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THE SL(3,C)-CHARACTER VARIETY OF THE FIGURE
EIGHT KNOT

MICHAEL HEUSENER, VICENTE MUÑOZ AND JOAN PORTI

Abstract. We give explicit equations that describe the character
variety of the figure eight knot for the groups SL(3,C), GL(3,C)

and PGL(3,C). For any of these G, it has five components of

dimension 2, one consisting of totally reducible representations,

another one consisting of partially reducible representations, and

three components of irreducible representations. Of these, one

is distinguished as it contains the curve of irreducible represen-
tations coming from SL(2,C). The other two components are

induced by exceptional Dehn fillings of the figure eight knot. We

also describe the action of the symmetry group of the figure eight
knot on the character varieties.

1. Introduction

Since the foundational work of Thurston [46], [45] and Culler and Shalen
[13], the varieties of representations and characters of three-manifold groups
in SL(2,C) have been intensively studied, as they reflect geometric and topo-
logical properties of the three-manifold. In particular, they have been used to
study knots K ⊂ S3, by analysing the SL(2,C)-character variety of the funda-
mental group of the knot complement S3 −K (these are called knot groups).

Much less is known for the character varieties of three-manifold groups in
other Lie groups, notably for SL(r,C) with r ≥ 3. There has been an increasing
interest for those in the last years. For instance, inspired in the A-coordinates
in higher Teichmüller theory of Fock and Goncharov [20], some authors have
used the so called Ptolemy coordinates for studying spaces of representations,
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based on subdivisions of ideal triangulations of the three-manifold. Among
others, we mention the work of Dimofty, Gabella, Garoufalidis, Goerner, Gon-
charov, Thurston, and Zickert [17], [18], [22], [23], [21]. Geometric aspects of
these representations, including volume and rigidity, have been addressed by
Bucher, Burger, and Iozzi in [10], and by Bergeron, Falbel, and Guilloux in
[3], who view these representations as holonomies of marked flag structures.
We also recall the work Deraux and Falbel [14], [15], [16] to study CR and
complex hyperbolic structures.

In a recent preprint, Falbel, Guilloux, Koseleff, Rouillier, and Thistleth-
waite [19] compute the variety of characters of the figure eight knot in SL(3,C)
using the ideal triangulation approach. We also compute this variety of char-
acters in this paper, but with a completely different method and we obtain a
different description. Here we describe it as an affine algebraic set with trace
functions as coordinates.

The SL(3,C)-character varieties for free groups have also been studied in
[34], [35], [36], [49], and the SL(3,C)-character variety of torus knot groups
has been determined in [41]. Other results on the local geometry of SL(3,C)-
character varieties have been proved in [1], [4], [26], [40].

For Γ a finitely generated group, and for G = SL(r,C), GL(r,C), or
PGL(r,C), the variety of representations is denoted by R(Γ,G). It is an
algebraic affine set, the action of G by conjugation is algebraic and the affine
GIT quotient is naturally identified with the variety of characters X(Γ,G),
see [38]. Notice that both R(Γ,G) and X(Γ,G) can be reducible (hence not
varieties in the usual sense), and their defining polynomial ideals may be non-
radical (when this happens they are said to be scheme non-reduced), cf. [38].
When G= SL(r,C), points in X(Γ,SL(r,C)) are precisely characters of repre-
sentations, that is, for ρ ∈R(Γ,G) its character is the map χρ : Γ→C defined
by χρ(γ) = tr(ρ(γ)), ∀γ ∈ Γ.

Definition 1.1. A representation ρ is reducible if there exists some proper
subspace V ⊂ Cr such that for all g ∈ G we have ρ(g)(V ) ⊂ V ; otherwise
ρ is irreducible. A semisimple representation is a direct sum of irreducible
representations.

A representation ρ : Γ→ SL(3,C) is called partially reducible (respectively,
totally reducible) if it is the sum of a one-dimensional and two-dimensional
irreducible representation (respectively, a sum of three one-dimensional rep-
resentations).

This paper focuses on the fundamental group of the complement of the
figure eight knot, denoted by Γ. We consider the following two natural pre-
sentations:

Γ∼=
〈
a, b, t | tat−1 = ab, tbt−1 = bab

〉
,(1)

∼=
〈
S,T | ST−1S−1TS = TST−1S−1T

〉
.(2)
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The former comes from the fibration of the three-manifold over the circle, the
latter from knot theory [11], [43], as the generators are meridian loops. The
presentations are related by{

S = t,

T = a−1ta,
and

⎧⎪⎨
⎪⎩
t= S,

a= T−1STS−1,

b= TS−1.

The figure eight knot exterior fibres over the circle, with fibre a punctured
torus. Thus Γ is the split extension of the group of the fibre, the free group
F2, by a cyclic group, the group of the circle. This explains Presentation (1),
as the group of the fiber is freely generated by a and b. This free group
F2 = 〈a, b〉 is the kernel of the Abelianisation ϕ : Γ→ Γab

∼= Z, which is given
by

(3) ϕ(S) = ϕ(T ) = 1, and ϕ(t) = 1, ϕ(a) = ϕ(b) = 0,

respectively; so F2 is also the commutator subgroup of Γ. Hence, for any
representation ρ : Γ→G with G= SL(r,C), GL(r,C), or PGL(r,C), we have

(4) ρ(F2) =
〈
ρ(a), ρ(b)

〉
⊂ SL(r,C).

Presentation (2) is the usual presentation for a 2-bridge knot group, as the
figure eight knot is the 2-bridge knot b(5,3) in Schubert’s notation (see [11,
Section 12.A]). In particular, X(Γ,SL(3,C)) is a subvariety of the SL(3,C)-
character variety of the free group of rank 2 generated by S and T , and results
of [34], [49] will apply, see Proposition 2.3. More precisely, we consider the
algebraic map X(Γ,SL(3,C))→C8 defined by

χ 
→
(
y(χ), ȳ(χ), z(χ), z̄(χ), α(χ), ᾱ(χ), β(χ), β̄(χ)

)
,

where

y(χ) = χ(S), ȳ(χ) = χ
(
S−1

)
, z(χ) = χ(ST ),

z̄(χ) = χ
(
S−1T−1

)
, α(χ) = χ

(
[T,S]

)
, ᾱ(χ) = χ

(
[S,T ]

)
,(5)

β(χ) = χ
(
S−1T

)
, β̄(χ) = χ

(
ST−1

)
.

We see in Proposition 2.3 that they define coordinates for X(Γ,SL(3,C)) as
a subvariety of C8. Using Presentation (1), those coordinates are:

α(χ) = χ(a), ᾱ(χ) = χ
(
a−1

)
,

β(χ) = χ(b), β̄(χ) = χ
(
b−1

)
,

(6)
y(χ) = χ(t), ȳ(χ) = χ

(
t−1

)
,

z(χ) = χ
(
ta−1ta

)
= χ

(
t2b

)
,

z̄(χ) = χ
(
a−1t−1at−1

)
= χ

(
b−1t−2

)
.

Throughout this paper, μ3 = {1,�,�2} ⊂ C∗, � = e2πi/3, denotes the
group of the third roots of unity. We identify μ3 with the center of SL(3,C),
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consisting of diagonal matrices, and for any knot group Γ, it acts on the spaces
R(Γ,SL(3,C)) and X(Γ,SL(3,C)) via

(�ρ)(γ) =�ϕ(γ)ρ(γ) and (�χ)(γ) =�ϕ(γ)χ(γ),

respectively, where ϕ : Γ→ Z is the Abelianization map in (3). The action of
the generator of the center � ∈ μ3 in coordinates is

� · (y, ȳ, z, z̄, α, ᾱ, β, β̄) =
(
�y,�2ȳ,�2z,�z̄,α, ᾱ, β, β̄

)
.

The main result of this paper is the following.

Theorem 1.2. Let Γ be the group of the figure eight knot. The character
variety X(Γ,SL(3,C))⊂C8 has five algebraic components. They are described
in terms of the coordinates (5) as follows:

(1) The component XTR corresponding to totally reducible representations is
described by:

α= ᾱ= β = β̄ = 3, (y, ȳ) ∈C2, z = y2 − 2ȳ, z̄ = ȳ2 − 2y.

The component XTR is smooth and isomorphic to C2.
(2) The component XPR corresponding to partially reducible representations

is parametrized by the smooth variety

P =

{
(v,w,x1) ∈C×C∗ ×

(
C− {1}

) ∣∣∣ x2
1 + x1 − 1

x1 − 1
w = v2

}
.

More precisely, a parametrization Φ: P →XPR is given by:

α(v,w,x1) = ᾱ(v,w,x1) = x1 + 1,

β(v,w,x1) = β̄(v,w,x1) =
x1

x1 − 1
+ 1,

y(v,w,x1) = v+
1

w
, ȳ(v,w,x1) =w+

v

w
,

z(v,w,x1) =wα+
1

w2
, z̄(v,w,x1) =

α

w
+w2.

The component XPR is smooth except at the three points

(y, ȳ, z, z̄, α, ᾱ, β, β̄) ∈ μ3 · (4,4,8,8,3,3,3,3).
There are three components V0, V1 and V2 corresponding to irreducible repre-
sentations.

(3) The distinguished component V0 is the zero set of the ideal generated by
the following equations:

α= ᾱ, β = β̄,

yȳ = (α+ 1)(β + 1),

zz̄ = 2α2β + α2 + 1,

y3 + ȳ3 = α2β + αβ2 + 6αβ + 3α+ 3β + 2,
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z3 + z̄3 = α4β2 + 10α2β + 9α2 − 2α3 − 2,

yz + ȳz̄ = α2β + 3αβ + 3α+ 1,

ȳ2z + y2z̄ = α2β2 + 4α2β + 2α2 + 4αβ + 2α+ 2β + 1,

ȳz2 + yz̄2 = α3β2 + α3β + 4α2β + 3α2 + 5αβ + 3α− 1.

(4) The first non distinguished component V1:

α= ᾱ= 1, yȳ = β + β̄ + 2,

y3 + ȳ3 = ββ̄ + 5β + 5β̄ + 5, z̄ = y, z = ȳ.

(5) The second non distinguished component V2:

β = β̄ = 1, yȳ = α+ ᾱ+ 2,

y3 + ȳ3 = αᾱ+ 5α+ 5ᾱ+ 5, z = y2 − ȳ, z̄ = ȳ2 − y.

The components Vi, i = 0,1,2, are smooth except at the three points: μ3 ·
(2,2,2,2,1,1,1,1).

The component V0 is called distinguished because it contains the compo-
sition of the holonomy representation of the complete hyperbolic structure
with the irreducible representation Sym2 : PSL(2,C)→ SL(3,C). The com-
ponents V1 and V2 factor through Dehn fillings of the knot, with respective
slopes ±3, see Proposition 10.3. In particular, they do not contain faithful
representations, and the volume of characters in those components vanishes.

Remark 1.3. The ideal generated by the equations in item (3) of The-
orem 1.2 is not radical. Generators of the radical are given in Remark 7.2,
those are the defining polynomials of the variety of characters, as we know
that V0 is scheme reduced, by Proposition 5.15.

The intersections of the components are as follows:

• XTR∩XPR is the curve α= ᾱ= β = β̄ = 3, y2ȳ2−5y3−5ȳ3+28yȳ−64 = 0,
z = y2−2ȳ, and z̄ = ȳ2−2y. This curve is smooth except at the three points
μ3 · (4,4,8,8,3,3,3,3).

• XTR ∩ V1 =XTR ∩ V2 = ∅.
• XTR ∩ V0 = μ3 · (4,4,8,8,3,3,3,3).
• The intersections XPR ∩ V1 =XPR ∩ V2 = V0 ∩ V1 ∩ V2 = V1 ∩ V2 consists of
three points μ3 · (2,2,2,2,1,1,1,1). These three points are singular points
of Vi, i= 0,1,2, and they are regular points on XPR.

• XPR ∩ V0 is the curve given by the equations (2) of Theorem 1.2 and the
equation w3 − 2vw + 1 = 0. This curve is nonsingular except at the three
points

V0 ∩XPR ∩XTR = μ3 · (4,4,8,8,3,3,3,3).
• V0 ∩ V1 is the curve α= ᾱ= 1, β = β̄, yȳ = 2β + 2, y3 + ȳ3 = β2 + 10β + 5.
This curve is nonsingular except at μ3 · (2,2,2,2,1,1,1,1).
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• V0 ∩ V2 is the curve α= ᾱ, β = β̄ = 1, yȳ = 2α+ 2, y3 + ȳ3 = α2 + 10α+ 5.
This curve is nonsingular except at μ3 · (2,2,2,2,1,1,1,1).
To obtain the irreducible components, we consider first the restriction of

those characters to the group of the fiber F2 = 〈a, b〉 (Presentation (1)) by
considering the characters that are fixed by the action of the monodromy.
Here we use Lawton’s and Will’s coordinates for X(F2,SL(3,C)). This allows
us to distinguish three components of irreducible characters, that are worked
out explicitly.

