
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Then by the Brezis Lemma and Lemma 2.1, we have

Sp ≤Wp(vp)

≤ lim
n→+∞

Wp(vn)

∫
RN

(Iα ∗ |vn|p)|vn|p∫
RN

(Iα ∗ |vp|p)|vp|p

− Wp(vn − vp)

∫
RN

(Iα ∗ |vn − vp|p)|vn − vp|p∫
RN

(Iα ∗ |vp|p)|vp|p



≤Sp lim
n→+∞


∫
RN

(Iα ∗ |vn|p)|vn|p −
∫
RN

(Iα ∗ |vn − vp|p)|vn − vp|p∫
RN

(Iα ∗ |vp|p)|vp|p

 = Sp,

i.e. Wp(vp) = Sp. Moreover, |∇vp|2 = |vp|2 = 1 and Sp = 1/
∫
RN (Iα ∗ |vp|p)|vp|p.

Therefore, for any h ∈ H1(RN ), d
dt

∣∣
t=0

Wp(vp + th) = 0, i.e. vp satisfies the

following equation:

−[Np− (N + α)]∆vp + [N + α− (N − 2)p]vp = 2pSp(Iα ∗ |v|p)|vp|p−2vp,

in RN . Let vp = (1/pSp)
1(2p−2)Qp, then Qp is a nontrivial solution of (1.7) and

Sp = |Qp|2p−2
2 /p. �

Next we give the proof of Theorem 1.1. For any u ∈ H1(RN ), set

A(u) :=

∫
RN

|∇u|2, B(u) :=

∫
RN

(Iα ∗ |u|p)|u|p,

then Ip(u) = A(u)/2 − B(u)/(2p). It follows from (1.6) and (1.7) that for

(N + α)/N < p < (N + α)/(N − 2)+,

(2.2) B(u) ≤ p

|Qp|2p−2
2

A(u)(Np−(N+α))/2|u|N+α−(N−2)p
2

with equality for u = Qp given in (1.7), moreover,

(2.3) A(Qp) =
1

p
B(Qp) = |Qp|22.

Lemma 2.4. Let N ≥ 1 and α ∈ (0, N).

(a) If (N + α)/N < p < (N + α+ 2)/N , then Ip(u) is bounded from below

and coercive on S(c) for all c > 0, moreover, Ip(c
2) < 0.

(b) If p = (N + α+ 2)/N , then

I(N+α+2)/N (c2) =

0 if 0 < c ≤ c∗ := |Q(N+α+2)/N |2,
−∞ if c > c∗.
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(c) If (N + α+ 2)/N < p < (N + α)/(N − 2)+, then Ip(c
2) = −∞ for all

c > 0.

Proof. (a) For any c > 0 and u ∈ S(c), by (2.2), there exists C :=

(cN+α−(N−2)p)/|Qp|2p−2
2 such that

(2.4) Ip(u) ≥ A(u)− CA(u)(Np−(N+α))/2

2
.

Since (N + α)/N < p < (N + α+ 2)/N , 0 < Np − (N + α) < 2. Then (2.4)

implies that Ip(u) is bounded from below and coercive on S(c) for any c > 0.

Set ut(x) := tN/2u(tx) with t > 0, then ut ∈ S(c) and

(2.5) Ip(u
t) =

t2

2
A(u)− tNp−(N+α)

2p
B(u) < 0 for t > 0 small enough,

since 0 < Np− (N + α) < 2, which implies that Ip(c
2) < 0 for each c > 0.

(b) When p = (N + α+ 2)/N , Np − (N + α) = 2, similarly to (2.4) and

(2.5), we have

I(N+α+2)/N (u) ≥ A(u)

2

[
1−

(
c

c∗

)(2(α+2))/N]
≥ 0 if 0 < c ≤ c∗,

and I(N+α+2)/N (c2) ≤ I(N+α+2)/N (ut)→ 0 as t→ 0+ for all c. Then, if 0 < c ≤
c∗, I(N+α+2)/N (c2) = 0.

If c > c∗, set Qt(x) := (ctN/2/c∗)Q(N+α+2)/N (tx), then by (2.3),

I(N+α+2)/N (Qt) =
c2t2

2c2∗

[
1−

(
c

c∗

)(2(α+2))/N]
→ −∞ as t→ +∞,

then I(N+α+2)/N (c2) = −∞ for c > c∗.

(c) If (N + α+ 2)/N < p < (N + α)/(N − 2)+, then Np − (N + α) > 2,

hence by (2.5), we have Ip(u
t) → −∞ as t → +∞, so Ip(c

2) = −∞ for all

c > 0. �

Lemma 2.5. If (N + α)/N < p < (N + α+ 2)/N , then

(a) the function c 7→ Ip(c
2) is continuous on (0,+∞);

(b) Ip(c
2) < Ip(α

2) + Ip(c
2 − α2) for all 0 < α < c < +∞.

Proof. For any c > 0 and u ∈ S(c), we have θu ∈ S(θc) with θ > 0 and

(2.6) Ip(θu)− θ2I(u) =
θ2 − θ2p

2p
B(u).

