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SIGN-CHANGING SOLUTIONS
FOR p-LAPLACIAN EQUATIONS
WITH JUMPING NONLINEARITY
AND THE FUCIK SPECTRUM

MING XIONG — ZE-HENG YANG — XIANG-QING LIU

ABSTRACT. We study the existence of sign-changing solutions for the p-
Laplacian equation

~Apu+ Ag(@)ulPPu = f(u), @eRV,

where A is a positive parameter and the nonlinear term f has jumping
nonlinearity at infinity and is superlinear at zero. The Fucik spectrum
plays an important role in the proof. We give sufficient conditions for the
existence of nontrivial Fucik spectrum.

1. Introduction

In this paper we are concerned with the following p-Laplacian equations in
RY with jumping nonlinearity:

(P) —Apu+ Ag(x)[ulP?u = f(u), =RV,

where 1 <p < N, A > 0 and Apu = div (Ju|P~2u) is the p-Laplacian operator.
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In the weak form of problem (P) the solution u € W1P(RY) satisfies
(P) / |Vul|P~2VuVe dz + )\/ g(@)[ulP~2up dr = / f(u)pdx,
RN RN RN

for all ¢ € WHP(RY). Problem (P) has a variational structure given by the
functional
1
I(u) = 7/ (IVul? + Ag(z)|ul?) dz 7/ F(u)dx, ue W5LP(RYN),
D Jr~y RN
where F(t) = f(f f(s)ds. Assume that the potential function g satisfies the
conditions:
T|—00
(g2) There exist ¢,m, Ry > 0 such that 1 — g(z) > ¢/|x|™, for |z| > Ry.
For the nonlinear term f we make the following assumptions:

(f1) fe CRN,R), f(t)t >0, for t # 0.

. f)
fo) 1 =0
() Hm o=
(f3) There exist a,b such that lim f(*) =a, i 1) =b.
t——oo tP—1 t——oo [t|P—2¢

t
0 o
The condition (f3) means that f has a “jumping” nonlinearity at the infinity.

Let Ly: WYPRYN) 5 u = —Apu + Ag(2)|ulP~2u € (WHP(RY)), where
(WP(RN)) is the dual space of W1P(RY). By Cuesta et al. [4], the Fucik
spectrum of Ly is defined as the set o(Ly) of those (a,b) € R? for which equation

is nondecreasing in ¢ > 0 and nonincreasing in ¢ < 0.

(1.1) (or (1.2) in the weak form) has a nontrivial solution u:
(1.1) —Apu+ Ag(@)[ulP2u = a(uT)P~ — blu" )Pt

or u € WhP(RY) satisfies

(1.2) / |Vu|p_2Vquodx+/\/ g(x)[ulP~2up dx
RN RN

— [ (alaty = by s
RN
for all ¢ € WHP(RY), where u* = max(+u,0). Given 6 € (0,7/2), we define
(1.3) p(0) = inf [ (IVul? + Ag(@)lul?) de,
ueS RN

where

Y={uluecWHPRY), u=u" —u",ut #0, and (1.4), (1.5) hold},

(1.4) /RN (cos O(u)P +sinf(u~)P) dr = 1,
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/ (VP + Agla)(w)P) de / (IVu~ [P + Ag @) (u™)?) da
(1.5) RN = =RY

cos@/ (u™)Pdx Sin0/ (u™)Pdx
RN RN

THEOREM 1.1. Assume that (g1), (g2), (f1)—(f4) hold. Let

(a,b) = (pcosb, psinb), 0 < (0,7/2).

Assume p > p(0), where p is defined by (1.3). Then either

(a) (a,b) belongs to the Fucik spectrum o(Ly), or
(b) problem (P) has a sign-changing solution.

To prove Theorem 1.1, we apply the method of invariant sets, see Bartsch,
Liu and Weth [1], Liu and Sun [12].
We emphasize that in the assumptions of Theorem 1.1 we say no word about

whether (p(0) cos 8, p(0) sin ) is a Fucik spectrum point. Define
a1 = inf {/ (IVul? + Ag(x)|ul?) dz
RN

/ |u|Pdx = 1}.
RN
It is clear that min(p(6) cos @, p(8)sinf) > a3 > 0.
Suppose that the operator Ly has a positive eigenfunction ¢ corresponding

to the first eigenvalue o and satisfying the equation
—Apu+ Ag(@) [ulP2u = g [ulP2u,  x e RV,

then the lines {a1} x R and R x {a1} are the trivial Fucik spectrum curves.
Consider the ray lg = {(pcos @, psinf) | p > 0}. There are two trivial Fuéik spec-
trum points on ly, that is (a1, ay tan @) and (g cot 8, ), to which corresponding
eigenfunctions are ¢, and —¢1, respectively. Suppose that (pcosf, psinf) is a
nontrivial Fucik spectrum point, then the corresponding eigenfunction u is sign-
changing and satisfies

—Apu+ Ag(x)|[ulP2u = peos O(uT)Pt — psinf(u”)P7t, 2z € RY.
By normalization, we can assume that
/ (cos O(u™)P + sin O(u=)P) da = 1.
RN
Therefore u € ¥ and
p= [Vl + Xg(a)fuP) de = p(0).