The paper is organized as follows: Section 2 is devoted to generalities on
character varieties of knot groups. Representations of Γ in SL(2,C), GL(2,C)
and PGL(2,C) are discussed in Section 3, and reducible representations in
SL(3,C), in Section 4. Section 5 is devoted to the description of the restric-
tion to the variety of characters of F2 as fixed points of the monodromy. Then
the non-distinguished and the distinguished components are computed respec-
tively in Sections 6 and 7. Section 8 is devoted to characters in GL(3,C) and
PGL(3,C). In Section 9, we describe how the symmetry group of the fig-
ure eight knot acts on the variety of characters. In Section 10, we identify
the non-distinguished components as induced by Dehn fillings on the knot.
Finally, in Section 11 we discuss explicit representations that are relevant.

Some of the computations require software, either Sage [44] or Mathematica
[31]. All worksheets and notebooks can be found in [27].

2. Character varieties of knot groups

Throughout this section, we let Γ denote any knot group (in the rest of the
paper it denotes the figure eight knot exterior), and ϕ : Γ→ Z the Abelian-
ization which maps the meridian of the knot to 1, see Equation (3). The
center μr of SL(r,C) consists of diagonal matrices and it can be identified
with the set of rth roots of unity {�k | k = 0, . . . , r − 1} ⊂ C∗. The cen-
ter acts on R(Γ,SL(r,C)) and X(Γ,SL(r,C)) via multiplication, that is, for
ρ ∈R(Γ,SL(r,C)), χ ∈X(Γ,SL(r,C)), and �k ∈ μr , we have for all γ ∈ Γ:

�k · ρ(γ) =�kϕ(γ)ρ(γ) and �k · χ(γ) =�kϕ(γ)χ(γ).

In what follows, we will use that H1(Γ, μr) = Hom(Γ, μr) ∼= μr, and
H2(Γ, μr) = 0 for a knot group Γ. This follows from the universal coefficient
theorem since H1(Γ,Z) ∼=H1(C,Z) ∼= Z, and H2(C,Z) = 0 where C denotes
the knot complement. Notice that the natural morphism H2(C,Z)→H2(Γ,Z)
is surjective (see [28, Lemma 3.1]).

Lemma 2.1. Let Γ be a knot group and ρ : Γ→ PSL(r,C) be a representa-
tion. Then there exists a lift ρ̃ : Γ→ SL(r,C) of ρ. Moreover, all lifts of ρ are
given by μr · ρ̃.
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Proof. There is a short exact sequence

1→ μr → SL(r,C)→ PSL(r,C)→ 1.

We associate to the representation ρ : Γ → PSL(r,C) a second obstruction
class w2 = w2(ρ) ∈H2(Γ, μr) defined as follows: choose any set-theoretic lift
f : Γ→ SL(r,C) and define w2 : Γ× Γ→ μr such that

∀γ1, γ2 ∈ Γ, f(γ1γ2) = f(γ1)f(γ2)w2(γ1, γ2).

It is easy to see that w2 ∈ Z2(Γ, μr) is a cocyle. Moreover, the cohomology
class represented by w2 does not depend on the lift f . Now, w2 represents
the trivial cohomology class since H2(Γ, μr) is trivial. Therefore, there exists
a map d : Γ→ μr such that for all γ1, γ2 ∈ Γ,

w2(γ1, γ2) = d(γ1)d(γ2)d(γ1γ2)
−1.

It is clear that ρ̃ : Γ → SL(r,C) given by ρ̃(γ) = d(γ)f(γ) is a representa-
tion. Finally, d is unique up multiplication with a cocycle h ∈ H1(Γ, μr) ∼=
Hom(Γ, μr)∼= μr. �

Lemma 2.2. Let Γ be a knot group. Then we have X(Γ,PSL(r,C)) ∼=
X(Γ,SL(r,C))/μr and

X
(
Γ,GL(r,C)

)∼=X
(
Γ,SL(r,C)

)
×μr C

∗.

Proof. The isomorphism X(Γ,PSL(r,C))∼=X(Γ,SL(r,C))/μr follows from
Lemma 2.1.

Now the same proof as for Lemma 2.1 shows that for any homomorphism
h : Γ → C∗ there exists a homomorphism h̃ : Γ → C∗ such that h̃r = h (see
[2, Lemma 2.1]). Therefore the map R(Γ,SL(r,C)) × C∗ → R(Γ,GL(r,C))
given by (ρ,λ) 
→ λϕρ is surjective, and (ρ,λ) and (ρ′, λ′) map to the same
representation if and only if (ρ′, λ′) ∈ μr · (ρ,λ). Hence,(

R
(
Γ,SL(r,C)

)
×C∗)/μr

∼=R
(
Γ,GL(r,C)

)
.

The actions of μr and GL(r,C) on R(Γ,SL(r,C))×C∗ commute. Moreover,
GL(r,C) acts trivially on the representations into the center C∗. Hence,

R
(
Γ,GL(r,C)

)
//GL(r,C)∼=

((
R
(
Γ,SL(r,C)

)
×C∗)//GL(r,C)

)
/μr

∼=
(
X
(
Γ,SL(r,C)

)
×C∗)/μr

=X
(
Γ,SL(r,C)

)
×μr C

∗. �
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Distinguished component. For a hyperbolic knot group, there exists a
unique one-dimensional component X0 ⊂ X(Γ,PSL(2,C)), up to complex
conjugation, which contains the character of the holonomy representation.
Complex conjugation corresponds to changing the orientation of the three
manifold, thus there is a unique PSL(2,C)-character of the holonomy of an
oriented knot exterior. The holonomy representation lifts to two representa-
tions ρ : Γ→ SL(2,C), and by composing any lift with the rational, irreducible,
r-dimensional representation Symr−1 : SL(2,C) → SL(r,C) we obtain an ir-
reducible representation ρr : Γ → SL(r,C). It follows from [40] that χρr ∈
X(Γ,SL(r,C)) is a smooth point contained in a unique (r − 1)-dimensional
component of X(Γ,SL(r,C)). We will call such a component a distinguished
component of X(Γ,SL(r,C)). For odd r, as Symr−1 : SL(2,C) → SL(r,C)
factors through PSL(2,C), thus there is a unique distinguished component.

Totally reducible representations. Totally reducible representations are
representations which split as a direct sum of one-dimensional representa-
tions. In particular they are representations of the Abelianization of a knot
group Γ, which is Z. Thus the restriction of a totally reducible representation
to the commutator subgroup is trivial and it only depends on the image of a
meridian, that is, a diagonal matrix.

If the image of a meridian is diag(λ1, . . . , λr), then the space of parame-
ters is (σ1, . . . , σr), where σi is the ith elementary symmetric polynomial on
λ1, . . . , λr (hence σr = 1 for SL(r,C)). Thus, for any knot group Γ

XTR

(
Γ,SL(r,C)

)
=Cr−1,

XTR

(
Γ,GL(r,C)

)
=Cr−1 ×C∗,(7)

XTR

(
Γ,PGL(r,C)

)
=
(
Cr−1

)
/μr,

where � · (σ1, . . . , σr−1) = (�σ1,�
2σ2, . . . ,�

r−1σr−1).
Now (and in the rest of the paper) we move to the specific case where

Γ is the figure eight knot group. As the group Γ is generated by S and T
(Presentation (2)), X(Γ,SL(3,C)) can be viewed as a subvariety of the variety
of characters of a free group generated by S and T . Lawton and Will [34],
[49] prove that the variety of characters of the free group on two generators S
and T is an eight dimensional variety embedded in C10 with coordinates the
traces of the elements:

S±1, T±1, S±1T±1, [S,T ]±1.

This induces an embedding of the variety of characters of the group of the fig-
ure eight knot in C10, as it is generated by S and T . Using that S and
T are conjugate, we reduce from ten to the the eight parameters in (5):
(y, ȳ, z, z̄, α, ᾱ, β, β̄). Thus, is the following proposition.
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Proposition 2.3. For Γ the figure eight knot group, the character variety
X(Γ,SL(3,C)) embeds into C8. The embedding is given by the parameters
(y, ȳ, z, z̄, α, ᾱ, β, β̄) in (5).

Of course the previous proposition applies to any two-bridge knot group,
as it has a presentation similar to (2) with two generators represented by
meridian curves.

3. Representations in SL(2,C), GL(2,C), and PGL(2,C)

Let Γ be the knot group of the figure eight, in this section we analyze the
space of representations X(Γ,G) for G= SL(2,C), GL(2,C) and PGL(2,C).
Reducible representations are totally reducible, hence they have been de-
scribed in Section 2, and we discuss next irreducible representations.

To understand the irreducible representations of the figure eight knot group
into SL(2,C), we follow [42]. For G= SL(2,C) or GL(2,C), let χ ∈X(Γ,G)
be a character. Consider the restriction map

res : X(Γ,G)→X
(
F2,SL(2,C)

)
.

We use Fricke coordinates for X(F2,SL(2,C)), given as

x1(χ) = χ(a), x2(χ) = χ(b), x3(χ) = χ(ab),

which define an isomorphism X(F2,SL(2,C)) ∼= C3. In those coordinates,
conjugation by t induces a transformation given by:

(x1, x2, x3)(χ) 
→
(
χ(ab), χ(bab), χ

(
ab2ab

))
=
(
x3, x2x3−x1, x2x

2
3−x1x3−x2

)
.

Here we have used the basic identities for Y,Z ∈ SL(2,C),

tr(Y Z) = tr(Y ) tr(Z)− tr
(
Y Z−1

)
,

tr(Y Z) = tr(ZY ),(8)

tr
(
Y −1

)
= tr(Y ).

Thus

res
(
X(Γ,G)

)
=
{
(x1, x2, x3) ∈C3 | x1 = x3, x2 = x2x3 − x1, x3 = x2x

2
3 − x1x3 − x2

}
∼=
{
(x1, x2) ∈C2 | x1x2 = x1 + x2

}
∼=
{
(x1, x2) ∈C2 | (x1 − 1)(x2 − 1) = 1

}∼=C− {1}.

The point with coordinates (x1, x2) = (2,2) corresponds to the restriction
of reducible representations to F2, and the rest of the curve corresponds to
irreducible representations.

To get X(Γ,SL(2,C)) we introduce a third variable:

y0(χ) = χ(t) = χ(ta) = χ(tb) = χ(tab)
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(it is straightforward that t, ta, tb and tab are conjugate elements). The group
Γ is generated by t= S and T = a−1ta. Notice that b= [a−1, t] is conjugate
to TS−1, and therefore coordinates for X(Γ,SL(2,C)) are given by x1, x2

and y0, by Fricke’s theorem. By applying the identities (8) to the trace of
b= [a−1, t], we get x2 = x2

1 − y20(x1 − 2)− 2 and x2 = x1/(x1 − 1). Hence,

0 = x3
1 − x2

1

(
y20 + 1

)
+ 3x1

(
y20 − 1

)
+ 2

(
1− y20

)
= (x1 − 2)

(
(−x1 + 1)y20 + x2

1 + x1 − 1
)

= (x1 − 2)(x1 − 1)

(
x1 + 1− y20 +

x1

x1 − 1

)
.

Hence, there are two components:

x1 = 2, x2 =
x1

x1 − 1
= 2, y0 ∈C,

corresponding to reducible representations, and (x1 − 1)(x2 − 1) = 1, y20 =
x1 + x2 + 1, corresponding to irreducible ones.

Proposition 3.1. The character variety X(Γ,SL(2,C)) has two irreducible
components, written as follows, in terms of the coordinates x1 = χ(a), x2 =
χ(b) and y0 = χ(t):

• The component corresponding to reducible representations: x1 = 2, x2 = 2,
y0 ∈C.

• The component corresponding to irreducible representations:

(9) (x1 − 1)(x2 − 1) = 1, y20 = x1 + x2 + 1.

They intersect transversally in the two points: x1 = x2 = 2, y0 =±
√
5.

From this, to get PGL(2,C)-characters, we have to quotient by μ2 = {±1}
acting on y0, that is by involution y0 
→ −y0 (see Section 2 and [24]).

Proposition 3.2. The character variety X(Γ,PGL(2,C)) has two irre-
ducible components, written as follows, in terms of the coordinates x1 = χ(a),
x2 = χ(b) and z0 = y20 = χ(t)2:

• The component corresponding to reducible representations: x1 = 2, x2 = 2,
z0 ∈C.

• The component corresponding to irreducible representations:

(x1 − 1)(x2 − 1) = 1, z0 = x1 + x2 + 1,

which is isomorphic to C− {1}.
They intersect in one point: x1 = x2 = 2, z0 = 5.

To get the GL(2,C)-representations, recall from Lemma 2.2 that

X
(
Γ,GL(2,C)

)
=
(
X
(
Γ,SL(2,C)

)
×C∗)/μ2.