(a) If lim
n→+∞

cn = c, let {un} ⊂ S(c) be a minimizing sequence for Ip(c
2),

then by Lemma 2.4, {un} is bounded in H1(RN ). Hence by replacing u and θ

in (2.6) by un and θn = cn/c, we see that lim
n→+∞

Ip(c
2
n) ≤ Ip(c

2). On the other

hand, let {un} ⊂ S(cn) be such that Ip(un) ≤ Ip(c2n)+1/n < 1/n, then similarly,

Ip(c
2) ≤ lim

n→+∞
Ip(c

2
n), which implies the lemma.
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(b) Let {un} ⊂ S(c) be a bounded minimizing sequence for Ip(c
2). Since

Ip(c
2) < 0, there exists K1 > 0 such that B(un) ≥ K1. Let θ > 1 in (2.6),

then we have Ip(θun) − θ2I(un) ≤ (θ2 − θ2p)K1/(2p) < 0, which implies that

Ip(θ
2c2) < θ2Ip(c

2) for each θ > 1. Without loss of generality, we may assume

that 0 < α <
√
c2 − α2, then

Ip(c
2) <

c2

c2 − α2
Ip(c

2 − α2)

= Ip(c
2 − α2) +

α2

c2 − α2
Ip(c

2 − α2) < Ip(c
2 − α2) + Ip(α

2). �

Lemma 2.6. Let N ≥1, α∈ (0, N) and (N + α)/N <p< (N + α)/(N − 2)+.

If u is a critical point of Ip(u) constrained on S(c), then there exists µc < 0 such

that I ′p(u)− µcu = 0 in H−1(RN ) and

A(u)− Np− (N + α)

2p
B(u) = 0.

Proof. Since (Ip|S(c))
′(u) = 0, there exists µc ∈ R such that I ′p(u)−µcu = 0

in H−1(RN ). Then A(u) − B(u) = µcc
2. By Proposition 3.5 in [23], u satisfies

the following Pohozhaev identity:

N − 2

2
A(u)− N + α

2p
B(u) =

N

2
µcc

2.

Hence

A(u) =
Np− (N + α)

2p
B(u) and µc =

(N − 2)p− (N + α)

2pc2
B(u) < 0. �

Proof of Theorem 1.1. (a) If p = (N + α)/N , for any c > 0 and u ∈ S(c),

by (1.8) we have

I(N+α)/N (u) ≥ − N

2(N + α)

(
c

|Q(N+α)/N |2

)(2(N+α))/N

.

Set

Qt(N+α)/N (x) :=
ctN/2

|Q(N+α)/N |2
Q(N+α)/N (tx),

then, by (1.8) again, we see that

I(N+α)/N (Qt(N+α)/N )

=
c2t2

2|Q(N+α)/N |22
A(Q(N+α)/N )− N

2(N + α)

(
c

|Q(N+α)/N |2

)(2(N+α))/N

,

letting t→ 0+, then

I(N+α)/N (c2) = − N

2(N + α)

(
c

|Q(N+α)/N |2

)(2(N+α))/N

.
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By contradiction, if for some c > 0, there is u ∈ S(c) such that I(N+α)/N (u) =

I(N+α)/N (c2), then (1.8) shows that

0 ≤ 1

2
A(u) =

N

2(N + α)

[
B(u)−

(
c

|Q(N+α)/N |2

)(2(N+α))/N]
≤ 0,

which implies that u = 0. It is a contradiction. So I(N+α)/N (c2) has no minimizer

for all c > 0.

(b) If (N + α)/N < p < (N + α+ 2)/N , for any c > 0, by Lemma 2.4,

Ip(c
2) < 0. Let {un} ⊂ S(c) be a minimizing sequence for Ip(c

2), then Lem-

ma 2.4 (a) implies that {un} is bounded in H1(RN ) and for some constant C > 0

independent of n, B(un) ≥ C. Hence there exists u ∈ H1(RN ) such that

(2.7) un ⇀ u in H1(RN ), un(x)→ u(x) a.e. in RN .

Moreover, by the Vanishing Lemma, up to translations, we may assume that

u 6= 0. Then 0 < |u|2 := α ≤ c. We just suppose that α < c, then u ∈ S(α). By

(2.7) and the Brezis Lemma, we have

lim
n→+∞

|un − u|22 = lim
n→+∞

|un|22 − |u|22 = c2 − α2.

Then by Lemmas 2.1 and 2.5 (a), we have

Ip(c
2) = lim

n→+∞
Ip(un) = lim

n→+∞
Ip(un − u) + Ip(u) ≥ Ip(c2 − α2) + Ip(α

2),

which contradicts Lemma 2.5 (b). So |u|2 = c, i.e. un → u in L2(RN ). By (2.2),

we have B(un) → B(u). Then Ip(c
2) ≤ Ip(u) ≤ lim

n→+∞
Ip(un) = Ip(c

2), i.e. u is

minimizer for Ip(c
2).