We conclude that, if (p(6) cos 8, p(6) sinf) is a Fucik spectrum point, it should
be the first nontrivial one on the ray lyp. We give sufficient conditions for
(p(0) cos b, p(#) sinf) to be a Fucik spectrum point. Since o(Ly) is clearly sym-
metric with respect to the diagonal, we assume 6 € (0,7/4) from now on.
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THEOREM 1.2. Assume that (g1) holds. Define for 0 < 0 < m/4

in Jr |V“+|pd9€ _ Jon |Vu~|Pdzx
re) = f{ﬁ ’ Tox (= g@) (" )Pdz ~ Jom (tan 0 — g(a))(u JPde

ue WHPRY), u=ut —u", ut #0}

=5,

Suppose X > T'(0), then (p(0) cos8, p(0)sinb) is a Fucik spectrum point.

Since Fucik introduced the generalized notion of spectrum, now called the
Fucik spectrum, many papers have been devoted to the existence of nontrivial
Fucik spectrum of the p-Laplacian operator with p = 2 or p # 2, on a bounded
domain €, or in the whole space RY, see for example [2], [4]. In [4] Cuesta et al.
studied the Fucik spectrum of the p-Laplacian operator on a bounded domain €2
in RY. Given s € R, they considered the functional

u):/Q\Vu|pdx—s/Q(u+)pdx
/Q\u|pd$: 1}.

By a min-max argument of mountain pass type, they proved the existence of

restricted to

S = {u e W)P(Q)

a nontrivial Fué¢ik spectrum point of the form (s + ¢(s), c(s)), where ¢(s) is the
mountain pass value. In [2] Bartsch et al. studied the Fuéik spectrum for the
Schrédinger operator —A +V in L2(RY), they followed the idea of Cuesta et al.
Here we consider a minimization problem with double restrains. By using this
characterization, obviously we obtain the first nontrivial Fu¢ik spectrum point.
Moreover, this definition of the Fué¢ik spectrum is very convenient to study the
existence of sign-changing solutions for the p-Laplacian equations with jumping

nonlinearity.

2. Existence of sign-changing solutions

Besides problem (P) with potential we also consider the following limit prob-
lem (P,) associated to problem (P) at infinity:

(Pso) —Apu+ MulP~?u = f(u), z<cRN.

The weak form is to look for u € W1P(RY) satisfying

Cx) [ TPV NP ) de = [ fweds,
RN RN

for all o € WLP(RY), to which the corresponding functional is

() = %/RN(W + \ulP) dz — /RN Flu)de, ueW'PRY),
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The following lemmas are concerned with the existence of one-sign solutions
of problems (P) and (P), and were proved in [15], [16] for p = 2 and [10] for
general p.

LEMMA 2.1. Assume that [ satisfies (f1)—(fa).
(a) If A < a, then problem (Py) has positive solutions with the least energy
dy =inf{J(u) |u#0, u>0, J'(u) =0}
If X\ > a, then problem (Ps) has no positive solution. For the sake of

convenience we assume dy = 400 in this case.
(b) If A < b, then problem (Ps) has negative solutions with the least energy

d_ =inf{J(u) | u # 0,u <0,J'(u) = 0}.
If X > b, then problem (P) has no negative solution, and we assume

dy = +00 in this case.
(¢) If u is a sign-changing solution of problem (P,), then J(u)>dy+d_.

LEMMA 2.2. Assume that g and f satisfy (g1), (f1)—(f1), respectively. Assume
that a,b > 0. Then:
(a) Problem (P) has positive and negative solutions with the least energy
cx =1inf{I(u) |u #0, £u >0, I'(u) = 0}.
(b) ey <dy, c— <d_.
(¢) If u is a sign-changing solution of problem (P), then I(u) > ¢y + c—.

To show the existence of sign-changing solutions of problem (P), we will
apply the following multiple critical points theorem.

THEOREM 2.3. Let X be a Banach space, I be a C-functional defined on X
and satisfying the Cerami condition, that is any sequence {u,} C X, satisfying
(14 Jlun DI (un)]l = 0, I(u) — ¢, possesses a convergent subsequence. Let Dy
and Do be open convex subsets of X and

(D) Dy N Dy # 0.

Let A be an operator from X to X such that

(A) A(OD;y) C Dy, A(OD2) C Ds.

Assume that there exist ¢1,c9 >0 and 1 < p < 400 such that

(L) (I'(u),u— Au) > 1 || u— Au |7,

(L) [ ()l < c2 || u— Aul[P~".

Assume that there exists a path h: [0,1] — X such that

H) h Dy, h(1) e D I(h(t inf  I(u).
(H) h(0) € Dy, A(1) € Dy smp T(A(0) < _jnf 1

Then I has at least four critical points, one in each of the domains Dy N Do,
D1\ Dy, D3\ Dy and X \ (D1 U Dy), respectively.
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By (I1), (I2) we can use the vector filed u — Au to construct the descending
flow of the functional I. Then condition (A) implies that D; and Dy are invari-
ant subsets of this descending flow. The method based on invariant subsets of
descending flow is an efficient method in study of the existence of sign-changing
solutions of nonlinear elliptic equations. We refer the reader to [1], [12] and the
survey [13] for this method and many applications. Theorem 2.3 was proved
in [6].

We construct the sets Dy, Ds, the operator A and the path h for our func-
tional I and verify the conditions of Theorem 2.3.

Condition (D). Denote

1/p
[ullx = (/ (IVul? + Ag(z)[ul?) dw) , ueWHP(RY),
RN

which is an equivalent norm of W1P(RY). The distance in W1P(RY) with
respect to || - ||x is denoted by disty. Let P = {u € WI?(RY) | 4 > 0} be the
positive cone in W?(RY). For ¢ > 0, denote
Dy = {u | dist(u, P) < e}, Dy = {u | disty(u,—P) < e}.
Clearly Dj, Do are open convex subsets of WL1P(RY) and Dy N Dy # .
Condition (H). We have the following lemma.