This algebraic set has two components: the one consisting of characters of
reducible representations is isomorphic to (C×C∗)/μ2, and the one containing
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characters of irreducible representations that is isomorphic to (E × C∗)/μ2,
where E is the curve defined by (9). The action of μ2 on C×C∗ generates the
equivalence (y0, λ)∼ (−y0,−λ). The ring of invariant functions of this action
is generated by u= y20 , v = y0λ, w = λ2, and the algebraic relations between
these functions are generated by uw = v2. The variable u can be eliminated
since 1/w is a regular function on C∗. We obtain that (C×C∗)/μ2

∼=C×C∗.
It coincides with the component XTR(Γ,GL(2,C)) (see Equation (7)).

The product E ×C∗ is parametrized by (x1, y0, λ), corresponding to char-
acters satisfying the equations (9). In order to obtain (E×C∗)/μ2 we have to
identify (x1, y0, λ)∼ (x1,−y0,−λ). Now, the ring of invariant functions of this
action is generated by u= y20 , v = y0λ, w = λ2 and x1, and the algebraic rela-
tions between these functions are generated by uw = v2. Hence, (E ×C∗)/μ2

is isomorphic to{
(v,w,x1) ∈C×C∗ ×

(
C− {1}

)∣∣∣x2
1 + x1 − 1

x1 − 1
w = v2

}
.

The intersection of the two components is given by introducing the additional
equation x1 = 2, and therefore:((

E ×C∗)/μ2

)
∩
((
C×C∗)/μ2

)
=
{(

v, v2/5,2
)
| v ∈C∗}∼=C∗.

Notice that for a representation ρ2 : Γ → GL(2,C) with character χ2 :=
χρ2 ∈X(Γ,GL(2,C)) we have:

v(χ2) = tr
(
ρ2(t)

)
∈C, w(χ2) = det

(
ρ2(t)

)
∈C∗,

x1(χ2) = tr
(
ρ2(a)

)
∈C− {1}.

Proposition 3.3. The character variety X(Γ,GL(2,C)) has two irre-
ducible 2-dimensional components. More precisely,

• The component XTR(Γ,GL(2,C)) contains the characters of reducible rep-
resentations, and it is isomorphic to C×C∗:

XTR

(
Γ,GL(2,C)

)∼= {
(v,w,x1) ∈C×C∗ ×

(
C− {1}

)
| x1 = 2

}∼=C×C∗.

• The component X2 which contains characters of irreducible representations:

X2
∼=
{
(v,w,x1) ∈C×C∗ ×

(
C− {1}

) ∣∣∣ x2
1 + x1 − 1

x1 − 1
w = v2

}
.

The intersection X2 ∩XTR(Γ,GL(2,C)) is isomorphic to C∗:{
(v,w,2) ∈C×C∗ ×

(
C− {1}

)
| 5w = v2

}∼=C∗.

4. Reducible representations in SL(3,C)

We start by describing the totally reducible characters already given in
Section 2, Equation (7), with the coordinates (5):

α= ᾱ= β = β̄ = 3, (y, ȳ) ∈C2, z = y2 − 2ȳ, and z̄ = ȳ2 − 2y.
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Here we have used that, by the Cayley–Hamilton theorem, for every A ∈
SL(3,C) the equality tr(A2) = tr(A)2 − 2 tr(A−1) holds.

Now we move to partially reducible representations, that is, representations
that are a direct sum of a 2-dimensional representation and a 1-dimensional
representation. We shall use the explicit identification of Lemma 2.2:

R
(
Γ,GL(2,C)

)∼= (
R
(
Γ,SL(2,C)

)
×C∗)/μ2,

in particular a representation in GL(2,C) is written as a representation in
SL(2,C) times a one-dimensional representation in C∗. Let ρ2 : Γ→GL(2,C)
be irreducible. Then ρ= ρ2⊕ (detρ2)

−1 is partially reducible, and if (v,w,x1)
denote the coordinates of the character χ2 := χρ2 as in Proposition 3.3, then
the coordinates of χρ are functions of χ2 = (v,w,x1). More precisely:

α(χ2) = ᾱ(χ2) = x1 + 1, β(χ2) = β̄(χ2) = x2 + 1,

y(χ2) = v+
1

w
, ȳ(χ2) =

v

w
+w.

In order to calculate z(χ2), we will use that for all Y,Z ∈GL(2,C) the iden-
tities

tr(Y Z) = tr(Y ) tr(Z)− det(Y ) tr
(
Y −1Z

)
and tr

(
Y −1

)
det(Y ) = tr(Y )

hold. This gives

z(χ2) = v2 −wx2 +
1

w2
and z̄(χ2) =

v2 −wx2

w2
+w2.

Now, we have
v2

w
= x1 + x2 + 1

and hence we obtain

α(χ2) = ᾱ(χ2) = x1 + 1, β(χ2) = β̄(χ2) = x2 + 1,

y(χ2) = v+
1

w
, ȳ(χ2) =

v

w
+w,(10)

z(χ2) = w(x1 + 1) +
1

w2
, z̄(χ2) =

x1 + 1

w
+w2.

It follows that the component XPR(Γ,SL(3,C)) of partially reducible charac-
ters is parametrized by the component X2 = (E × C∗)/μ2 ⊂X(Γ,GL(2,C))
of irreducible characters. If ρ2, ρ

′
2 ∈ R(Γ,GL(2,C)) are two semisimple rep-

resentations then ρ= ρ2 ⊕ (detρ2)
−1 and ρ′ = ρ′2 ⊕ (detρ′2)

−1 determine the
same character in X(Γ,SL(3,C)) if and only if they are conjugate. Here we
have used that each point of X(Γ,SL(3,C)) is the character of a semi-simple
representation which is unique up to conjugation [38]. Hence, two characters
χ2, χ

′
2 ∈X2 can only give the same character of X(Γ,SL(3,C)) if ρ2 and ρ′2 are

reducible that is, if for the corresponding parameters (x1, v,w) and (x′
1, v

′,w′)
of χ2 and χ′

2, respectively the equations x1 = x′
1 = 2, v2 = 5w, and (v′)2 = 5w′
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hold. Therefore, if χ2 and χ′
2 ∈X2 give the same character of X(Γ,SL(3,C))

then y(χ2) = y(χ′
2) and ȳ(χ2) = ȳ(χ′

2). This is equivalent to

v+
5

v2
= v′ +

5

(v′)2
and

5

v
+

v2

5
=

5

v′
+

(v′)2

5
.

If v = v′, then w = w′, and χ2 = χ′
2 follows. If v �= v′, then (vv′)3 = 125, and

there are exactly three pairs of reducible characters which map to the same
the character in X(Γ,SL(3,C)):(

5

2
±

√
5

2
,
3

2
±

√
5

2
,2

)

→ (4,4,8,8,3,3,3,3),

(
�

(
5

2
±

√
5

2

)
,�2

(
3

2
±

√
5

2

)
,2

)

→� · (4,4,8,8,3,3,3,3),

(
�2

(
5

2
±

√
5

2

)
,�

(
3

2
±

√
5

2

)
,2

)

→�2 · (4,4,8,8,3,3,3,3).

Recall that being reducible and being totally reducible are Zariski closed
properties. In particular, the set of irreducible characters is Zariski open, and
the set of partially reducible characters is also Zariski open in components
that contain only reducible characters.

Proposition 4.1. The locus of reducible representations of the character
variety X(Γ,SL(3,C)) consists of two irreducible components:

• The component XTR :=XTR(Γ,SL(3,C)) contains only characters of totally
reducible representations and it is isomorphic to C2:{
(y, ȳ, z, z̄, α, ᾱ, β, β̄) ∈C8 | α= ᾱ= β = β̄ = 3, z = y2 − 2ȳ, z̄ = ȳ2 − 2y

}
.

• The component XPR :=XPR(Γ,SL(3,C)) contains only characters of (par-
tially or totally) reducible representations, and it is parametrized by the
component X2 ⊂X(Γ,GL(2,C)) (see Proposition 3.3). A parametrization
is given by:

α(v,w,x1) = ᾱ(v,w,x1) = x1 + 1,

β(v,w,x1) = β̄(v,w,x1) =
x1

x1 − 1
+ 1,

y(v,w,x1) = v+
1

w
, ȳ(v,w,x1) =w+

v

w
,

z(v,w,x1) =wα+
1

w2
, z̄(v,w,x1) =

α

w
+w2.

The component XPR is smooth except at the three points μ3 ·(4,4,8,8,3,3,3,3)
which are contained in the intersection XTR ∩XPR. Moreover, XTR ∩XPR is
isomorphic to the plane curve with equations: α= ᾱ= β = β̄ = 3, 64− 28yȳ−
y2ȳ2 + 5(y3 + ȳ3) = 0, z = y2 − 2ȳ, z̄ = ȳ2 − 2y.



68 M. HEUSENER, V. MUÑOZ AND J. PORTI

Remark 4.2. It can be checked that the parametrization of XPR is an
immersion and that the singularities are nodal, i.e. two branches of the
parametrization are smooth and intersect transversely at each of the three
singular points μ3 · (4,4,8,8,3,3,3,3).

To finish the section, we shall describe the set of reducible characters in
X(Γ,SL(3,C)) that lie in the closure of the components of irreducible charac-
ters. Recall that the set of reducible characters Xred =XTR ∪XPR is Zariski-
closed and its complement Xirr is Zariski-open.

Lemma 4.3. The set Xred(Γ,SL(3,C)) ∩Xirr(Γ,SL(3,C)) is parametrized
by a singular curve C ⊂X2 given by

C =

{
(w,x1) ∈C∗ ×

(
C− {1}

)
|w6 − 2w3 2x

2
1 + x1 − 1

x1 − 1
+ 1 = 0

}
.

More precisely, the curve C has exactly three singular points μ3 × {0}. The
parametrization is given by restricting the parametrization of Proposition 4.1
to C, i.e., by substituting v = (w3 + 1)/2w. In addition, the intersection

Xred(Γ,SL(3,C)) ∩ Xirr(Γ,SL(3,C)) are smooth points of Xred(Γ,SL(3,C))

and Xirr(Γ,SL(3,C)) respectively, with the exceptions of the six points μ3 ·
(2,2,2,2,1,1,1,1) and μ3 · (4,4,8,8,3,3,3,3).

Proof. A reducible and semisimple representation ρ : Γ → SL(3,C) with
character χρ can be written as ρ = (φ ⊗ �) ⊕ φ−2, with representations
φ : Γ → C∗ and � : Γ → SL(2,C). Namely, ρ(γ) = diag(φ(γ)�(γ), φ(γ)−2),
∀γ ∈ Γ. Thus

(11) v = χ�(t)φ(t) and w = φ(t)2.

By [29, Theorem 1.3], if χρ ∈ Xirr(Γ,SL(3,C)) is partially reducible, then
ξ = φ(t) satisfies

(12) ξ6 − 2χ�(t)ξ
3 + 1= 0.

This uses that the Alexander polynomial twisted by � is Δ�(x) = x2 −
2χ�(t)x + 1. Kitano [33] has computed Δ�(1) = 2 − 2χ�(t), and the same
computation yields Δ�(x) as follows: using the fibration of the figure eight
knot, we know that Δ�(x) = x2 − δ(χ)x + 1, for some regular function
δ :Xirr(Γ,SL(2,C))→C; in addition δ is determined from Δ�(1) = 2−2χ�(t).
This implies that ξ3+ξ−3 = 2χ�(t). This condition is necessary for a partially
reducible representation ρ, i.e. when � is irreducible. The representation � is
reducible precisely when α= β = 3 and the condition is also necessary in this
case if we can show that

(13) XTR

(
Γ,SL(3,C)

)
∩Xirr

(
Γ,SL(3,C)

)
⊂XPR

(
Γ,SL(3,C)

)
.

To prove (13), the discussion in [30] using twisted cohomology yields that the
ratio between two eigenvalues of ρ(t) is a root of the untwisted Alexander
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polynomial t2 − 3t+ 1. By [30], this is also a sufficient condition for a 2× 2
block of ρ being approximated by irreducible representations in GL(2,C),
because it is a simple root. Using (11) and (12), we get w3 − 2vw + 1 = 0,

equivalently v = w3+1
2w . By replacing the value of v in

x2
1+x1−1
x1−1 w = v2 we get

the equation of the lemma.
Finally, we notice that when (α,β) �= (1,1), (3,3), [29, Corollary 8.9] ap-

plies and the corresponding characters are smooth points of XPR and Xirr

respectively, as the corresponding roots of the twisted Alexander polynomial
are simple. �

From Lemma 4.3 it follows that

(14) w6 − 2w3α
2α− 3

α− 2
+ 1 = 0

on Xred(Γ,SL(3,C)) ∩Xirr(Γ,SL(3,C)). In addition, by Proposition 4.1, any
χ ∈Xred(Γ,SL(3,C)) satisfies (α− 2)(β − 2) = 1. Thus we get:

Corollary 4.4. The fiber of the projection

Xred

(
Γ,SL(3,C)

)
∩Xirr

(
Γ,SL(3,C)

)
−→

{
(α,β) ∈C2 | (α− 2)(β − 2) = 1

}∼=C− {2}

has six points except when (α,β) = (1,1), (3,3), or ( 1±
√
5

2 , 1∓
√
5

2 ), where it has
three points.