(c) (i) has been proved in Lemma 2.4 (b). To prove (b), suppose by contra-

diction that there exists c0 ∈ (0, c∗) such that I(N+α+2)/N (c20) has a minimizer

u0 ∈ S(c0), i.e. I(N+α+2)/N (u0) = I(N+α+2)/N (c20) = 0, then by (2.2),

A(u0) =
N

N + α+ 2
B(u0) ≤

(
c0
c∗

)(2(α+2))/N

A(u0) < A(u0),

which is impossible. So combining (i), we see that I(N+α+2)/N (c2) has no mini-

mizer for all c 6= c∗.

By (2.3), we see that I(N+α+2)/N (Q(N+α+2)/N ) = 0 = I(N+α+2)/N (c2∗), i.e.

Q(N+α+2)/N is a minimizer for I(N+α+2)/N (c2∗). Moreover, by Lemmas 3.1 (b)

and 3.2 below, each groundstate solution of (1.7) is a minimizer of I(N+α+2)/N (c2∗).

So we have proved (iii).

For any c > 0, suppose that u is a critical point of I(N+α+2)/N (u) constrained

on S(c), then by (2.3) and Lemma 2.6, we have

A(u) =
N

N + α+ 2
B(u) ≤

(
c

c∗

)(2(α+2))/N

A(u),
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which implies that c∗ ≤ c. Then, there exists no critical point for I(N+α+2)/N (u)

constrained on S(c) if 0 < c < c∗. So (iv) is proved.

(d) By Lemma 2.4 (c), Ip(c
2) has no minimizer for all c > 0 if (N + α+ 2)/N

< p < (N + α)/(N − 2)+. �

3. Proof of Theorems 1.4 and 1.5

For p = (N + α+ 2)/N , (2.2) turns to be

(3.1) B(u) ≤ N + α+ 2

N

(
1

c∗

)(2(α+2))/N

A(u)|u|(2(α+2))/N
2 ,

with equality for u = Q(N+α+2)/N and c∗ := |Q(N+α+2)/N |2, where Q(N+α+2)/N

is a nontrivial solution of

(3.2) −∆Q(N+α+2)/N +
α+ 2

N
Q(N+α+2)/N

= (Iα ∗ |Q(N+α+2)/N |(N+α+2)/N )|Q(N+α+2)/N |(N+α+2)/N−2Q(N+α+2)/N ,

in RN . Set

Q(N+α+2)/N (x) =

(√
α+ 2

N

)N/2
Q̃(N+α+2)/N

(√
α+ 2

N
x

)
,

then Q̃(N+α+2)/N satisfies the equation

(3.3) −∆Q̃(N+α+2)/N + Q̃(N+α+2)/N

= (Iα ∗ |Q̃(N+α+2)/N |(N+α+2)/N )|Q̃(N+α+2)/N |(N+α+2)/N−2Q̃(N+α+2)/N ,

in RN . The following lemma is a direct consequence of Theorems 1–4 in [22].

Lemma 3.1. Assume that N ≥ 1 and α ∈ (0, N).

(a) There is at least one groundstate solution u ∈ H1(RN ) to (3.3) with

F (u) = d := inf{F (v | v ∈ H1(RN ) \ {0} is a weak solution of (3.3)},

where

F (v) =
1

2

∫
RN

(|∇v|2 + |v|2)

− N

2(N + α+ 2)

∫
RN

(Iα ∗ |v|(N+α+2)/N )|v|(N+α+2)/N .

(b) If u ∈ H1(RN ) is a nontrivial solution of (3.3), then u ∈ L1(RN ) ∩
C2(RN ), u ∈ W 2,s(RN ) for every s > 1 and u ∈ C∞(RN \ u−1({0}).

Moreover,

(3.4)
N + α+ 2

N
A(u) =

N + α+ 2

α+ 2

∫
RN

|u|2 = B(u).
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(c) If u is a groundstate solution of (3.3), then u is either positive or negative

and there exists x0 ∈ RN and a monotone function v ∈ C∞(0,+∞) such

that

u(x) = v(|x− x0|), for all x ∈ RN .

(d) Let N − 2 ≤ α < N if N ≥ 3 and 0 < α < N if N = 1, 2. If u is

a groundstate solution of (3.3), then

lim
|x|→+∞

|u(x)||x|(N−1)/2e|x| ∈ (0,+∞).

Moreover, |∇u(x)| = O(|x|−(N−1)/2e−|x|) as |x| → +∞.

Lemma 3.2.

(a) d = c2∗/2.

(b) u is a nontrivial solution of (3.3) with |u|2 = c∗ if and only if u is

a groundstate solution.

Proof. For any nontrivial solution u of (3.3), by Lemma 3.1 (a)–(b) and

(3.1), we have

c∗ ≤ |u|2 and d ≤ F (u) =
1

2

∫
RN

|u|2,

where equality holds only if u is a groundstate solution. In particular, since

Q̃(N+α+2)/N is a nontrivial solution of (3.3),

d ≤ F (Q̃(N+α+2)/N ) =
|Q̃(N+α+2)/N |22

2
=
c2∗
2
.