LEMMA 2.4. There exists a map ¢: RZ — WHP(RN) such that:

(a) ¢(t,0) € =P, ¢(0,s) € P fort >0, s> 0.

(b) I(p(t,s)) = —o0, ast+ s — 4o0.

(c) sup I(p(t,s)) < c*, where ¢* =min(cy +d_,c_ +d).
t,s>0

Consequently, if we choose R large enough and define h(t) = (R cosmt/2,
Rsin7t/2), then condition (H) holds.

ProOoOF. Without lose of generality, we assume ¢* = cy +d_. If d_ = 40
then ¢* = 4+00. Let (a,b) = (pcosd, psin@). By the assumption p > p(6), there
exists a function u € ¥ such that u = u* —u~, u™ # 0 and

/ (V™ P + Ag(a) () da / (V[ + Ag ) (u™)?) da
RN = JRY =p<p.

Cosﬁ/ (u™)Pdx sin@/ (u™)Pdx
RN RN

Define ¢(s,t) = sut—tu™, (s,t) € RA. We have I(sut —tu™) = I(su™)+I(tu™),

lim I(su™) :1/ (|Vu+|P+)\g(x)(u+)P)dx— lim F(su?)
RN

s—+00 spP D s—s+o0 sp

1 B cos 9(u+)pdx—1/ a(ut)Pdx = —l(p—ﬂ) cosf [ (uT)Pdx <O.
P Jry P JrN p RN
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Similarly

lim I[(=tu”) = —l(p — ) sinf (u™)Pdx < 0.

t—+o00 tp p RN
Hence there exist constants ¢y, co such that

I(sum™ —tu™) < —ci(sP+tP)+ca and I(su™ —tu”) — —oo, as s+t — +oo.

If d_ < 400, then by Lemma 2.1, problem (P.,) has a negative solution v with
J(v) = d_. Meanwhile, by Lemma 2.2, problem (P) has a positive solution u
with I(u) = c;. Let e be a vector of RY. Define vg = v(- — 2Re) with a
parameter R. Set ¢(s,t) = su + tvg. Then there exists ¢ > 0 such that for R
large enough
I(su+tvg) <cy+d_ — R%

The above estimate was proved in [10] for asymptotically p-linear p-Laplacian
equation. The same argument works here. For R large enough u and vg are

almost separate. We can show (see [6], [10]) that as s+t — oo

I(su+tvg) = I(su) + J(tv) + (s* + tP)o(1).

Now
1 1 F
hm 1% 1 / (IVul? + Ag(@)|ul?) dz — Tim T
s—+oo SP D JrN s——+o00 sp
1 1
=- fwude — 7/ alulPdx < 0,
P Jry P Jry
since, by (f1), f(s)s < asP for s > 0. Similarly,
J(t 1 F(t
im (tv) = 7/ (IV|P + Av|P) dz — lim (tv)
t—4+oco P P JrN t—+oo P

1 1
= - (v)vdx — 7/ blvPdx < 0,
D JrN D Jry

since, again by (fy), f(s)s < b|s|P for s < 0. Therefore
I(su+tvg) < —c1(sP +tP) +co  for some ¢1,c0 >0

and I(su + tvg) — —o0, as s +t — +00. O

Conditions (I;) and (Iy). We define the operator A (see [5]). For p > 2,
v = Au is defined by the following equation:

(2.1) /RN (IV(u—0)[P72V (u — v) Ve + Ag(z)|u — v|P"*(u — v)p) dx

- / (VP2 VuVe + Ag(@)|ul2ugp) dx — / g dz,
RN RN

for all ¢ € WHP(RY). The right-hand side of (2.1) is nothing but (I’(u), ¢).
Setting ¢ = u — v in (2.1), we obtain

(I'(w),u —v) = [Ju—v|f.
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Also we have

11" (u)]] = ” Sll‘lpzlgl(u)#@
= sup / (IV(u—2)P2V(u—v)Ve + Ag(z)|u — v[P~*(u — v)p) dx
llellx=1JRN

IA

el { </RN v v”pdx) o < /RN |V90Pd9€> "
(oo ot (p_l)/p</m /\9($)|sﬁpd$)1/p}

o ([ (19— 0P + g0l — ol ) v

<
[lellx=1
1/p
- ( [ (el gt dw)
]RN
—1 —1
= sup fu—vlZ gl = flu—lZ"
[lella=1

For 1 <p < 2, v = Au is defined by

(2.2) % /]RN (IV(u—=2)P2V(u—v)Ve + Ag(z)|u — v[P"*(u — v)p) dz
+ % / (|VuP~2Vu — [VoP2Vo) Ve + Ag(2) ([ulP~*u — [v[P2v) ) dx
RN

- / (VP2 VuVe + Ag(@)ul2ugp) dx — / g de,
RN RN

for all ¢ € WHP(RY). Take ¢ = u — v in (2.2). We have (I'(u),u — v) >
lu—v||} /2. Moreover, by (2.2),

17 ()l = | S‘FILU’(UL@

1 _ 1
<lu—wv|P7 + = sup / (IVulP~2Vu — |VoP2V) Ve
2 2 jgll=1 Jr¥

+Ag(@)(Jul"u — [o]Pv)p) do

1 —1
< 5”“ —vl§

+d s [ (9G0Pl + Agl@lu— ool do
RN

llellx=1

1
-1 -1
llu = olIX™ + Sepllu = ollX
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Here and in what follows we need some elementary inequalities. For p > 2
and &, € RY we have

(I€P726 = P "*n, & = n) > cpl€ —nl?,
1E[P=2¢ — In[P~2n] < dp(I€] + [n))P~21€ — 7.
For1§p§2and§7neRN
(€P726 = P20, & =) > cp(I€] + [n)P21E — nl?,
1€1P72¢ = [nlP~n| < d,l¢ —nlP~".