Proof. Notice that β = (2α − 1)/(α − 2). each character in Xred(Γ,

SL(3,C)) ∩Xirr(Γ,SL(3,C)) determines a unique parameter w with the ex-
ception of the three characters with coordinates μ3 · (4,4,8,8,3,3,3,3,3). To
such a singular point correspond two values of w ∈ μ3 · ( 32 ±

√
5
2 ). In this case

w3 = 9± 4
√
5 and α= β = 3 follows from (14).

The discriminant of (14) is 4(α2 − α− 1)(α− 1)2 and hence it vanishes if

and only if α= β = 1 or α= 1±
√
5

2 and β = 1∓
√
5

2 . �

Remark 4.5. We will see later in Proposition 5.15 that μ3 · (2,2,2,2,
1,1,1,1) are the only singular points of the components of Xirr(Γ,SL(3,C)).
We already saw that μ3 · (2,2,2,2,1,1,1,1) are smooth points of XPR. Hence,

μ3 · (4,4,8,8,3,3,3,3) are smooth points on Xirr(Γ,SL(3,C)) and XTR, and
they are singular on XPR.

5. Restriction to the fibre

In this section and up to Section 8, we work with Presentation (1), cor-
responding to the fibration over the circle with fibre a punctured torus. In
particular, the group of the fibre F2 is the free group of rank 2 generated by
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a and b. To compute Xirr(Γ,G) for G= SL(3,C), PGL(3,C), or GL(3,C), we
look at the restriction:

res :X(Γ,G)→X
(
F2,SL(3,C)

)
,

whose image does not depend on G. For X(F2,SL(3,C)), we use Lawton’s
description in [34]. According to it, there is a two fold branched covering

π :X
(
F2,SL(3,C)

)
→C8,

where the coordinates of C8 are the traces of

(15) a, a−1, b, b−1, ab, b−1a−1, ab−1, a−1b.

The branched covering comes from a ninth coordinate, which is the trace of
the commutator

[a, b] = aba−1b−1.

This trace satisfies a polynomial equation

x2 − Px+Q= 0,

where P and Q are polynomials on the first eight variables (see [34] for the
expression of P and Q). The solutions are precisely the trace of [a, b] and the
trace of its inverse.

We shall compute Xirr(Γ,SL(3,C)) in several steps, first we start with
π(res(X(Γ,G))), from this we describe res(X(Γ,G)) as a 2:1 ramified cov-
ering, and then we prove that Xirr(Γ,SL(3,C)) is a 3:1 ramified covering of
res(X(Γ,G)).

To compute π(res(X(Γ,G)))⊂ C8, first of all we reduce the eight coordi-
nates to four by using conjugation identities:

α= χ(a) = χ(ab),

ᾱ= χ
(
a−1

)
= χ

(
b−1a−1

)
,

β = χ(b) = χ
(
a−1b

)
,

β̄ = χ
(
b−1

)
= χ

(
ab−1

)
.

Lemma 5.1. The projection π(res(X(Γ,G))) has three components:

U0 =
{
(α, ᾱ, β, β̄) ∈C4 | α= ᾱ, β = β̄

}
,

U1 =
{
(α, ᾱ, β, β̄) ∈C4 | α= ᾱ= 1

}
,

U2 =
{
(α, ᾱ, β, β̄) ∈C4 | β = β̄ = 1

}
.

Proof. We mimic the proof for SL(2,C) in Section 3, that is, we look at the
fixed points in C8 of the action of the monodromy (conjugation by t). Since
for each character there is a unique semisimple representation, there is always
a matrix that realizes the conjugation, and this can be taken as the image
of t for extending the character to Γ. Four of the identities that we get by
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looking at the fixed points are equivalent to the reduction from eight to four
coordinates. We discuss the other four identities.

The first identity comes from taking traces on the image of

tabt−1 = ab2ab.

To express the trace of ab2ab using Lawton’s coordinates we use the SL(3,C)
analog of the identities for SL(2,C) in (8). Denote the images in SL(3,C) by
capital letters. From the characteristic polynomial identity, we have

(BA)3 − α(BA)2 + ᾱBA− Id = 0.

Multiplying by A−1 we get

BABAB = αBAB − ᾱB +A−1.

Thus, by taking traces we get the equation

(16) α= αβ − ᾱβ + ᾱ.

Similarly, for t(ab)−1t−1 = (ab2ab)−1 we get

(17) ᾱ= ᾱβ̄ − αβ̄ + α.

The third identity comes from tbt−1 = bab. From the characteristic polynomial
identity, we have

B3 − βB2 + β̄B − Id = 0.

Multiplying by B−1A we get

B2A= βBA− β̄A+B−1A.

Thus, we get the equation

(18) β = βα− β̄α+ β̄.

Similarly, from tb−1t−1 = (bab)−1 we get

(19) β̄ = β̄ᾱ− βᾱ+ β.

The statement follows from identities (16)–(19). Notice that we do not need
to compute more identities because of [34], and because t[a, b]t−1 = [a, b]. �

To get all the ambient coordinates we need a new variable:

η(χ) = χ
(
[a, b]

)
.

We know by [34] that

(20) η2 − Pη+Q= 0,

for some polynomials P,Q ∈ Z[α,β, ᾱ, β̄]. Using Lemma 5.1 and by replacing
the values of P and Q in [34], we obtain the following lemma.

Lemma 5.2. W = res(X(Γ,G)) has three components W0, W1 and W2,
each Wi being a two-fold ramified covering of Ui according to (20).
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• For W0 the polynomials and the discriminant are

Q= α4β2 + α2β4 − 2α4β − 4α3β2 − 4α2β3 − 2αβ4 + α4

+ 2α3β + 12α2β2 + 2αβ3 + β4 + 4α3 + 4β3 − 12α2 − 12β2 + 9,

P = α2β2 − 2α2β − 2αβ2 + 2α2 + 2β2 − 3,

P 2 − 4Q=
(
α2β2 − 6αβ − 4α− 4β − 3

)
(αβ − 2α− 2β + 3)2.

• For W1, we have

Q= β3 + β̄3 − 3ββ̄ + 2,

P = ββ̄ − β − β̄ − 1,

P 2 − 4Q= β2β̄2 − 4β3 − 4β̄3 − 2β2β̄ − 2ββ̄2

+ β2 + β̄2 + 12ββ̄ + 2β + 2β̄ − 7.

• For W2, we have

Q= α3 + ᾱ3 − 3αᾱ+ 2,

P = αᾱ− α− ᾱ− 1,

P 2 − 4Q= α2ᾱ2 − 4α3 − 4ᾱ3 − 2α2ᾱ− 2αᾱ2

+ α2 + ᾱ2 + 12αᾱ+ 2α+ 2ᾱ− 7.

We describe the image of the set of reducible characters.

Lemma 5.3. The image res(Xred(Γ,G))⊂W is the curve{
(α,β, η) ∈W0 | αβ − 2α− 2β + 3= 0

}
.

All characters in this curve are partially reducible, except at the point α= β =
3, that corresponds to totally reducible representations.

In particular, the only point in W1 and W2 that is restriction of reducible
representations is precisely their common intersection W1 ∩W2 which is the
point given by α= ᾱ= β = β̄ = 1 and η =−1. This point lies also on W0.

Proof. We know from Section 4 that if x1 and x2 denote the traces in
SL(2,C) of the images of a and b, then the image of X(Γ,SL(2,C)) in
X(F2,SL(2,C)) is given by the equation x1x2 − x1 − x2 = 0. Now the lemma
follows from the identities α= ᾱ= x1 + 1, β = β̄ = x2 + 1. �

Remark 5.4. The discriminant locus of W0 contains αβ−2α−2β+3= 0.
It contains a second component:

α2β2 − 6αβ − 4α− 4β − 3 = 0.

This is the set of characters of the representations obtained as composition of
representations of Γ in SL(2,C) with Sym2 : SL(2,C)→ SL(3,C). This may be
seen with the same argument as in Lemma 5.3, but using that α= ᾱ= x2

1 − 1
and β = β̄ = x2

2 − 1.
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Corollary 4.4 yields the following.

Corollary 5.5. The fiber of

res :Xred

(
Γ,SL(3,C)

)
∩Xirr

(
Γ,SL(3,C)

)
−→

{
(α,β, η) ∈W0 | αβ − 2α− 2β + 3= 0

}
has cardinality 6, except for (α,β) = (1,1), (3,3), or ( 1±

√
5

2 , 1∓
√
5

2 ), where it
has cardinality 3.

Remark 5.6. The intersection of the two components of the discriminant

(see Remark 5.4) is the pair of points (α,β) = {(3,3), (1±
√
5

2 , 1∓
√
5

2 )}. The
third point (α,β) = (1,1) in Corollary 5.5 yields singular points in V0 (defined
in Proposition 5.9).

A character of Γ that is irreducible may have a restriction to F2 that is
reducible.

Lemma 5.7. The characters of res(Xirr(Γ,G)) that are F2-reducible are
characters of representations ρ whose restriction to F2 is totally reducible,
and ρ(t) acts as a cyclic permutation of the invariant subspaces of ρ(F2). In
particular ρ is metabelian and tr(ρ(t±1)) = 0.

Proof. Let ρ ∈R(Γ,G) be an irreducible representation whose restriction to
F2 is reducible. If ρ|F2 was partially reducible then, as the invariant subspaces
would have different dimension, they should also be invariant by ρ(t), and
therefore ρ would be reducible. Thus, the only possibility is that ρ|F2 is totally
reducible and ρ(t) cyclically permutes its three invariant subspaces. �

Irreducible metabelian characters in SL(3,C) have been studied by Boden
and Friedl in [6], [7], who prove that in X(Γ,SL(3,C)) there are five of them.

Corollary 5.8. There are five characters in res(Xirr(Γ,G)) that are F2-
reducible: one in W0, α= β =−1; two in W1, (β, β̄) = (−1± 2i,−1∓ 2i); and
two in W2, (α, ᾱ) = (−1± 2i,−1∓ 2i). In all cases η = 3.

Those yield precisely five characters in X(Γ,G) for G = SL(3,C) and
G = PSL(3,C) (they satisfy y = ȳ = z = z̄ = 0) and five subvarieties for
G = GL(3,C). To study further the fibre of res : Xirr(Γ,SL(3,C)) → W ,
notice that the fibre of F2-irreducible characters in W has precisely three
points. Namely, if ρ ∈ R(Γ,SL(3,C)) satisfies that ρ|F2 is irreducible, the
relations in (1) yield that ρ(t) is unique up to the action of μ3, the center
of SL(3,C). It is straightforward to check that those three choices yield the
same character if and only if ρ is a metabelian irreducible representation as
in Lemma 5.7. Thus, the five characters in Corollary 5.8 are the ramification
points of res : Xirr(Γ,SL(3,C))→W . Notice that those five characters also
lie in the zero locus of the discriminant P 2 − 4Q = 0, as they satisfy η = 3.
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In [7] Boden and Friedl prove that these representations are smooth points

of X(Γ,SL(3,C)), so Xirr(Γ,SL(3,C)) has the same number of components
as W . Summarizing, we have the following proposition.

Proposition 5.9. The set Xirr(Γ,SL(3,C)) has three components V0, V1

and V2, that are respective 3:1 branched covers of W0, W1 and W2.
The branching points in Xirr(Γ,SL(3,C)) are the five metabelian irreducible

characters in Corollary 5.8.

If we add the variables

y(χ) = χ(t), ȳ(χ) = χ
(
t−1

)
,

then the variables (α, ᾱ, β, β̄, η, y, ȳ) describe Xirr(Γ,SL(3,C)), and the map

(α, ᾱ, β, β̄, η, y, ȳ) 
→ (α, ᾱ, β, β̄, η)

is three-to-one except at (y, ȳ) = (0,0). Actually, it is the quotient by the ac-
tion of the center (y, ȳ) 
→ (�y,�2ȳ), where � ∈ μ3. Notice that in Lemma 4.3

we have shown that reducible characters in Xirr(Γ,SL(3,C)) are also deter-
mined by the values of y and ȳ. Thus, using Proposition 2.3, we get the
following.

Proposition 5.10. The parameters (α, ᾱ, β, β̄, η, y, ȳ) describe the set of
irreducible characters Xirr(Γ,SL(3,C)) pointwise (that is, they describe a va-
riety homeomorphic to Xirr(Γ,SL(3,C)) in the classical topology). The param-
eters (y, ȳ, z, z̄, α, ᾱ, β, β̄), with z = χ(ta−1ta) and z̄ = χ(a−1t−1at−1), describe
Xirr(Γ,SL(3,C)) scheme-theoretically.