Therefore, if u is a groundstate solution of (3.3), then, by Lemma 3.1 (c), u is

nontrivial and
c2∗
2
≤ |u|

2
2

2
= F (u) = d ≤ c2∗

2
,

which shows that d = c2∗/2 and |u|2 = c∗. On the other hand, if u is a nontrivial

solution of (3.3) with |u|2 = c∗, then

c2∗
2

= d ≤ F (u) =
1

2

∫
RN

|u|2 =
c2∗
2
,

which implies that F (u) = d, i.e. u is a groundstate solution. �

Remark 3.3. Q̃(N+α+2)/N is a groundstate solution of (3.3).

Lemma 3.4 ([1]). Suppose that V ∈ L∞loc(RN ) and lim
|x|→+∞

V (x) = +∞, then

the embedding H ↪→ Ls(RN ), 2 ≤ s < 2∗, is compact.

Proof of Theorem 1.4. Set

C(u) :=

∫
RN

V (x)|u|2 ≥ 0, for all u ∈ H1(RN ),
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then

E(u) =
A(u)

2
+
C(u)

2
− N

2(N + α+ 2)
B(u).

(a) By (3.1), for any 0 < c ≤ c∗ and u ∈ S̃(c),

(3.5) E(u) ≥ 1

2

[
1−

(
c

c∗

)2(α+2)/N]
A(u) +

1

2
C(u) ≥ 0,

then ec = inf
u∈S̃(c)

E(u) ≥ 0 is well defined for 0 < c ≤ c∗.

For each 0 < c < c∗, let {un} ⊂ S̃(c) be a minimizing sequence for ec, then

by (3.5), {un} is bounded in H. Hence there exists uc ∈ H such that un ⇀ uc in

H. By Lemma 3.4, un → uc in Ls(RN ), 2 ≤ s < 2∗, which implies that |uc|2 = c

and B(un) → B(uc). So ec ≤ E(uc) ≤ lim
n→+∞

E(un) = ec, i.e. uc ∈ S̃(c) is a

minimizer of ec. Moreover, by (3.5), ec > 0. So ec > 0 has at least one minimizer

for all 0 < c < c∗.

(b) Let N − 2 ≤ α < N if N ≥ 3 and 0 < α < N if N = 1, 2. For any c > 0,

let ϕ ∈ C∞0 (RN ) such that 0 ≤ ϕ(x) ≤ 1, ϕ(x) ≡ 1 for |x| ≤ 1, ϕ(x) ≡ 0 for

|x| ≥ 2 and |∇ϕ| ≤ 2. For any x0 ∈ RN and any t > 0, set

(3.6) Q̃t(x) =
cAtt

N/2

c∗
ϕ(x− x0)Q̃(N+α+2)/N (t(x− x0)),

where At > 0 is chosen to satisfy that |Q̃t|2 = c. By the exponential decay of

Q̃(N+α+2)/N , we see that

1

A2
t

= 1 +
1

c2∗

∫
RN

(
ϕ2

(
x

t

)
− 1

)
|Q̃(N+α+2)/N (x)|2 → 1

as t→ +∞. Then At depends only on t and lim
t→+∞

At = 1. Since V (x)ϕ2(x−x0)

is bounded and has compact support, C(Q̃t)→ (c2/c2∗)V (x0).

B(Q̃t) =

(
cAt
c∗

)2(N+α+2)/N

t2
{
B(Q̃(N+α+2)/N )

+

∫
RN

{
Iα

[(∣∣∣∣ϕ(yt
)∣∣∣∣(N+α+2)/N

− 1

)
|Q̃(N+α+2)/N (y)|(N+α+2)/N

]}
·
(∣∣∣∣ϕ(xt

)∣∣∣∣(N+α+2)/N

+ 1

)
|Q̃(N+α+2)/N (x)|(N+α+2)/N

}
:=

(
cAt
c∗

)2(N+α+2)/N

t2[B(Q̃(N+α+2)/N ) + f1(t)].
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By the Hardy–Littlewood–Sobolev inequality (1.4) and the exponential decay of

Q̃(N+α+2)/N , there exists a constant C > 0 such that

|f1(t)| ≤C
(∫

RN

∣∣∣∣[ϕ(xt
)](N+α+2)/N

− 1

∣∣∣∣2N/(N+α)

· |Q̃(N+α+2)/N (x)|2(N+α+2)/(N+α)

)(N+α)/(2N)

≤C
(∫
|x|≥t

|Q̃(N+α+2)/N (x)|2(N+α+2)/(N+α)

)(N+α)/(2N)

≤C
(∫ +∞

t

r−2(N−1)/(N+α)e−2(N+α+2)r/(N+α)

)(N+α)/(2N)

≤Ct−(N−1)/Ne−(N+α+2)t/N

as t→ +∞. Then by the exponential decay of Q̃(N+α+2)/N and |∇Q̃(N+α+2)/N |,
we have

(3.7) E(Q̃t) =
c2

2c2∗
t2A(Q̃(N+α+2)/N )

[
1−
(
c

c∗

)2(α+2)/N]
+ t2f2(t)+

c2

2c2∗
V (x0)

as t → +∞, where f2(t) denotes a function satisfying lim
t→+∞

|f2(t)|tr = 0 for all

r > 0.