Condition (A). Let u € WHP(RY), v = Au. Forp > 2, set ¢ = vt in (2.1).
We have

(2.3)

(2.4)

/ (IVulP7>Vu — |[V(u— o) P2V (u—v1)) Vot da
RN

+ )\/ g(@)(JulPu—ju— v P2 (u— o)) do = (u)v™ da.
RN RN

By (2.3),

(2.5) / (IVuT|P + Ag(z)(vT)P)dx < ¢ (u)v™ d.
RN RN

For 1 <p <2 set p=v" in (2.2)

(2.6) /]RN (|Vu|p_2Vu — |V(u—v") P2V (u — vh)) Vot do

N

A
5 [ a@ P fu = o - oot de
2 RN
1
+ = / (|Vo TP + Ag(z) (vT)P) do = (u)v™ da.
2 RN RN
The first two terms of the left-hand side of (2.6) are positive, hence we obtain
(2.5) again. Now we estimate the right-hand side of (2.5). By (f;)—(f3), for
p<gq<p"=Np/(N-p),5>0

(2.7 flu)vtdzr < fluHvtde

< (5/ (u TP~ ot de + 05/ (uh) T ot da
RN RN
< 6|u+‘£_1lv+|p + Cé|u+|g_l|v+|q
=§dist?, ' (u, —P) dist s (v, — P) + ¢5 dist?, " (u, —P) dist 4 (v, —P)
<o disty ! (u, — P) disty (v, —P) + ¢s dist? ™" (u, — P) dist (v, — P).
By (2.5) and (2.7),

dist? " (v, = P) < ¢d dist} " (u, — P) + ¢5 dist? " (u, — P).
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Take 8,9 > 0 such that ¢d < (1/2)? and csed ™" < (1/2)P. Then, for ¢ < ¢ and
u € Dy = {u | disty(u, —P) < €}, we have

1
disty (v, —P) < 3 disty(u, — P),
hence Au € Ds. In particular A(OD3) C Ds. Similarly A(0D;) C D;.
Continuity of the operator A. Let uj,us € WHP(RY) and v; = Auy,
vy = Aug. For p > 2, by (2.1), we have

(2.8) /RN (IV(ur — 01)[P72V (ur — v1) — [V (uz — v2)[P72V (ug — v2)) Vip da

+ )\/N g(x)(\ul - v1|p*2(u1 —v1) — |ug — 02\1’*2(1@ — vg))godx
R

= (I'(w1) = I'(u2), ¢),
for all p € WLP(RN). Set ¢ = (ug — v1) — (u2 — ve) in (2.8). By (2.3), we have
[[(ur — 1) = (w2 = v2) [} < e{I'(wr) = I'(u2), (w1 —v1) — (uz — v2))
< el I (ur) = I'(u2)[[[[(u1 = v1) = (uz = v2)llx,
hence
lor = wallx < llur = uallx + [ I (ur) = I’ (uz) |/ P71
For 1 < p < 2, by (2.2),

(2.9) %/RN(W(M )2V (uy — o)
— |V (ug — v2)|p_2V(u2 - ’UQ))V(Ul — v — ug + vg) dx

+ %/}RN g9(x)(Jur — 01 [P (us — 1)

— |ug — v2|p*2(uQ - UQ))(Ul — V1 —ug + vg) dx

1
+ 5/ (|Vv2|p_2VU2 — \Vv1|p_2Vv1)V(v2 — 1) dx
RN
A p—2 p—2
+t3 g()(Jv2|P""vg — |v1[P""v1) (ve — v1) dz
RN

-3 /RN (19 (wr = 0) P2V (ur — v1)

— |V (u2 — v2) P72V (up — v2)) V(u1 — uz) d

A

+3 [ @ = ul 2 = o)

— lug — 02" (ug — v2)) (ur — ug) da + (I (ur) — I (ug), va — v1),

where
1

Il(u) == %

/RN (IVul? + Ag(x)[ul?) dz — /RN Pu) da.
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We estimate the left-hand side of (2.9). By (2.4),

(/RN IV (vg — mm) o

(2-p)/p
< / (|V7)2|+|V’U1|)p_2|V(Ug—7}1)|2dl‘(/ (|VU2|+|VU1|)pd$>
RN

RN

< c/ (|Vu|P™2Vuy — [Vur [P72Vu1)V(vg — v1) da
RN

(2—p)/p
- (/RN('V”Q' Vo)) dx)

: C/ (IVv2|P=2Vvg — [Vor P72 V1)V(va — v1) da ([Jual|x + [|uzllx)* 77
RN

In the above we used
ollx < lullx + llu = vllx < llullx + el ()P~ < clfulls.

In a similar way we estimate other left terms of (2.9). Next we estimate the
right-hand of (2.9)

/R (IV(uy — v1) P2V (uy — v1) — |V (uz — v2)V(uz — v2)) V(uy — ug) da

- /\/ 9(@) (Jur — 01 [P (ur = v1) = Juz — 02" (uz — v2)) (w1 — uz) dz
RN

<c(flur —villFH + [luz — w28 llur — ua i
<c(unlf" + luzllF ) lur — uz|a-

Altogether we have

lva = o1l < e(lfunllx + [luallx)lur — uz|lx

+c((fun] PP+ ug*P) I (ur) = I (ug) [ [[or — va2]|x
and

1/2 1/2 1/2
los — vrllx < e(lfunlly® + lluzlly*) ey — ually

+e((lunl®7P + [lual 7)1 (1) = I' (u2)]].