Remark 5.11. The set Xirr(Γ,SL(3,C)) carries two topologies, the Zariski-
topology and the classical topology. Following Lawton, we can identify the
quasi-affine variety Xirr(Γ,SL(3,C)) with a subset of C8 where the corre-
sponding parameters are given by (y, ȳ, z, z̄, α, ᾱ, β, β̄) (see Proposition 2.3).
Here we say scheme-theoretically because the natural defining ideal is a priori
non-radical. Proposition 5.10 shows that Xirr(Γ,SL(3,C)) is homeomorphic
(classical topology) to a subset of C7 where the corresponding parameters are
given by (α, ᾱ, β, β̄, η, y, ȳ). Notice that by Lawton, η is a polynomial func-
tion of (y, ȳ, z, z̄, α, ᾱ, β, β̄). The restriction of the polynomial map f : C8 →C7

given by f(y, ȳ, z, z̄, α, ᾱ, β, β̄) = (α, ᾱ, β, β̄, η, y, ȳ) to Xirr(Γ,SL(3,C)) is poly-
nomial and bijective, but its inverse is not polynomial. More precisely, z and
z̄ are not polynomial functions in (α, ᾱ, β, β̄, η, y, ȳ).

We consider the projection V0 → C2 to the plane with coordinates (α,β),
namely χ 
→ (χ(a), χ(b)). This is the composition of the projections res : V0 →
W0 and π : W0 → U0

∼=C2. We will need later the computation of the cardinal-
ity of its fibre. From Corollary 5.5 (for reducible representations), Lemma 5.2
and Proposition 5.9, we have the following lemma.
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Lemma 5.12. For (α,β) ∈C2, the cardinality of the fibre of π◦res : V0 →C2

is

∣∣(π ◦ res)−1(α,β)
∣∣=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if (α,β) = (−1,−1),

3 if α2β2 − 6αβ − 4α− 4β − 3 = 0 and

(α,β) �= (−1,−1),or if (α,β) = (1,1),

6 otherwise.

The Zariski tangent space at a character χ is denoted TZar
χ X(Γ,SL(3,C)),

without assuming that it is scheme-reduced.

Lemma 5.13. Let χ ∈ X(Γ,SL(3,C)) be a character such that res(χ) is
irreducible. The restriction map induces an isomorphism

TZar
χ X

(
Γ,SL(3,C)

)∼= TZar
res(χ)

(
X
(
F2,SL(3,C)

)φ∗)
,

where φ : F2 → F2 denotes the action of the monodromy (conjugation by t),
φ∗ the induced map, and X(F2,SL(3,C))

φ∗
the fixed point set.

Proof. We have a natural isomorphism:

TZar
res(χ)

(
X
(
F2,SL(3,C)

)φ∗)∼= (
TZar
res(χ)X

(
F2,SL(3,C)

))φ∗
,

where φ∗ still denotes the tangent map. By Weil’s theorem, those Zariski
tangent spaces (as schemes) are naturally isomorphic to cohomology groups:

TZar
χ X

(
Γ,SL(3,C)

)∼=H1
(
Γ, sl(3,C)Adρ

)
,

TZar
res(χ)X

(
F2,SL(3,C)

)∼=H1
(
F2, sl(3,C)Adρ

)
,

for any representation ρ with character χ (cf. [38]), where Adρ denotes the
adjoint representation. We let φ∗ denote also the induced map in cohomology,
as it corresponds to the tangent map. The Lyndon-Hochschild-Serre spectral
sequence applied to 1→ F2 → Γ→ Z= 〈t〉 → 1 yields the exact sequence:

H1
(
Z, sl(3,C)F2

Adρ

)
→H1

(
Γ, sl(3,C)Adρ

)
→H1

(
F2, sl(3,C)Adρ

)φ∗
→H2

(
Z, sl(3,C)F2

Adρ

)
,

cf. [48, 6.8.3]. Thus it suffices to show that the invariant subspace sl(3,C)F2

Adρ

is trivial. By contradiction, assume that there exists a nonzero θ ∈ sl(3,C)
which is F2-invariant, namely Adρ(a)(θ) = Adρ(b)(θ) = θ. This implies that
exp(λθ) commutes with ρ(a) and ρ(b), for every λ ∈ R, hence the restriction
ρ|F2 is reducible. �

Remark 5.14. The singular locus as schemes of the components of W is
the set of F2-reducible characters of W , as this is the singular locus of the
discriminant in Lemma 5.2. Hence, it is the union of the five ramification
points in Corollary 5.8 and the curve res(Xred(Γ,SL(3,C))) in Lemma 5.3.
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In the previous remark, we say as schemes because during the computation
of Ui and Wi we just use traces on group relations and Lawton’s theorem, and
we never compute radicals of the ideals.

Proposition 5.15. The components V0, V1 and V2 are smooth (and scheme
reduced) everywhere except possibly at (α,β) = (1,1).

Scheme reduced at one point means that the local ring is reduced. This
property, together with smoothness, holds when the dimension of the Zariski-
tangent space equals the dimension of the irreducible component.

Proof. Let χ ∈ V0 ∪ V1 ∪ V2 be an irreducible character. If χ is one of the
five ramification points of Corollary 5.8, then it is smooth and scheme reduced
by [7]. Otherwise, χ|F2 is irreducible, thus Lemma 5.13 applies and we get that
TZar
χ X(Γ,SL(3,C)) is isomorphic to TZar

res(χ)(X(F2,SL(3,C))
φ∗
). In particular,

if χ /∈ V0 ∩ (V1 ∪ V2), then TZar
χ Vi is isomorphic to TZar

res(χ)Wi if χ ∈ Vi, and by

Remark 5.14 it is a two dimensional space. Hence, χ ∈ Vi is a smooth point.
For irreducible characters in V0 ∩ V1 or in V0 ∩ V2, the cohomology groups

yield the tangent spaces to V0∪V1∪V2 and W =W0∪W1∪W2, thus we need
to add linear conditions on the ambient coordinates to distinguish components
(α= ᾱ, β = β̄; α= 1; or β = 1). From those linear conditions, we easily get
the dimension of the Zariski tangent space.

Reducible characters are discussed in Lemma 4.3, that yields smooth-
ness for each reducible character in V0 except for α = β = 1 and α = β = 3.
Smoothness for this last point can be checked using the arguments of [28,
Thm. 1.3]. �

6. Description of the non-distinguished components

Now we move to get equations for V0, V1, V2. We name V0 the distinguished
component of the character varietyX(Γ,SL(3,C)) since it is the one containing
representations coming from Sym2 : SL(2,C)→ SL(3,C). Accordingly, V1, V2

will be called non-distinguished components.
In this section, we find explicit equations of the non-distinguished compo-

nents V1, V2. We start with V2. We keep on working with Presentation (1)
and using capitals to denote the images of a, b and t ∈ Γ in SL(3,C).

Proposition 6.1. The non-distinguished component V2 is described as fol-
lows. Take coordinates α= tr(A), ᾱ= tr(A−1), β = tr(B), β̄ = tr(B−1), η =
tr([A,B]), y = tr(T ), ȳ = tr(T−1), z = tr(TA−1TA), z̄ = tr(A−1T−1AT−1),
the equations satisfied by V2 are β = β̄ = 1, yȳ = α + ᾱ + 2, y3 + ȳ3 =
αᾱ+ 5α+ 5ᾱ+ 5. η = ȳ3 − 3(α+ ᾱ+ 1), z = y2 − ȳ, z̄ = ȳ2 − y.

The only reducible representations are given by (y, ȳ, z, z̄, α, ᾱ, β, β̄) ∈ μ3 ·
(2,2,2,2,1,1,1,1) and are partially reducible.
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Proof. By Lemma 5.2, W2 is described as the double cover of the plane
(α, ᾱ), ramified over the curve Δ= 0, where

Δ= α2ᾱ2 − 4α3 − 4ᾱ3 − 2α2ᾱ− 2αᾱ2 + α2 + ᾱ2 + 12αᾱ+ 2α+ 2ᾱ− 7.

Thus the ring of functions of W2 is Q[α, ᾱ][
√
Δ]. We have β = β̄ = 1, so the

matrix B has eigenvalues 1, i,−i. We fix a basis that diagonalizes B, so that
we can write

B =

⎛
⎝1 0 0
0 i 0
0 0 −i

⎞
⎠ .

Assume that the matrix A has non-zero entries (2,1) and (3,1). Rescaling
the basis vectors, we can write

A=

⎛
⎝a b c
1 d e
1 f g

⎞
⎠ .

Solving the equations tr(A) = tr(AB), tr(B) = tr(BA−1), tr(B) = tr(B2A),
the equations for the inverses tr(A−1) = tr(A−1B−1), tr(B−1) = tr(B−1A),
tr(B−1) = tr(B−2A−1), together with det(A) = 1, α= tr(A) and ᾱ= tr(A−1),
we get the coefficients [27]

A=

⎛
⎜⎝

α+1
2

1−i
8 (α2 − 2ᾱ+ 1) 1+i

8 (α2 − 2ᾱ+ 1)

1 1−i
4 (α− 1) 1+i

4
(α3−α2−4αᾱ−4α+5+2i

√
Δ)

α2−2ᾱ+1

1 1−i
4

(α3−α2−4αᾱ−4α+5−2i
√
Δ)

α2−2ᾱ+1
1+i
4 (α− 1)

⎞
⎟⎠ .

This matrix is well-defined off the set α2 − 2ᾱ+ 1= 0.
Now, solving the equations TA = ABT and TB = BABT , we get a one-

dimensional space of matrices T spanned by

T0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(α2 − 2ᾱ + 1)(((1 + i)α +

3 − i)
√

Δ − (2 − 2i)ᾱ2 −
(6− 6i)αᾱ+(2− 2i)ᾱ− (1+

i)α3 + (−1 + 3i)α2 + (3 −
i)α+ (7 − 3i))

1
4
(α2 − 2ᾱ + 1)2((−1 −

i)
√
Δ+2iα2+(1−i)α+(1−

i)αᾱ+ (5− 5i)ᾱ− (5− 5i))

1
4
(α2 − 2ᾱ + 1)((−(1 +

i)α2 − (4 − 4i)α − (2 +

2i)ᾱ + (7 − i))
√
Δ + (6 −

6i)αᾱ2 +(−2− 6i)ᾱ2 − (1−
i)α3ᾱ + (3 + 5i)α2ᾱ + (1 +

15i)αᾱ− (3− 11i)ᾱ+2α4 +

(−1− 7i)α3 +(−5− 5i)α2 +
(11 + 13i)α+ (−3− 19i))

−2(α2 − 4iα + 2ᾱ − (3 −
4i))

√
Δ − 12iαᾱ2 − (8 +

4i)ᾱ2 + 2iα3ᾱ + (−8 +

2i)α2ᾱ + (16 + 14i)αᾱ +

(8 + 14i)ᾱ + (2 − 2i)α4 +

(−8− 6i)α3 +(−4+6i)α2 +
(1− 12i)α− (8− 11i)

( 1
2
(α2 − 2ᾱ + 1)((2α + 2 −

4i)
√

Δ+4iᾱ2 +(8+4i)αᾱ−
4iᾱ−2α3 +(2+4i)α2 +(2−
4i)α− (10 + 4i))

4(ᾱα + α + ᾱ − 3)
√
Δ +

iα5 +10iα3 − 15iα+4iᾱ3 +

4iα2ᾱ2 + 12iαᾱ2 + 4iᾱ2 −
iα4ᾱ + 4iα3ᾱ − 6iα2ᾱ +
36iαᾱ+ 17iᾱ+ 32

(α2 − 2ᾱ + 1)(−2i
√

Δ +

(−2 + 2i)α2 + 2α + 2αᾱ +
(6− 4i)ᾱ− (8 − 2i))

(α2 − 2ᾱ+ 1)2(α− ᾱ− 4i)