If c > c∗, then by (3.7), ec ≤ lim
t→+∞

E(Q̃t) = −∞, hence ec = −∞ and there

exists no minimizer for ec.

If c = c∗, then by (3.5) and (3.7), 0 ≤ ec∗ ≤ V (x0)/2. Taking the infimum

over x0, ec∗ = 0. We just suppose that there exists u ∈ S̃(c∗) such that E(u) =

ec∗ , then it follows from (3.5) that

(3.8) C(u) = 0,

which along with condition (V0) imply that u must have compact support. Then

A(u) = B(u), i.e. u is a minimizer of S(N+α+2)/N . So u satisfies equation (3.2).

Set u(x) :=
(√

(α+ 2)/N
)N/2

w
(√

(α+ 2)/Nx
)
, then w is a nontrivial solution

of (3.3) with |w|2 = c∗, hence, by Lemma 3.2, w is a groundstate solution. So, by

Lemma 3.1 (d), lim
|x|→+∞

|u(x)||x|(N−1)/2e|x| ∈ (0,+∞), which contradicts (3.8).

Moreover, we conclude from (3.6) and (3.7) that

lim sup
c→(c∗)−

ec ≤
V (x0)

2
as t→ +∞.

As x0 is arbitrary, we have lim
c→(c∗)−

ec = 0 = ec∗ . �

In what follows, we consider the concentration behavior of minimizers uc as c

approaches c∗ from below when N − 2 ≤ α < N if N ≥ 3 and 0 < α < N if

N = 1, 2 and the potential V satisfies conditions (V0) and (V1).
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Lemma 3.5. Suppose that (V0) and (V1) hold, then there exists a positive

constant M1 independent of c such that

0 < ec ≤M1

[
1−

(
c

c∗

)2(α+2)/N]q/(q+2)

as c→ (c∗)
−,

where q = max{q1, . . . , qm}.

Proof. Without loss of generality, we may assume that q = qi0 for some

1 ≤ i0 ≤ m. By (V1), there exists R > 0 small enough such that V (x) ≤
2µi0 |x− xi0 |qi0 for |x− xi0 | ≤ R. Similarly to (3.6), let

u(x) :=
cAR,tt

N/2

c∗
ϕ

(
2(x− xi0)

R

)
Q̃(N+α+2)/N (t(x− xi0)) ∈ S̃(c),

where AR,t > 0 and AR,t → 1 as t→ +∞. Then

C(u) ≤
2µi0c

2A2
R,t

c2∗
t−qi0

∫
RN

|x|qi0 |Q̃(N+α+2)/N (x)|2.

Hence similarly to (3.7), for large t,

ec ≤
A(Q̃(N+α+2)/N )

2
t2
[
1−

(
c

c∗

)2(α+2)/N]
+ 2µi0t

−qi0

∫
RN

|x|qi0 |Q̃(N+α+2)/N (x)|2 + t2h(t),

where lim
t→+∞

|h(t)|t2 = 0.

Taking t = [1 − (c/c∗)
2(α+2)/N ]−1/(qi0+2), there exists a constant M1 > 0

independent of c such that 0 < ec ≤M1[1− (c/c∗)
2(α+2)/N ]q/q+2. �

The following lemma is essential to obtain the optimal lower bound of ec and

to prove the main theorem.

Lemma 3.6. Suppose that (V0) and (V1) hold and there exists {εc} ⊂ R+

with εc → 0+ as c → (c∗)
− such that C1 ≤ A(ε

N/2
c uc(εcx)) ≤ C2, where

C2 > C1 > 0 are two constants independent of c, then there exist {yc} ⊂ RN ,

xj0 ∈ {x1, . . . , xm} and y0 ∈ RN such that (εcyc − xj0)/εc → y0 as c → (c∗)
−.

Moreover,

(a) let wc(x) := ε
N/2
c uc(εcx + εcyc), then there exist a groundstate solution

W0 ∈ H1(RN ) of the following equation:

(3.9) −∆W0 +W0 = (Iα ∗ |W0|(N+α+2)/N )|W0|(N+α+2)/N−2W0, x ∈ RN ,

and a constant β > 0 such that wc(x)→ (β)N/2W0(βx) in H1(RN ).
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(b) ec ≥
2 + qj0

2qj0

(
c2∗λ

qj0+2C
qj0/2
1

βqj0

)2/(qj0+2)[
1−

(
c

c∗

)2(α+2)/N]q/(q+2)

as c→ (c∗)
−, where q = max

1≤i≤m
qi and

λ = min
1≤i≤m

{
λi

∣∣∣∣ λi =

(
qiµi
2c2∗

∫
RN

|x|qi |W0(x)|2
)1/(qi+2)}

.

Moreover, if

lim
c→(c∗)−

1− (c/c∗)
2(α+2)/N

εq+2
c

= 1,

then

lim
c→(c∗)−

ec
εqc

=
λ2c2∗(q + 2)

2q

(
N

α+ 2

)q/(q+2)

and y0 = 0, β = ((α+ 2)/N)1/(q+2)λ.