At this point we have verified all assumptions of Theorem 2.3 except the
Cerami condition. Since we deal with a problem in the whole space, compact-
ness is lost. Instead of the Cerami condition, we analyze the behaviour of Ce-
rami sequences. The proof of the following lemma is similar to the argument of
Lemma 4.3 of [11] (see also [17, Theorem 5.1] or [14, Proposition 2.1]).

LEMMA 2.5. Let {u,} C WHP(RY) be a Cerami sequence of the functional I.
Then there exist u € WHP(RN), v; € WHP(RN), {y,, ;}22, e RN, i =1,... k,
such that:
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(a) u is a solution of problem (P).
(

)

b) v;, i =1,...,k, are solutions of problem (Ps).

(C) |yn,l| — 00, |yn,z - yn,]| — 00, { 7& j; as n — 00.
)

k
(d) wp —u— Y vi(+ —yni) =0, in WHP(RY) as n — oco.
i=1

(€) I(un) = I(u) -

M=

J(v;) = 0 as n — oo.
1

<.

PrROOF OF THEOREM 1.1. Since the Cerami condition does not hold, we
cannot apply Theorem 2.3 directly. Anyway we can find a Cerami sequence
{un} € X\ (D1 U D) with n11_>1r010 I(u,) < ¢*. Apply Lemma 2.5 to the sequence
{un}. Since u, ¢ Di U Da, signs of vq,vs,... are different. Then only the
following several cases may occur:

(a) u=0.

(a1) One of v;, say vy is sign-changing.

(ag) None of v; is sign-changing, then one of v;, say vy, is positive and another
one of v;, say vs, is negative.

(b) u #£ 0.

(b1) w is positive, then one of v;, say v, is positive or sign-changing.

(b2)

(b3) u is sign-changing.

u is negative, then one of v;, say vy is negative or sign-changing.

In all these cases but (bsz) we will arrive at contradiction. In the cases (a;)
and (ag) we have

¢ > lim I(up) >dy +d_.

n—o0

In the case (b1), we have

¢ > lim I(up) > ey +d_.

n—oo

In the case (bs), we have

¢ > lim I(up) > c_ +d;.

n—oo

In the case (bs), we should have k = 0, that is u,, — u in H'(R"), otherwise

c¢* > lim I(up) > I(u) + min(dy,d_) > ¢y + c— +min(dy,d-). O

n—oo

3. The Fucik spectrum

In this section we study the Fucik spectrum and prove Theorem 1.2. Firstly
we study the problem on bounded domains. The solutions for bounded domains
will be used as the minimizing sequence of the problem on unbounded domains.
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We use the following notations.
J(u) = / (IVul? + Ag(z)|ul?) dz, G(u) = / (cos O(u™)P +sin O(u™)P) dz,
RN RN

J(w) /RN ([Vul? + Ag()[ul") d

THEOREM 3.1. Let Q C RN be a bounded domain. Define

(M)p pp = pp(82) = ulenzfp J(u),

where
Y, =YWy P(Q) = {u|uecWyPQ), u=u*—u", ut #0,
G(u) =1, R(u*) = R(u")}.

Then p, is achieved, and (u,cos, pu,sinf) is the first nontrivial Fucik spec-
trum point of the operator (L, VVolp(Q)) on the line ly. Moreover, there exists

a function u € ¥, satisfying
(E), —Apu+ Ag(x)[ulP"u = pp(cos O(uT)P™t —sinf(u")PH)

or in the weak form
©), [ (VuP>uTp 4 dgla)luPup) da
Q
= up/(cos O(u™)P~! —sin§(u )P de,
Q

for all o € WP().

We would like to point out that normalized solutions of (E), are minimizers
of problem (M), but all minimizers are not solutions of (E),. Here is a coun-
terexample. Let Q = (0,7) C R, p = 2. Consider the minimization problem

i = inf { / |Vul?dt
0

w=u"—u" € Hy(0,7), ut #£0,

foﬂ ‘vu+|2dt = fOﬂ— |VU7|2dt /‘n— uzdt = 1}
JThzdt [T )2dt " '

We have a family of minimizers ¢, € (0,7/2),

2
——cosasin2t for 0 <t

Palt) = ﬁ 2

2 ™
——sinasin 2t for

NG 2

IN
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of which only one is a solution of (E),, namely the one with o« = w/4. This
indefiniteness motivates us to consider the following inhomogeneous problems:

(M), fhq = pq(§2) = ulenzf J(u),
where p < ¢ < p* = Np/(N — p), and
PIME {u | u e Wol’p(Q)7 uw=ut—u", ut #£0, G,(u) =1, Ry(u") = Rq(—u_)},

Gq(u) :/Q(cosé(uﬂq +sinf(u™)?) dz,

[ 0vul? + rg(a)fup) ds
Ry(u) = J(w) = & .
Go(u) /(COS@(U*)quSin@(u*)q)dx
Q

LEMMA 3.2. g is achieved.