1
2
(α2 − 2ᾱ + 1)((2iα +

4 + 2i)
√
Δ − 2iα3 + (−4 +

2i)α2 + (−4 + 8i)αᾱ + (4 +

2i)α+2iᾱ2 −2iᾱ− (5+2i))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Let y0 = tr(T0), ȳ0 = det(T0) tr(T
−1
0 ), d0 = det(T0). It is readily computed

that

y0 = 2
(
α2 − 2ᾱ+ 1

)((
(1 + i)α+ 3− i

)√
Δ− (1 + i)α3 + (−1 + 3i)α2 + (2+ 6i)αᾱ

+ (3− i)α+ (−2 + 2i)ᾱ2 + (2− 2i)ᾱ− (7− 7i)
)
,

ȳ0 = 4
(
α2 − 2ᾱ+ 1

)2((−iα4 − 4α3 + 6iα2 + (4i− 4)α2ᾱ+ 12α+ (2+ 4i)4αᾱ

+ 4iᾱ2 + (4i− 4)ᾱ− (33i+ 8)
)√

Δ+ iα5ᾱ− 3iα5 + (4− 3i)α4ᾱ

− (12 + 11i)α4 + (4− 4i)α3ᾱ2 + (−8 + 6i)α3ᾱ+ (−28 + 18i)α3

− (20 + 4i)α2ᾱ2 + (16 + 46i)α2ᾱ+ (20+ 2i)α2 − (16 + 4i)αᾱ3

− (20 + 8i)αᾱ2 + (120− 35i)αᾱ+ (12− 35i)α+ (−16 + 12i)ᾱ3

+ (4− 8i)ᾱ2 + (28 + 9i)ᾱ− (88− 21i)
)
,

d0 = 8(1− i)
(
α2 − 2ᾱ+ 1

)3((−α6 + (6+ 6i)α5 + (4+ 6i)α4ᾱ+ (17− 36i)α4

+ (8− 24i)α3ᾱ− (84 + 20i)α3 + (12− 24i)α2ᾱ2 − (72− 60i)α2ᾱ

+ (21 + 120i)α2 − (72 + 72i)αᾱ2 + (136 + 104i)αᾱ+ (134− 122i)α− 8iᾱ3

− (36− 24i)ᾱ2 + (116 + 22i)ᾱ− (189 + 36i)
)√

Δ+ α7ᾱ− 7α7 + (3+ 42i)α6

− (1 + 6i)α6ᾱ+ (−8− 6i)α5ᾱ2 + (37 + 24i)α5ᾱ+ (109− 42i)α5

+ (−32 + 66i)α4ᾱ2 + (107− 190i)α4ᾱ− (201 + 152i)α4 + (4+ 24i)α3ᾱ3

+ (76− 12i)α3ᾱ2 − (369 + 104i)α3ᾱ− (97− 396i)α3 + (156− 96i)α2ᾱ3

− (236 + 4i)α2ᾱ2 + (337 + 590i)α2ᾱ+ (373− 46i)α2 + (48+ 8i)αᾱ4

− (132 + 200i)αᾱ3 − (260− 530i)αᾱ2 + (395− 704i)αᾱ− (309 + 426i)α

+ (48− 56i)ᾱ4 − (92− 144i)ᾱ3 + (76 + 98i)ᾱ2 + (69− 378i)ᾱ− (95− 500i)
)
.

The choices T ∈ SL(3,C) are of the form �kd
−1/3
0 T0, � = e2πi/3, k = 0,1,2.

Therefore, the coordinates y = tr(T ), ȳ = tr(T−1) are given by y = y0d
−1/3
0 ,

ȳ = ȳ0d
−2/3
0 . A computer calculation gives [27]

yȳ = α+ ᾱ+ 2,

y3 =
1

2
(αᾱ+ 5α+ 5ᾱ+ 5) +

1

2

√
Δ,

ȳ3 =
1

2
(αᾱ+ 5α+ 5ᾱ+ 5)− 1

2

√
Δ,

η = tr
(
[A,B]

)
=

1

2
(αᾱ− α− ᾱ− 1)− 1

2

√
Δ.

Note that we only compute quantities that are μ3-invariant. First, we note
that η = ȳ3 − 3(α+ ᾱ+ 1).

The above equations describe a Zariski open set defined by d0 �= 0, α2 −
2ᾱ + 1 �= 0. When we approach a point on the set d0 = 0, the matrix T0

above becomes singular. But the normalized matrix T = d
−1/3
0 T0 has values
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y = tr(T ), ȳ = tr(T−1) that tend to finite well-defined numbers. Moreover,
the representations of F2 given by (A,B) and (BA,BAB) are conjugated
since they have the same Lawton coordinates. And as they are irreducible,
the conjugation matrix T is uniquely defined (up to the action of μ3). This
gives well-defined (y, ȳ) up to μ3, and by continuity, they satisfy the equations
above.

For dealing with the set α2 − 2ᾱ + 1 = 0, we can argue by continuity as
above. We can also parametrize the set of matrices A in which either the
entry (2,1) is zero or the entry (3,1) is zero. This gives the matrices:⎛

⎝α+1
2 0 1

8 (−α3 − α2 − 3α+ 5)
1 (14 −

i
4 )(α− 1) 1

8 (−α2 − 2α− 5)
0 1 ( 14 + i

4 )(α− 1)

⎞
⎠ ,

⎛
⎝α+1

2 α− 1 0
0 ( 14 −

i
4 )(α− 1) 1

1 1
8 (−α2 − 2α− 5) (14 + i

4 )(α− 1)

⎞
⎠ .

There are two matrices because of the double covering over the locus α2 −
2ᾱ+ 1= 0.

Finally, note that over the point (α, ᾱ) = (1,1), we have partially reducible
representations in XPR(Γ,SL(3,C)), and these form a curve, given as (see
Proposition 4.1):

1− (yȳ+ 3) +
(
y3 − yȳ+ ȳ3 + 3

)
− (yȳ− 1)2 = 0.

The intersection of the closure of W irr
2 is given by yȳ = 4, y3+ ȳ3 = 16. These

are the three points (y, ȳ) = (2,2), (2�,2�2), (2�2,2�), � = e2πi/3.
The parameters (α, ᾱ, y, ȳ) describe point-wise the variety V2. By Proposi-

tion 5.10, we must add the variables z = tr(TA−1TA), z̄ = tr(A−1T−1AT−1),
to describe V2 scheme-theoretically. An easy computation with the above
matrices A,B,T yields that [27]

z = y2 − ȳ,

z̄ = ȳ2 − y.

Note that to describe V2 we only need the variables (α, ᾱ, y, ȳ) even scheme-
theoretically. �

We can work out the component V1 in a similar way and get the following.

Proposition 6.2. The non-distinguished component V1 is described as fol-
lows. Take coordinates α= tr(A), ᾱ= tr(A−1), β = tr(B), β̄ = tr(B−1), η =
tr([A,B]), y = tr(T ), ȳ = tr(T−1), z = tr(TA−1TA), z̄ = tr(A−1T−1AT−1),
the equations satisfied by V1 are α = ᾱ = 1 and yȳ = β + β̄ + 2, y3 + ȳ3 =
ββ̄ + 5β + 5β̄ + 5, η = y3 − 3(β + β̄ + 1), z = ȳ, z̄ = y.

The only reducible representations are given by (y, ȳ, z, z̄, α, ᾱ, β, β̄) ∈ μ3 ·
(2,2,2,2,1,1,1,1) and are partially reducible.
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Remark 6.3. One can check that the only singular points of V2 are the
points in μ3 · (2,2,2,2,1,1,1,1). We check this as follows: V2 is a six-fold
branched covering of the plane (α, ᾱ), having three preimages over the curve
Δ= 0 and one preimage over the points (−1± 2i,−1∓ 2i). The singularities
of Δ = 0 are at (−1± 2i,−1∓ 2i), (1,1), cf. Remark 5.14. We only have to
check whether V2 is smooth at those points, which can be done by hand.

Using the equations, one can easily see that the points μ3 ·(2,2,2,2,1,1,1,1)
are ordinary double points (locally analytically isomorphic to the surface sin-
gularity {(u1, u2, u3) ∈C3|u2

1 + u2
2 + u2

3 = 0}).
The same happens for V1.

7. Description of the distinguished component

The distinguished component is the component V0, which is a triple cover-
ing of W0.

Proposition 7.1. The distinguished component is parametrized as fol-
lows. Taking coordinates α = tr(A), ᾱ = tr(A−1), β = tr(B), β̄ = tr(B−1),
y = tr(T ), ȳ = tr(T−1), z = tr(TA−1TA) and z̄ = tr(A−1T−1AT−1), it has
equations:

α= ᾱ, β = β̄,

yȳ = (α+ 1)(β + 1),

zz̄ = 2α2β + α2 + 1,

y3 + ȳ3 = α2β + αβ2 + 6αβ + 3α+ 3β + 2,

z3 + z̄3 = α4β2 + 10α2β + 9α2 − 2α3 − 2,

yz + ȳz̄ = α2β + 3αβ + 3α+ 1,

ȳ2z + y2z̄ = α2β2 + 4α2β + 2α2 + 4αβ + 2α+ 2β + 1,

ȳz2 + yz̄2 = α3β2 + α3β + 4α2β + 3α2 + 5αβ + 3α− 1.

The intersection with the reducible locus is as follows:

• V0 ∩XTR is given by the three points (y, ȳ, z, z̄, α, ᾱ, β, β̄) = μ3 · (4,4,8,8,3,
3,3,3). These points are smooth points of V0 and XTR respectively. We
have η = tr([A,B]) = 3.

• V0 ∩XPR is given by a six-fold branched covering of the curve αβ − 2α−
2β+3= 0, α �= 3, ramified over the points (α,β) = (1,1) and ( 1±

√
5

2 , 1∓
√
5

2 ),
where there are only three preimages.

For (α,β) = (1,1) the preimages are (y, ȳ, z, z̄) = μ3 · (2,2,2,2). Those
are the same three points as in Vj ∩XPR, j = 1,2. In this case we have
η =−1.

For (α,β) = ( 1±
√
5

2 , 1∓
√
5

2 ) the preimages are (y, ȳ, z, z̄) = μ3 · (−1,−1,
1∓

√
5

2 , 1∓
√
5

2 ). Moreover, η = 3.
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Proof. By Lemma 5.2, W0 is described as the double cover of the plane

(α,β) ramified over the curve Δ′ = 0, where

Δ′ =
(
α2β2 − 6αβ − 4α− 4β − 3

)
(αβ − 2α− 2β + 3)2.

The locus F = αβ− 2α− 2β+3= 0 corresponds to reducible representations.
Therefore, the ring of functions of W0 ∩ res(Xirr(Γ,G)) is Q[α,β][F−1,

√
Δ],

where

Δ= α2β2 − 6βα− 4α− 4β − 3.

We have β = β̄, so the matrix B has one eigenvalue equal to 1. A slice of the

set of such matrices is defined by

B =

⎛
⎝1 0 0
0 β − 1 1
0 −1 0

⎞
⎠ .

Assume that the matrix A has non-zero entries (2,1) and (3,1). Rescaling

the basis vectors, we can write

A=

⎛
⎝a b c
1 d e
1 f g

⎞
⎠ .

Solving the equations tr(A) = tr(A−1), tr(A) = tr(AB), tr(B) = tr(BA−1),

tr(AB−1) = tr(B−1), tr(A−1) = tr(A−1B−1) and det(A) = 1, we get [27]

A =

⎛
⎜⎜⎝

αβ−2α−β
β−3

2(αβ−2α−2β+3)(β−α)
(β−3)2(β+1)

1 4α2−αβ3+4αβ2−9αβ−6α+7β2−6β−9+(β−3)(β+1)
√
Δ

2(β−3)(β+1)(β−α)

1 4α2−αβ3+4αβ2−9αβ−6α+7β2−6β−9−(β−3)(β+1)
√
Δ

2(β−3)(β+1)(β−α)

(αβ−2α−2β+3)(β−α)(β−1)
(β−3)2(β+1)

4αβ3−αβ4+5β3−5αβ2+2α2β−8β2−2α2−2αβ−9β+(β−3)(β+1)(β−2)
√
Δ

2(β−3)(β+1)(β−α)
αβ3+2β3−8αβ2+2α2β−5β2−2α2+5αβ+6α+6β+9−(β−3)(β+1)

√
Δ

2(β−3)(β+1)(β−α)

⎞
⎟⎟⎠ .