Proof. By (3.5) and Theorem 1.4, we see that

(3.10) C(uc)→ 0 as c→ (c∗)
−.

Set w̃c(x) := ε
N/2
c uc(εcx). Then |w̃c|2 = c. Up to a subsequence, let δ :=

lim
c→(c∗)−

sup
y∈RN

∫
B1(y)

|w̃c|2. If δ = 0, then w̃c → 0 in Ls(RN ) as c → (c∗)
−,

2 < s < 2∗, hence by (1.4), B(w̃c)→ 0. So

0 <
C1

2
≤ A(w̃c)

2
≤ ecε2

c +
N

2(N + α+ 2)
B(w̃c)→ 0 as c→ (c∗)

−,

which is impossible. Then δ > 0 and there exists {yc} ⊂ RN such that∫
B1(yc)

|w̃c| ≥
δ

2
> 0.

Set wc(x) := w̃c(x+ yc) = ε
N/2
c uc(εcx+ εcyc), then

(3.11)

∫
B1(0)

|wc|2 ≥
δ

2
.

We claim that {εcyc} is uniformly bounded as c→ (c∗)
−. Indeed, if there exists

a sequence {ck} ⊂ (0, c∗) with ck → c∗ such that |εckyck | → +∞ as k → +∞,

then by (V0), (3.10) and (3.11) and the Fatou Lemma, we have

0 = lim inf
k→+∞

B(uck) = lim inf
k→+∞

∫
RN

V (εckx+ εckyck)|wck(x)|2

≥
∫
B1(0)

lim inf
k→+∞

[V (εckx+ εckyck)|wck(x)|2] ≥ (+∞) · δ
2

= +∞,
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which is impossible. So {εcyc} is uniformly bounded as c → (c∗)
−. Moreover,

there exists xj0 ∈ {x1, . . . , xm} such that

(3.12)

{
εcyc − xj0

εc

}
is uniformly bounded as c→ (c∗)

−.

Indeed, by contradiction, we just suppose that for any xi ∈ {x1, . . . , xm}, there

exists ck → (c∗)
− such that |(εckyck − xi)/εck | → +∞ as k → +∞. By (V1),

(3.11) and the Fatou Lemma, for any positive constant C,

lim inf
k→+∞

1

εqick

∫
RN

V (εckx+ εckyck)w2
ck

(x)(3.13)

≥
∫
RN

lim inf
k→+∞

V (εckx+ εckyck)

εqick
|wck(x)|2

≥
∫
RN

lim inf
k→+∞

V (εckx+ xi)

|εckx|qi
|x|qi

∣∣∣∣wck(x+
xi − εckyck

εck

)∣∣∣∣2
≥ µi

∫
B1(0)

lim inf
k→+∞

|x+
εckyck − xi

εck
|qi |wck(x)|2 ≥ µiδC

2
.

Hence by (3.5),

eck ≥
A(wck)

2ε2
ck

[
1−

(
ck
c∗

)2(α+2)/N]
+

1

2

∫
RN

V (εckx+ εckyck)|wck |2(3.14)

≥ C1

2ε2
ck

[
1−

(
ck
c∗

)2(α+2)/N]
+
µiδC

4
εqick

≥ qi + 2

2qi

(
qiδµiC

qi/2
1

4

)2/qi+2[
1−

(
ck
c∗

)2(α+2)/N]qi/qi+2

C2/qi+2

≥ qi + 2

2qi

(
qiδµiC

qi/2
1

4

)2/(qi+2)

C2/(qi+2)

[
1−

(
ck
c∗

)2(α+2)/N]q/(q+2)

as k → +∞, which contradicts the upper bound obtained in Lemma 3.5 since

C > 0 is arbitrary. Then (3.12) holds. So there exists some y0 ∈ RN such that

(εcyc − xj0)/εc → y0 as c→ (c∗)
−.

Since uc ∈ S̃(c) is a minimizer of ec, (E|S̃(c))
′(uc) = 0, i.e. there exists

a sequence {λc} ⊂ R such that E′(uc) − λcuc = 0 in H−1, where H−1 denotes

the dual space of H. Then

ε2
cλc =

1

c2

(
2
N + α+ 2

N
ε2
cec −

α+ 2

N
ε2
cC(uc)−

α+ 2

N
A(wc)

)
,

which along with (3.10) imply that there exists β > 0 such that ε2
cλc → −β2

as c → (c∗)
−. By the definition of wc, we see that wc satisfies the following

equation:

(3.15) −∆wc + ε2
cV (εcx+ εcyc)wc

− (Iα ∗ |wc|(N+α+2)/N )|wc|(N+α+2)/N−2wc = λcε
2
cwc
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in RN . Since {wc} is uniformly bounded in H1(RN ), there exists w0 ∈ H1(RN )

such that 
wc ⇀ w0 in H1(RN ),

wc → w0 in Lsloc(RN ), 1 ≤ s < 2∗,

wc(x)→ w0(x) a.e. in RN .