PROOF. Let {u,} € ¥, € Wy?(Q) be a minimizing sequence. It is bounded
in WyP(Q). Assume that u, — u in Wy*(Q), u, — u in L9(Q). We have

Ry(u}) = Ry(—ug) = Ryun) = C‘f((“u’) = Jun) <

Hence, by the Sobolev imbedding theorem,

p/q
(frac) <e [(vair + s <e [ @i
Q Q Q
and there exists v > 0 such that [, (u;})%dz > v. We have

/(u+)qu = lim [ (u))%dz > v.
Q

n— oo Q

Hence u® # 0. Similarly u= # 0. Choose s,t > 0 such that su™ — tu™ € X,
that is (s, t) solves the system

51 COSQ/(u+)qu+tq sin&/(u*)qda:: 1,
Q Q
SPTIR,(uT) = tPTIR, (—u”).

Let ad = Gy(su,” —tu,, ), then Gy(su;’ /a, —tu,, /ap,) =1 and a,, — 1 as n — oo.
By the lemma below, we have

pg < J(sut —tu”) < lim J(su} —tu)
n—r oo
= lim J iu*—iu7 < lim J(uf —uw))=p
n— o0 U, n anp, ") T nooo n n a
Hence J(sut —tu™) = . O

LEMMA 3.3. Let u € ¥y, u =u" —u~. Let s,t >0, v =su™ —tu~ and
Gq(v) =1. Then J(v) < J(u).
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PROOF. Since u € X4, Gg(u™) + Gy(—u™) = G4(u) =1,
J(ut) J(—u") J(u)

Ggy(u'™) N Gy(—u™) - Gq(u) =Jw.
We have
Jw)  sPJ(ut)+tPJ(—uT) PO ) - PO (-
J(u) - J(u) - GQ( )th Gq( )

< (891G (uh) + 19G, (—u™))P/1 = (Gy(sut — tu™))P/9 = 1. O
LEMMA 3.4. The minimizer u for pg solves the following equation:
(E)q —Apu + Ag(@)|ulP?u = py(cos O(u™)T™! —sinO(u™)17t)

or in the weak form
©) [ (VYT Agla)lupu) de
Q

= ﬂq/(cos O(u™)1™ —sinf(u" )4 Hpda,
Q
for all p € WyP(Q).

PrROOF. We use an indirect argument. Suppose that the minimizer u for
problem (M), does not satisfy (E)q, then there exists a function ¢ € WoP(Q)
such that

/(|Vu\p_2VuV<p—|—/\g(x)|u|p_2uga) dr < uq/(COSH(u+)q_1—sin@(u_)q_l)godx.
Q Q

Replace ¢ by ¢ —u [, (cos O(u™)?™1 —sin@(u™)?"')pdr, we may assume

(Gy(u), ) :/Q(cos O(uT)?Tt —sinf(u™)?T Hpdr =0,

(' (), ) = / (IVulP>VuVp + Ag(a)[ulP>ugp) dz < 0.

Choose ¢ > 0 such that for |s — 1| < J, [t —1| < d and 0 < e < §,

1
(J'(su™ —tu™ +ep),p) < —5

Consider the square S on the (s,t) plane with vertexes A(1,1+ ¢), B(1+4,1),
C(1,1 = 9), and D(1 — 6,1), and edges AB,BC,CD and DA. We have the
following estimates:

Gylsut —tu™)>1  if (s,t) € AB,
Gylsut —tu™) <1 if (s,t) € CD,
R,(sut) < Ry(—tu™) if (s,t) € BC,
Ry(sut) > Ry(—tu™) if (s,t) € DA.
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Choose 0 < g9 < § such that for € < g9 we have, for w.(s,t) = sut —tu™ + ey,

Gq(we(s,t)) > 1 if (s,t) € AB,
Gy(we(s,t)) <1 if (s,t) € CD,
Ry(wZ(s,t)) < Ry(—wZ (s,t)) 1if (s,t) € BC,
Ry(wZ(s,t)) > Ry(—wZ (s,t)) if (s,t) € DA.

By a degree theorem argument [3], [9], for any ¢ < ¢ we find (s,t) € S such
that w.(s,t) = su™ —tu™ +ep € X,. In fact the map

T: 53 (s,t) = (Gglwe(s,t)) — 1, Ry(wd (s, 1)) — Ry(—w; (s,1)))
is homotopic to the map K: (s,t) — (s+t—2,t — s). Hence
deg(T,int S,0) = deg(K,int S,0) = 1.

There exists (3,t) € S such that T'(5,t) = (0,0), that is w.(5,t) € ¥,. Notice
that 5 — 1,t — 1 as ¢ — 0. We have

1

Gy(But—tu™) = Gy(su™ —fu_—i—sgo)—s/ (G, (5u™ —tu™ +7ep), ) dT = 14o0(e).
0

Choose A > 0 such that G4(Asut —Xtu~) =1, A = 1+0(e). Now, by Lemma 3.3,

J(we(3,1)) =J(Bu" —tu™ +ep)

1
= J(su" —fu*)+s/ (J'(su™ —tu™ + Tep), ) dr
0

_ 1 _ 1
<JGEut —tuT) - € < J(A\sut — Nu™) — 1€
_ 1 1
SJ(U+*U)*Z€:M(I71€.
We arrive at a contradiction. O

LEMMA 3.5. limp, < pp.
q—p

PROOF. Given € > 0, choose u = u™ —u~ € ¥, with J(u) < p, +e. We are
looking for u, = su™ — teu™ € ¥, with lim J(uq) = J(u), then
a—p

limp, < lim J =J(u) < ,
qlgjlgﬂq_qu)% (uq) (u) < pp +¢

where ¢ is arbitrary, hence lim p, < p1,,. We solve the system for (s4,%,),
q—p

sIG (ut) + G (u™) =1,
(3.1) sbJ(ut)  thJ(—u”)

Squ<u+) B tqu(—u_) .
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If s, > 0, ty > 0 is a solution, then s,u™ — t,u™ € X,. By the second equation
of (3.1),

1/(g—p)

L= ty _ <Gq(u++) J(,uf_) >1/(q—p) _ /Q(qu)qu/Q(u*)de
54 J(ut) Go(—u~) /Q(uﬂpdl’/ﬂ(u*)qu

/(u+)plnu+da: /(uf)plnufda:
Q o

ap = lim a, = exp —

- /Q(u+)pd:1: /Q(uf)pdm

5y = 1/{ /Q(cosa(qﬁ)q + sin O(agu™)") da:}l/q,
= aq/{ /Q(cose(qﬁ)q +sin9(aqu_)q)dx}1/q,

sp=1 / { /Q (cos B(u™)P + sin B(a,u”)P) d:c}l/p,
t, = ap/{ /Q(cos O(uT)P + sinf(apu)P) dz}l/p.