These matrices are well defined for β �= 3,−1, α.
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Now, solving the equations TA = ABT and TB = BABT , we get a one-
dimensional space of matrices T spanned by

T0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(α − β)(β − 3)2β(β +

1)2(2αβ − β2 − 4α + 2β −
3)

√
Δ + (α − β)(β − 3)(β +

1)2(2αβ − β2 − 4α + 2β −
3)(3β2 + β − αβ3 + 3αβ2 −
8α− 6)

(αβ − 2α − 2β + 3)(α −
β)(β − 3)(β + 1)(αβ3 −
αβ2 − 2αβ + 4α − β3 −
2β2 − 2β + 3)

√
Δ + (αβ −

2α − 2β + 3)(α − β)(β +

1)(α2β5 − αβ5 − 4α2β4 −
2αβ4+β4+α2β3+14αβ3+

13β3 + 10α2β2 − 10αβ2 −
10β2 +4α2β−17αβ−15β−
16α2 − 24α− 9)

−(αβ − 2α − 2β + 3)(α −
β)(β− 3)(β+1)(β4 −αβ3 −
2β3 + αβ2 − β2 + 2αβ +

β + 4α + 3)
√

Δ + (αβ −
2α − 2β + 3)(α − β)(β +

1)(−αβ6 + α2β5 + 5αβ5 +

3β5 −4α2β4 −8αβ4 −3β4 +

α2β3 − 18αβ3 − 17β3 +

18α2β2 + 53αβ2 + 26β2 −
20α2β + αβ + 12β − 16α2 −
24α − 9)

(β − 3)2(β + 1)2(8α + β4 −
3β3−3β2−β+6)

√
Δ+(β−

3)2(β + 1)2β(−8α2 +αβ4 −
3αβ3 − 3αβ2 +23αβ +6α−
3β3 − 5β2 + 15β + 9)

(β − 3)(β + 1)(4β5 −
16β4 + 5β3 + 8β2 − 15β +

α2β5 − 8α2β4 + 21α2β3 −
14α2β2 − 28α2β + 32α2 −
αβ6 + 7αβ5 − 20αβ4 +

30αβ3 + αβ2 − 41αβ +

48α + 18)
√
Δ + (β − 3)(β +

1)β(2β5 − 22β4 + 28β3 +

9β2 + α3β5 − 8α3β4 +

21α3β3 − 14α3β2 −
12α3β + 16) − α2β6 +

α27β5−23α2β4+52α2β3−
70α2β2 − 33α2β + 72α2 +

7αβ5 − 37αβ4 + 73αβ3 −
30αβ2 − 18αβ + 81α+ 27)

(β − 3)(β + 1)(β6 − 8β5 +

15β4 + 3β3 − 25β2 +

3β − α2β5 + 8α2β4 −
21α2β3 + 6α2β2 + 36α2β −
16α2 + αβ6 − 9αβ5 +

28αβ4 − 18αβ3 − 33αβ2 +

31αβ − 24α − 9)
√

Δ +

(β − 3)(β + 1)(−7β6 +

26β5 − 23β4 − 25β3 − 3β2 −
α3β6 + 8α3β5 − 21α3β4 +

22α3β3 + 4α3β2 − 32α3β +

9β+αβ7−11αβ6+54αβ5−
73αβ4 − 15αβ3 + 22αβ2 +

18αβ + 72α + α2β7 −
9α2β6+31α2β5−64α2β4+

46α2β3 +39α2β2 −16α2β+

48α2 + 27)

(β − 3)2(β +1)2(2β3 − β2 −
8β − αβ4 + 4αβ3 − αβ2 −
10αβ + 4α + 3)

√
Δ + (β −

3)2(β + 1)2(2β4 − 8β3 −
5β2 + 6β + 5αβ4 − 11αβ3 −
13αβ2 + 11αβ + 24α −
α2β5 + 4α2β4 − α2β3 −
10α2β2 − 4α2β − 16α2 +9)

(β − 3)(β +1)(3β5 − 14β4 +

22β3 +7β2 − 39β+2α2β5 −
13α2β4+26α2β3−5α2β2−
34α2β + 28α2 − αβ6 +

7αβ5 − 25αβ4 + 44αβ3 −
3αβ2 − 79αβ + 33α +

9)
√
Δ+(β−3)(β+1)(2β6 −

17β5+40β4−20β3−63β2+

27β + 2α3β6 − 13α3β5 +

26α3β4−5α3β3−34α3β2+

12α3β + 16α3 − α2β7 +

7α2β6−31α2β5+79α2β4−
55α2β3 − 92α2β2 +

105α2β + 72α2 + 6αβ6 −
37αβ5 + 97αβ4 − 73αβ3 −
138αβ2 +108αβ+81α+27)

(β − 3)(β + 1)(α2β6 −
7α2β5 + 16α2β4 − 9α2β3 −
11α2β2 + 18α2β − 20α2 −
αβ7 + 7αβ6 − 18αβ5 +

17αβ4 + 3αβ3 − 13αβ2 +

20αβ − 39α + 3β6 −
13β5 + 8β4 + 17β3 +

β2 + 6β − 18)
√
Δ + (β −

3)(β + 1)(α3β7 − 7α3β6 +

16α3β5−9α3β4−11α3β3+

2α3β2 + 28α3β − 48α3 −
α2β8 + 7α2β7 − 21α2β6 +

36α2β5 − 31α2β4 +

13α2β3 − 14α2β2 −
23α2β + 24α2 + 6αβ7 −
34αβ6 + 56αβ5 − 6αβ4 −
16αβ3 − 86αβ2 − 72αβ +

9α + 2β7 − 17β6 + 29β5 +

16β4 − 13β3 − 33β2 − 36β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The choices T ∈ SL(3,C) are of the form �kd
−1/3
0 T0, � = e2πi/3, k =

0,1,2, d0 = det(T0). Therefore, the coordinates y = tr(T ), ȳ = tr(T−1),
z = tr(TA−1TA) and z̄ = tr(A−1T−1AT−1) can be computed using this ex-
plicit parametrization. Noting that only quantities that are μ3-invariant can
be computed, we get by explicit calculation [27]:

yȳ = (α+ 1)(β + 1),

2y3 =
(
α2β + αβ2 + 6αβ + 3α+ 3β + 2

)
− (α− β)

√
Δ,
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2ȳ3 =
(
α2β + αβ2 + 6αβ + 3α+ 3β + 2

)
+ (α− β)

√
Δ,

2z3 = α4β2 + 10α2β + 9α2 − 2α3 − 2−
(
−4α+ 3α2 + α3β

)√
Δ,

2z̄3 = α4β2 + 10α2β + 9α2 − 2α3 − 2 +
(
−4α+ 3α2 + α3β

)√
Δ,

zz̄ = 1+ α2 + 2α2β,
(21)

2yz = α2β + 3αβ + 3α+ 1+ (1− α)
√
Δ,

2ȳz̄ = α2β + 3αβ + 3α+ 1− (1− α)
√
Δ,

2(α+ 1)(β + 1)z =
(
α2β + 3αβ + 3α+ 1+ (1− α)

√
Δ
)
ȳ,

2(α+ 1)(β + 1)z̄ =
(
α2β + 3αβ + 3α+ 1− (1− α)

√
Δ
)
y,

2η = 2tr
(
[A,B]

)
=

(
α2β2 − 2α2β − 2β2α+ 2α2 + 2β2 − 3

)
− (αβ − 2α− 2β + 3)

√
Δ.

This produces the equations in the statement. In order to see that these equa-
tions are sufficient, let Z be the zero set of those equations, it suffices to check
that, for each (α,β) ∈C2, the fibre of the projection Z →C2 has precisely the
cardinality given in lemma 5.12, which is an elementary computation.

The intersection of V0 with the reducible locus is as follows:

• With the totally reducible representations (i.e., α = β = 3), it is given by
(y, ȳ, z, z̄) = (4,4,8,8), (4�,4�2,4�2,4�), (4�2,4�,4�,4�2), � = e2πi/3.

• With the partially reducible representations (i.e., αβ−2α−2β+3= 0, with

(α,β) �= (3,3)), it is given by six points over each (α,β), if α �= 1,3, 1±
√
5

2 ,
defined by the six solutions for (y, ȳ), cf. Corollary 4.4.

For (α,β) = (1±
√
5

2 , 1∓
√
5

2 ), there are only three (y, ȳ, z, z̄) ∈ μ3 · (−1,−1,
1∓

√
5

2 , 1∓
√
5

2 ), and in this case η = 3.
For α = β = 1, we have η = −1, and (y, ȳ, z, z̄) = μ3 · (2,2,2,2). These

are the same three points as in Vj ∩XPR, j = 1,2. �

Remark 7.2. We know by Proposition 5.15 that the component V0 is
scheme reduced. On the other hand, it is easy to see that the ideal I ⊂
Q[y, ȳ, z, z̄, α, β] generated by the equations in the statement of Proposition 7.1
is not a radical ideal. Now, computer supported calculations [27] produce
generators of the radical rad(I) ⊂ Q[y, ȳ, z, z̄, α, β]. More precisely, rad(I) ⊂
Q[y, ȳ, z, z̄, α, β] is generated by the following 18 polynomials:

2yz + 2ȳz̄ − zz̄ + α2 − 6αβ − 6α− 1,

yȳ− αβ − α− β − 1, 2α2β − zz̄ + α2 + 1,

ȳαβ + y2 − yz̄ + ȳα− zβ − z, yαβ + ȳ2 − ȳz + yα− z̄β − z̄,

yz̄α− ȳα2 − z̄2 + 3ȳα− zα− z, ȳzα− yα2 − z2 + 3yα− z̄α− z̄,

ȳ2α− ȳz + yα− z̄α+ y− z̄, y2α− yz̄ + ȳα− zα+ ȳ− z,

2ȳz̄2 − zz̄2 + 2yα2 + z̄α2 − 2z̄αβ − 4ȳz + 4z2 − 8yα− 2z̄α+ 6y− z̄,
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ȳzz̄ − ȳα2 − 2zαβ + 2yz̄ − 2z̄2 + 4ȳα− 2zα− 3ȳ,

ȳ2z̄ + 3y2 − 2yz̄ − z̄2 + 2ȳα− 2zβ − 2ȳ− 2z,

4ȳ2z + 4y2z̄ − 2zz̄β − 7zz̄ − α2 − 16αβ − 8α− 6β + 3,

ȳ3 + y2z̄ − ȳz̄β + αβ2 − ȳz̄ − zz̄ − 2αβ − α− 2β,

2y3 − 2y2z̄ + 2ȳz̄β − 4αβ2 + 2ȳz̄ + zz̄ + α2 − 8αβ − 4α− 2β − 3,

2zz̄αβ − 4ȳz2 − 4yz̄2 + zz̄α− α3 + 8zz̄ + 4α2 + 18αβ + 11α− 12,

z2z̄2 − 2zz̄α2 + α4 − 4z3 − 4z̄3 − 8α3 + 18zz̄ + 18α2 − 27,

4y2z̄2 − 2zz̄2β − 3zz̄2 − z̄α2 + 8z2β

+ 36ȳ2 − 32ȳz + 4z2 + 16yα− 30z̄β − 29z̄.

By Lemma 7.3, these generators are also generators of the vanishing ideal
I(V0)⊂C[y, ȳ, z, z̄, α, β].

Let k be a perfect field and k/K be a field extension. Notice that every field
of characteristic zero is perfect. Consider the polynomial ring k[x1, . . . , xn]
and K[x1, . . . , xn]∼=K⊗k k[x1, . . . , xn]. Let I ⊂ k[x1, . . . , xn] be an ideal. The

exact sequence 0 → I
ι−→ k[x1, . . . , xn] → k[x1, . . . , xn]/I → 0 gives an exact

sequence

0→K ⊗k I →K ⊗k k[x1, . . . , xn]→K ⊗k

(
k[x1, . . . , xn]/I

)
→ 0.

Now there is a K-algebra isomorphism

K ⊗k

(
k[x1, . . . , xn]/I

)∼=K[x1, . . . , xn]/
(
I ·K[x1, . . . , xn]

)
,

where I ·K[x1, . . . , xn] denotes the image (id⊗ ι)(K ⊗k I) ⊂K ⊗k k[x1, . . . ,
xn] under the identification K[x1, . . . , xn]∼=K ⊗k k[x1, . . . , xn].

Lemma 7.3. The ideal I ⊂ k[x1, . . . , xn] is radical if and only if the ideal
I ·K[x1, . . . , xn]⊂K[x1, . . . , xn] is radical.

Proof. We use that an ideal J in a ring R is radical if and only if R/J is
reduced, that is, it does not admit nilpotent elements. The isomorphism

K ⊗k

(
k[x1, . . . , xn]/I

)∼=K[x1, . . . , xn]/
(
I ·K[x1, . . . , xn]

)
implies at once that if I · K[x1, . . . , xn] is radical then I ⊂ k[x1, . . . , xn] is
radical.

On the other hand, if k[x1, . . . , xn]/I is reduced then it follows from [9, V,
§15, Theorem 3] that K⊗k (k[x1, . . . , xn]/I) is also reduced. Here we use that
k is perfect. �

Remark 7.4. By Proposition 5.15, the only singular points of V0 are μ3 ·
(2,2,2,2,1,1,1,1). Using equations (21), we can parametrize (y, ȳ, z, z̄) locally
around (α,β) = (1,1). There are two branches, depending on the choice of
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sign for
√
Δ. Both branches are smooth and intersect transversely at the

point. So the singularities are simple nodes.

We have also characterized the partially reducible representations and the
totally reducible representations that can deform into irreducible ones (see
also the description in Lemma 4.3).

Remark 7.5. In Proposition 5.10, we have said that V0 can be described
pointwise by the parameters (α,β, η, y, ȳ). The equations are [27]:

η2 − Pη+Q= 0, where P , Q are given in Lemma 5.2,

yȳ = (α+ 1)(β + 1),

y3 + ȳ3 = α2β + αβ2 + 6αβ + 3α+ 3β + 2,

(α− β)
(
2η−

(
α2β2 − 2α2β − 2β2α+ 2α2 + 2β2 − 3

))
= (αβ − 2α− 2β + 3)

(
2y3 −

(
α2β + αβ2 + 6αβ + 3α+ 3β + 2

))
.