Moreover, (3.11) implies that w0 6= 0. Then w0 is a nontrivial solution of

−∆w0 + β2w0 = (Iα ∗ |w0|(N+α+2)/N )|w0|(N+α+2)/N−2w0 in RN . Set w0(x) :=

βN/2W0(βx), then W0 is a nontrivial solution of

−∆W0 +W0 = (Iα ∗ |W0|(N+α+2)/N )|W0|(N+α+2)/N−2W0, x ∈ RN .

Hence by Lemma 3.2, we have c∗ ≤ |W0|2 = |w0|2 ≤ lim
c→(c∗)−

|wc|2 = c∗, i.e.

|w0|2 = |W0|2 = c∗. Hence wc → w0 in L2(RN ) and then B(wc) → B(w0). So

we conclude from the equations wc and w0 satisfy that wc → w0 in H1(RN ).

Moreover, Lemma 3.2 shows that W0 is a groundstate solution of (3.9). So by

Lemma 3.1 (c)–(d), W0(x) = O(|x|−(N−1)/2e−|x|) as |x| → +∞ and we may

assume that, up to translations, W0 is radially symmetric about the origin.

Similarly to (3.13), we see that

lim inf
c→(c∗)−

1

εqc

∫
RN

V (εcx+ εcyc)|wc(x)|2(3.16)

≥ lim inf
c→(c∗)−

1

ε
qj0
c

∫
RN

V (εcx+ εcyc)|wc(x)|2

≥
∫
RN

lim inf
c→(c∗)−

V (εcx+ xj0)

|εcx|qj0
|x|qj0

∣∣∣∣wc(x+
xj0 − εcyc

εc

)∣∣∣∣2
≥ µj0
βqj0

∫
RN

|x+ βy0|qj0 |W0(|x|)|2 ≥ µj0
βqj0

∫
RN

|x|qj0 |W0(x)|2,

where the last inequality is strict if and only if y0 6= 0. Hence similarly to (3.14),

ec ≥
C1

2ε2
c

[
1−

(
c

c∗

)2(α+2)/N]
+

µj0
2βqj0

∫
RN

|x|qj0 |W0(x)|2εqj0c

=
C1

2ε2
c

[
1−

(
c

c∗

)2(α+2)/N]
+
c2∗λ

qj0+2
j0

qj0β
qj0

ε
qj0
c

≥ 2 + qj0
2qj0

(
c2∗λ

qj0+2(
√
C1)qj0

βqj0

)2/(qj0+2) [
1−

(
c

c∗

)2(α+2)/N]q/(q+2)

as c→ (c∗)
−, where λ = min

1≤i≤m
λi.
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If lim
c→(c∗)−

(1− (c/c∗)
2(α+2)/N/εq+2

c = 1, then

lim inf
c→(c∗)−

ec
εqc
≥ 1

2

(
A(w0) +

µj0
βqj0

∫
RN

|x|qj0 |W0(x)|2
)

(3.17)

≥ c2∗
(
β2

2

N

α+ 2
+
λ
qj0+2
j0

qj0β
qj0

)
≥
λ2
j0
c2∗

2

(
N

α+ 2

)qj0/(qj0+2)
qj0 + 2

qj0

≥ λ2c2∗(q + 2)

2q

(
N

α+ 2

)q/(q+2)

.

On the other hand, for any xi ∈ {x1, . . . , xm} and t > 0, let

vc(x) =
cAc
c∗

(
t

εc

)N/2
ϕ(x− xi)W0

(
t(x− xi)

εc

)
,

where ϕ is a cut-off function given as in (3.6) and Ac > 0 is chosen to satisfy

vc ∈ S̃(c). Then lim
c→(c∗)−

Ac = 1. By the Dominated Convergence Theorem, we

see that

lim sup
c→(c∗)−

ec
εqc
≤ lim sup
c→(c∗)−

E(vc)

εqc
(3.18)

=
t2

2
A(W0) + lim

c→(c∗)−

tN

2εN+q
c

∫
RN

V (x)

∣∣∣∣ϕ(x− xi)W0

(
t(x− xi)

εc

)∣∣∣∣2
=

1

2

(
t2c2∗N

α+ 2
+
µi
tq

∫
RN

|x|q|W0(x)|2
)

= c2∗

(
t2

2

N

α+ 2
+
λ
q+2

i

qtq

)
,

where

µi = lim
x→xi

V (x)

|x− xi|q
=

µi if q = qi,

+∞ if q 6= qi,

and

λi =

(
µiq

2c2∗

∫
RN

|x|q|W0(x)|2
)1/(q+2)

=

λi if q = qi,

+∞ if q 6= qi.

So, since t > 0 is arbitrary, taking infimum over {λi}mi=1 in (3.18) and combining

with (3.17), we see that

lim
c→(c∗)−

ec
εqc

=
λ2c2∗(q + 2)

2q

(
N

α+ 2

)q/(q+2)

.