We have t = syu™—t,u™ € B, J(0) = J(u) < pp+e and ugy = squt —tu™ € By,
liLnJ(uq):J(ﬂ)Sup+5. O
q—p

Define

Proor orF THEOREM 3.1. Let u, € Xy, ¢ > p, be the minimizer for problem
(M),, obtained in Lemmas 3.3, 3.4. J(uq) = g, Gq(uq) = 1 and u, satisfies

(E)q —Apug + Ag(@) uglP?ug = pg(cos f(ut) ™t —sinh(u)17)
or in the weak form
®) [ (TuP V0T + dg(o)ul Puge) da
= / ,uq((:os@(u;)‘r1 fsinﬁ(u;)qfl)gadx
Q
for all ¢ € Wol’p(Q). Choose a sequence {q,}, g, — p, and
po=lm pg, = lim p,.
n— 00 q=p

Denote u, = ug,, J(un) = jig, < ¢ {un} is bounded in WyP(Q). Assume
u, = uin L™(Q), p < r < p*. Denote f,, = pg(cosO(u;f)4 =1 — sin O(u,, )4 ~1),
suppose f,, is bounded in L™/ ("=1(Q), for p < r < p*.
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For p > 2, we have

/|Vun — V|l dx < c/ (|Vtun P2V uy — [Vt [PV ) (Vi, — Vi) dz
Q Q

< C/Q(fn - fm)(un - um) dr < C(lfn|r/(r71) + ‘fm|r/(r71))|un - um‘r — 0.

For 1 < p <2, we have

/ |V, — Vi, |P de
Q

p/2
= C(/ (V]2 Vi = [Vt [V, ) (Vi — Vi) dm)
Q

(2—p)/2
. (/(|Vun|p + [Vum?) dx)
Q

p/2

<c < |ty — um|?/? = 0.

[ (= fo) = ) o

In both cases we have u, — u in Wy?(Q). Hence G(u) = 1, u # 0, and u
satisfies the equation

—Apu+ Ag(@)lulP?u = pu(cos O(ut ) —sin6(u”)P)

or in the weak form

(3.2) / (IVulP~2VuVp + Ag(x)|ulP~2uyp) dx
Q

= u/(cos O(uT)P~ —sinf(u" )P Hpde,
Q

for all ¢ € ng(Q) We claim u* # 0, hence u € %,. Otherwise suppose
u™ = 0. Then u is a nonnegative eigenfunction of the operator (Ly, W, (Q)).
It is strictly positive in © [7]. Hence |u,, > 0] — 0, where |u;, > 0| denotes the
measure of the set {x|u,, > 0}. On the other hand,

(3.3) |2 = / (IVus [P + Ag(a)(ug)?) do

= Uq,, / sin O(u,, )" dx
Q

. . qn/P"
< eluz > 01/ (/(un)p da:)
Q

< eluy >0 fuy |18,
we arrive at a contradiction. Since u € X, by (3.2) and Lemma 3.5,
Timpg < pp, < J(u) = pp = lim g, .
qﬁp#q Spp < J(u)=p mﬂq

Hence p = pp. O



SIGN-CHANGING SOLUTIONS FOR p-LAPLACIAN EQUATIONS 177

LEMMA 3.6. The following holds:
(a) p(0) = p(0) := inf{max(R(u"), R(—u7)) | u = u™ —u~ € WHP(RY)
ut £0),
pp =T, = inf{max(R(u"), R(-u")) |u =ut—u~ € WyP(Q), ut#0}.
(b) lim p,(Br) = p(6)-
(¢) If A>T(0) (0 <0 <m/4), then p(d)cosh < A.

PRrROOF. (a) R is homogeneous, hence
p(0) = inf{R(u) | u=u" —u™ € WHP(RY), v #0, R(u") = R(—u")}

and p() < p(6). On the other hand, let v = vt —u~™ € WLP(RN), uT # 0.
Suppose R(u™) < R(—u~). Let ¢ be a Lebesgue point of u, u(zg) > 0, let ¢,
be a cut off function such that ¢, =1, |t —xo| <7, ¢ =0, | — 9| > 2r. Let
v, =ut @, —u~. Since R(ut¢,) = R(u™) as r — 400, and R(ut¢,) — +o0 as
r — 0, there exists r¢ such that R(u™p,,) = R(u™), we have

p(0) < R(vy,) = R(u”) = max(R(u"), R(u")),

hence p(0) < p(0). Similarly we have p, = i,.

(b) It is clear that p,(Bgr) > p(#) and p,(Bgr) is nonincreasing in R, hence
Rli_r}rloo tp(BRr) > p(f). Given € > 0, choose u € ¥ with J(u) < p(0) +¢. Let g
be a cut off function such that ¢r =1, if |z| < R; vg =0, if || > R+ 1. For
Ry large enough,

Rutygr) < R(u)+e < R(u) +e=J(u) +e.
Similarly, R,(—u~v¢g,) < J(u) + ¢ and
pp(Br) < max(R(utr), R(—u~¢g)) < R(u) + &= J(u) + ¢ < p(6) + 2e.

(¢) There exists € > 0, choose u € WHP(RN), such that u = ut —u~, u* #0

and
/]RN |Vu't|Pdz B /RN |[Vu~|Pdx -
[ a-genwtyds [ o - g)w s
RN RN
hence
(VP + Ag() (u™)?) da
R(u*) = / <2
cosH/RN (ut)Pdx cos
[ vupag@@ e
R(-u™) == cosf’

sin 0 (u™)Pdx
RN
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A

. O
cos

p(0) < max(R(u"), R(—u")) <

PROOF OF THEOREM 1.2. Let R, — 00, iy, = fip(BRr, ), Un € Xp(Br,) =
N W, P (Q) satisfy

—Apup, + )\g(x)|un|p_2un = iy (cos O(u;'{)p_l — sin 9(u;)p_1)

or

/B (|Vtn P2V, Voo + Ag(2) [t |P 2 un ) da
Ry,

= ,un/ (cos O(u P! —sinf(u, )P~ Hpdx
BRn
for all ¢ € W, *(Bg,). By Lemma 3.6,
[ (9w Ag(@)fun ) dz = = 5(6).
BRn
We assume that u, — u in WHP(RY), u, — uwin L], (RY), p <r < p*. By the
assumption A > I'(f) and Lemma 3.6, there exist R,d,v, N such that
Ag(x) — pp cos® > 6 >0, for |x| > R and n > N.
We have

un/ (cos@(ui)p+sin0(u;)p)dx:/ |Vun\pdx+/ Ag(z)|up |Pdx
Br RN B

R

n / [(Ag(@) — pin csB) ()P + (Ag(z) — pn sin B)(u; )] e
]RN\BR

2/ |V, |[Pde +/ Ag(z)|un |Pde + 6 |un [Pde > v (un) = Vidy
RN Br RN\Bg

and

/ (cosO(ut)P+sinf(u~)P)dr = lim (cos O(u, )P +sinf(u,, )P) dx > v > 0.
Br

Hence u # 0. As in the proof of Theorem 3.1, we can show that uw, — u in
WEP(RN) and u satisfies the equation

loc
—Ayu -+ Ag(@)|ulP~*u = p(8) (cos B(u”) " — sinf(u” )P
or, for all ¢ € W1P(RY)

/ (|VulP~2VuVp + Ag(2)|uP~2uyp) de
RN

= p(6) /RN (cos@(ut)P~! —sinf(u™ )P~ d.

Now we prove that u* # 0. Otherwise suppose v~ = 0. Then u = u* is
a nonnegative eigenfunction of the operator Ly, it should be strictly positive,
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see [8]. Therefore |Br(u,,) > 0| — 0, where Br(u,, > 0) = BgN{u, > 0}. As
in (3.3), we have, on one hand,

Y / (uy, )Pdx
Br
:/ [Vu, [Pdz + Ag(x)|uy, [Pdx + / (Ag(z) — pn sin0)(u,, )Pdx
RN Br RN\Bg
> [ Wi [ dg@liPders [ ug)rde = cleg
RN Br RN\BR

On the other hand,

p/p"
[iy, SID O / (u;, )Pdx < ¢|Bgr(u, > 0)|p/N( / (un)p*)
BR BR

< ¢|Br(u, > 0)["/¥ [luy, |17,

we arrive at a contradiction. Similarly u™ # 0. It is clear that J(u) = p(#) and
R(ut) = R(—u™). O

PROPOSITION 3.7. p(6) is continuous.

PROOF. Assume 0 < 6 < 6 < 7/2. Choose u € WP(RY) such that

/ (VP + Ag(a)(u)P) da / (IVu~ [ + Ag(w) (u™)?) da
]RN

= *RY < p(al) +e,
cos 01/ (uT)Pdx sin 91/ (u™)Pdx
RN RN
we have
+|p +\p
[ (90 P+ dga) ) da st
< (p(01) +2) =0,
cos 92/ (ut)Pdx 2
RN
—p —\p
/RN(|VU [+ Ag(a)(u™)?) de sin 6, cos 64
< (p(61) +5)siw < (p(61) +€)E'
sin 92/ (u™)Pdx 2 2
RN
By Lemma 3.6 (a)
[ 096t + 2gfe)wt)?) do
,0(92) < max RY )
cos 92/ (ut)Pdx
RN
—p —\p
090 P g0 da e

< (p(0h) +¢)

cosfsy’

sin02/ (u™)Pdx
RN
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where ¢ is arbitrary,
p(02) cosby < p(B1)cosby, 0<by<b< %
Hence

(3.4) Tim p(0) < p(0y) < lim p(0).

005 007

Now choose u € WHP(RY) such that

/ (VP + Ag(a)(ut)?) da / (IVu~ [P + Ag(w) (u™)?) da
RN _ JRN

= < p(b2) + €.
00502/ (u™)Pdx Sin92/ (u™)Pdx
RN RN
We have
-p —\p
[ 09+ 2gla) o)) da nds
< (p(62) + &g
sin@l/ (u™)Pdx !
RN
+|p +)p
/RN(|VU "+ Ag(@)(uT)?) do cos 0 sin 0

< (p(02) + ) < (p(02) +¢)

0s 6, sinf;

cos 91/ (ut)Pdx
RN
Again by Lemma 3.6 (1), p(61)sin6; < p(62)sin ;. Hence
(3.5) lim p(0) < p(6o) < lim p(6).

66, 065

By (3.4) and (3.5), 913)10 p(0) = p(6o). O
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