Then (3.16)–(3.18) must be equalities, what implies that y0 = 0 and β =

((α+ 2)/N)1/(q+2)λ. �
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Lemma 3.7. Suppose that (V0) and (V1) hold, then there exists a constant

M2 > 0 independent of c such that

ec ≥M2

[
1−

(
c

c∗

)2(α+2)/N]q/(q+2)

as c→ (c∗)
−.

Proof. Suppose that uc is a minimizer of ec, we first show that

(3.19) A(uc)→ +∞ as c→ (c∗)
−.

In fact, by contradiction, if there exists a sequence {ck} ⊂ (0, c∗) with ck → c∗
as k → +∞ such that the sequence of minimizers {uck} ⊂ S̃(ck) is uniformly

bounded in H, then we may assume that for some u ∈ H, uck ⇀ u in H and, by

Lemma 3.4 and (3.1),

uck → u in L2(RN ) and B(uck)→ B(u).

Hence u ∈ S̃(c∗) and 0 ≤ ec∗ ≤ E(u) ≤ lim
k→+∞

E(uck) = lim
k→+∞

eck = 0, i.e. u is

a minimizer of ec∗ , what contradicts Theorem 1.4. Since

0 ≤ 1

2
A(uc)−

N

2(N + α+ 2)
B(uc) ≤ ec,

we see that

lim
c→(c∗)−

N

N + α+ 2
B(uc)

A(uc)
= 1.

Then by (3.19), we have

ε−2
c :=

N

2(N + α+ 2)
B(uc)→ +∞ as c→ (c∗)

−

and

2 ≤ A(εN/2c uc(εcx)) ≤ 2 + 2ε2
cec ≤ 4.

Hence our conclusion follows from Lemma 3.6. �

Lemma 3.8. Suppose that uc is a minimizer of ec and V satisfies (V0) and

(V1), then there exist two positive constants K1 < K2 independent of c such that

K1

[
1−

(
c

c∗

)2(α+2)/N]−2/(q+2)

≤ A(uc) ≤ K2

[
1−

(
c

c∗

)2(α+2)/N]−2/(q+2)

as c→ (c∗)
−.

Proof. The idea of the proof comes from that of Lemma 4 in [8], but it

needs more careful analysis. By (3.5) and Lemma 3.5, we see that

A(uc) ≤
2ec

1−
(
c

c∗

)2(α+2)/N
≤ 2M1

[
1−

(
c

c∗

)2(α+2)/N]−2/(q+2)
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as c → (c∗)
−, where M1 is given in Lemma 3.5. For any fixed b ∈ (0, c), there

exist two functions ub ∈ S̃(b), uc ∈ S̃(c) such that eb = E(ub) and ec = E(uc),

respectively. Then by (3.1), we see that

eb ≤ E
(
b

c
uc

)
< ec +

1

2

[
1−

(
b

c

)2(α+2)/N]
A(uc).

Let η := (c− b)/(c∗ − c) > 0, then η → +∞ as c→ (c∗)
−. Then by Lemmas 3.5

and 3.7, we have

1

2
A(uc) >

eb − ec

1−
(
b

c

)2(α+2)/N

≥
M2

(
1−

(
b

c∗

)2(α+2)/N)q/(q+2)

−M1

(
1−

(
c

c∗

)2(α+2)/N)q/(q+2)

1−
(
b

c

)2(α+2)/N

≥
[
1−

(
c

c∗

)2(α+2)/N]−2/(q+2)

M2


1−

(
b

c∗

)2(α+2)/N

1−
(
c

c∗

)2(α+2)/N


q/(q+2)

−M1

(
1−

(
b

c

)2(α+2)/N)[
1−

(
c

c∗

)2(α+2)/N]−1

≥
[
1−

(
c

c∗

)2(α+2)/N]−2/(q+2)M2

(
N

2(α+ 2)

)q/(q+2)

(1 + η)q/(q+2) −M1

η
,

what gives the desired positive lower bound as c→ (c∗)
−. �

Proof of Theorem 1.5. Let {ck} ⊂ (0, c∗) be a sequence satisfying ck →
(c∗)

− as k → +∞ and {uck} ⊂ S̃(ck) be a sequence of minimizers for eck . Set

εck :=

[
1−

(
ck
c∗

)2(α+2)/N]1/(q+2)

> 0.

By Lemma 3.8, we see that K1 ≤ A(ε
N/2
ck uck(εckx)) ≤ K2. Then by Lemma 3.6,

lim
k→+∞

eck
εqck

=
λ2c2∗(q + 2)

2q

(
N

α+ 2

)q/(q+2)

.

Moreover, there exist a sequence {yck} ⊂ RN and xj0 ∈ {x1, . . . , xm} such that

εckyck → xj0 as k → +∞ and there is a groundstate solution W0 ∈ H1(RN )

of (3.9), which is, up to translations, radially symmetric about the origin and
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such that

εN/2ck
uck(εckx+ εckyck) = wck(x)

→ w0(x) =

((
α+ 2

N

)1/(q+2)

λ

)N/2
W0

((
α+ 2

N

)1/(q+2)

λx

)
in L2Ns/(N+α)(RN ) for all (N + α)/N ≤ s < (N + α)/(N − 2)+. �
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