Remark 7.6. The covering V0 → C2 of Lemma 5.12 given by χ 
→
(χ(a), χ(b)) is regular. More precisely, the group of deck transformations
D is generated by μ3 and ι, where ι : X(Γ,SL(3,C)) → X(Γ,SL(3,C)) is
given by ι(χ)(γ) = χ(γ−1). If χ = χρ is the character of the representation
ρ : Γ→ SL(3,C) then ι(χ) = χρ∗ : Γ→C is the character of the dual represen-
tation ρ∗ : Γ→ SL(3,C) given by

∀γ ∈ Γ, ρ∗(γ) =
(
ρ(γ)−1

)t
,

where At denotes the transpose matrix for A ∈ SL(3,C). In the coordinates
(y, ȳ, z, z̄, α, β), the action of � ∈ μ3 and ι is given by

�(y, ȳ, z, z̄, α, β) =
(
�y,�2ȳ,�2z,�z̄,α,β

)
, and

ι(y, ȳ, z, z̄, α, β) = (ȳ, y, z̄, z,α,β).

The ring of invariant functions of this action is generated by α, β and the
following functions:

f1 = yȳ, f2 = zz̄, f3 = y3 + ȳ3, f4 = z3 + z̄3,

h1 = yz + ȳz̄, h2 = ȳ2z + y2z̄, h3 = ȳz2 + yz̄2.

Therefore the quotient V0/D embeds into C7 ×C2 and it follows from equa-
tions (21) that the image q : V0 → C7 × C2 is isomorphic to C2 and given
by

f1 = (α+ 1)(β + 1), f2 = 2α2β + α2 + 1,

f3 = α2β + αβ2 + 6αβ + 3α+ 3β + 2,

f4 = α4β2 + 10α2β + 9α2 − 2α3 − 2, h1 = α2β + 3αβ + 3α+ 1,

h2 = α2β2 + 4α2β + 2α2 + 4αβ + 2α+ 2β + 1,

h3 = α3β2 + α3β + 4α2β + 3α2 + 5αβ + 3α+ 1.
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Here (f1, f2, f3, f4, h1, h2, h3, α, β) are the coordinates of C7 × C2. Finally,
V0 = q−1(V0/D) is the zero-locus of the equations stated in the proposition.

Remark 7.7. Long and Reid give in [37] two one-parameter families of
representations ρk, �T : Γ→ SL(3,C):

2ρk(t) =

⎛
⎝0 0 1
1 0 −k
0 1 −1− k

⎞
⎠ , ρk(a) =

⎛
⎝1 −2 3
0 k −1− 2k
0 1 −2

⎞
⎠ ,

ρk(b) =

⎛
⎝−2− k −1 1
−2− k −2 3
−1 −1 2

⎞
⎠ ,

�T (t) =

⎛
⎝0 0 1
1 0 T 2

0 1 0

⎞
⎠ , �T (a) =

⎛
⎝−1 + T 3 −T T 2

0 −1 2T
−T 0 1

⎞
⎠ ,

�T (b) =

⎛
⎝ −1 0 0
−T 2 1 −T
T 0 −1

⎞
⎠ .

The characters of these two families are in the component V0 and we have
(y, ȳ, z, z̄, α, β) = (−k−1, k, k2−2,−2k+1, k−1,−k−2) and (y, ȳ, z, z̄, α, β) =
(0,−T 2,−T 2, T 4 − 2T,T 3 − 1,−1), respectively.

8. Character varieties for PGL(3,C) and GL(3,C)

We use the descriptions of the various components of the SL(3,C)-character
variety given in Sections 4, 6 and 7 to give a similar description for the char-
acter varieties for PGL(3,C) and GL(3,C).

By Lemma 2.2, we haveX(Γ,PGL(3,C))∼=X(Γ,SL(3,C))/μ3. One can get
a coordinate description introducing new variables which are the generators
of the ring C[y, ȳ, z, z̄]μ3 , namely:

u1 = y3, u2 = ȳ3, u3 = yȳ, u4 = z3,

u5 = z̄3, u6 = zz̄, u7 = yz, u8 = ȳz̄,(22)

u9 = yz̄2, u10 = y2z̄, u11 = ȳz2, u12 = ȳ2z.

These coordinates satisfy certain relations that can be found with a computer
calculation in a standard way. Using the mathematical package Magma [8],
we have found a set of 29 relations.

Proposition 8.1. The character variety X(Γ,PGL(3,C)) has five compo-
nents.

• The component corresponding to totally reducible representations, isomor-
phic to C2/μ3, μ3 acting by (y, ȳ) 
→ (�y,�2ȳ).
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• The component corresponding to partially reducible representations is
parametrized by the smooth surface{

(v1, v2, v3, x1) ∈C×C∗ ×C×
(
C− {1}

)
| v1v2 = v33 ,

(x1 − 1)v23 =
(
x2
1 + x1 − 1

)
v2
}
.

An explicit parametrization uj = uj(v1, v2, v3, x1), j = 1, . . . ,12, is obtained
from Equations (22) and Proposition 4.1 by using the new parameters v1 =
v3, v2 =w3, v3 = vw.

• Three components consisting of irreducible representations, which are W0−
{αβ − 2α − 2β + 3 = 0},W1 − {β = β̄ = 1},W2 − {α = ᾱ = 1} defined in
Lemmas 5.2 and 5.3.

Proof. The PGL(3,C)-character variety is obtained from the SL(3,C) by
taking the quotient by μ3 acting on the coordinates y, ȳ, z and z̄. The locus of
reducible representations is determined in Proposition 4.1. For the partially
reducible representations, we use the description in (10).

Finally, from the discussion at the end of Section 5, the irreducible lo-
cus Xirr(Γ,PGL(3,C)) is isomorphic to the image under the restriction map
res : Xirr(Γ,GL(3,C))→X(F2,SL(3,C)). This is the set described in Lemmas
5.2 and 5.3. �

To get the GL(3,C)-representations, recall that

X
(
Γ,GL(3,C)

)
=
(
X
(
Γ,SL(3,C)

)
×C∗)/μ3.

So the variables are (y, ȳ, z, z̄, α, ᾱ, β, β̄, λ) with μ3 acting as

� · (y, ȳ, z, z̄, α, ᾱ, β, β̄, λ) =
(
�y,�2ȳ,�2z,�z̄,α, ᾱ, β, β̄,�λ

)
.

Thus one can get a coordinate description introducing the variables uj of
Equations (22) and

w1 = yλ2, w2 = y2λ, w3 = ȳλ, w4 = zλ,

w5 = z̄λ2, w6 = z̄2λ, w7 = yz̄λ, w8 = λ3.

The coordinates uj , wk satisfy certain relations that can be found with a
computer calculation in a standard way. Using the mathematical package
Magma [8], we have found a set of 89 relations.

Substituting these variables into the statement of Theorem 1.2 gives the
equations for the three components containing characters of irreducible rep-
resentations.

For the totally reducible representations, we have a simpler description
as XTR(Γ,GL(3,C)) = C2 × C∗. Also, for the partially reducible GL(3,C)-
representations, they split as an irreducible GL(2,C)-representation and a
one-dimensional representation. Therefore, in analogy to Proposition 4.1,
the component XPR(Γ,GL(3,C)) can be parametrized by X2 × C∗. Here
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X2 ⊂ X(Γ,GL(2,C)) is the component of irreducible representations (see
Proposition 3.3).

9. The symmetry group of the figure eight knot

The symmetry group Sym(S3,K8) of the figure eight knot K8 is isomorphic
to the outer automorphism group

Out(Γ) = Aut(Γ)/Inn(Γ)

(see [32, 10.6]). The group Out(Γ) was calculated by Magnus [39] (see also
[47]). It is isomorphic to the dihedral group D4 of order eight

(23) Out(Γ) =
〈
f,h | f2 = h4 = (fh)2 = 1

〉∼=D4,

where the elements f and h are represented by the following automorphisms
(also denoted by f and h):

f(S) = T−1

f(T ) = S−1
and

h(S) = ST−1S−1

h(T ) = TS−1T−1.

They are also described by the action on t, a, b ∈ Γ as follows:

f(t) = T−1 = a−1t−1a∼ t−1,

f(a) = ST−1S−1T = a−1,(24)

f(b) = S−1T = ba−1 ∼ b

and

h(t) = ST−1S = ta−1t−1at−1 ∼ t−1,

h(a) = TST−2 = Tb−1T−1 = a−1tab−1a−1t−1a∼ b−1,(25)

h(b) = TS−1T−1STS−1 = STS−1T−1 = TaT−1 = a−1tat−1a∼ a.

A peripheral system (m,�) of the figure eight knot is given by

m = S = t,
(26)

� = T−1STS−1S−1TST−1 = [a, b].

Notice that by (25), we obtain

h(m) = ta−1m−1t−1a,

h(�) = h
(
[a, b]

)
= a−1ta

[
b−1, a

]
a−1t−1a.

Now the relation t−1a−1t= ba−2 gives that the peripheral system (h(m), h(�))
is conjugated to (m−1, �). This reflects the amphicheirality of the figure eight
knot.

The induced action on the varieties of representations are given in coordi-
nates as follows:

f∗(y) = ȳ, f∗(ȳ) = y, f∗(z) = z̄, f∗(z̄) = z,

f∗(α) = ᾱ, f∗(ᾱ) = α, f∗(β) = β, f∗(β̄) = β̄,
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and

h∗(y) = ȳ, h∗(ȳ) = y, h∗(α) = β̄, h∗(ᾱ) = β, h∗(β) = α,

h∗(β̄) = ᾱ.

Lemma 9.1. h∗(z) = ȳ2 − z̄ and h∗(z̄) = y2 − z.

Proof. We check this equality on each component. Away from V0, z and z̄
are functions on the other variables, and the proof is straightforward. For V0,
we compute h∗(z) as follows: we have ta−1ta= ST and

h(ST ) = ST−1S−1TS−1T−1 = T−1ST−1S−1 ∼ T−1S−1T−1S.

Now, we proceed as in the proof of Lemma 5.1. Let ρ : Γ → SL(3,C) be a
representation. We put ρ(S) =M and ρ(T ) =N . By the Cayley–Hamilton
theorem we have(

N−1M−1
)3

= tr
(
N−1M−1

)(
N−1M−1

)2 − tr(MN)
(
N−1M−1

)
+ Id .

Multiplying this identity by MNM2 gives:

tr
(
N−1M−1N−1M

)
= tr

(
N−1M−1

)
tr
(
N−1M

)
− tr(MN) tr

(
M2

)
+ tr

(
M3N

)
.

Applying the same procedure to M3N and M2N , we obtain

tr
(
M3N

)
= tr(M) tr

(
M2N

)
− tr

(
M−1

)
tr(MN) + tr(N)

and

tr
(
M2N

)
= tr(M) tr(MN)− tr

(
M−1

)
tr(N) + tr

(
M−1N

)
.

Now S = t, T = a−1ta, ta−1ta = ST and b = TS−1 gives h∗(z) = z̄β̄ + ȳz −
y2ȳ + yβ + y. Using that on V0, ᾱ = α and β̄ = β, yȳ = (1 + α)(1 + β), and
yαβ + ȳ2 − ȳz + yα− z̄β − z̄ = 0 (see Remark 7.2) the computation for h∗(z)
follows. The formula for h∗(z̄) is proved in the same way. �

Thus we have the following proposition.

Proposition 9.2. f∗ preserves the components of X(Γ,SL(3,C)) and h∗

swaps V1 and V2.

Remark 9.3. If we consider also the action of μ3, the center of SL(3,C),
we realize that yȳ and y3+ ȳ3 are invariant by both the symmetry group of the
knot and the action of μ3. This explains why yȳ and y3 + ȳ3 are symmetric
polynomials on α and β for V0, on β and β̄ for V1 and on α and ᾱ for V2,
as well as the symmetries on those variables (swapping V1 and V2). Similar
considerations with the variables z and z̄ can be made.
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10. The non-distinguished components as Dehn fillings

In this section, we view the non-distinguished components as the variety
of representations induced by an exceptional Dehn filling on the figure eight
knot. Those representations also appear in work of Bing and Martin [5] in
the proof of property P for twist knots. This is explained at the end of the
section.

We recall that the figure eight knot has six slopes s ∈ Q ∪ {∞} whose
Dehn filling K(s) is a small Seifert fibered manifold; namely, a Seifert fibered
manifold with basis orbifold a 2-sphere with three cone points of order p, q,
and r ≥ 2, S2(p, q, r). The precise coefficients are (cf. [25]):

K(±1) fibers over S2(2,3,7),

K(±2) fibers over S2(2,4,5),

K(±3) fibers over S2(3,3,4).

The center of π1(K(±s)), s = 1,2,3, is generated by a regular fibre. By
Schur’s lemma, any irreducible representation of π1(K(±s))→ SL(3,C), s=
1,2,3, maps the fibre to the center of SL(3,C). This motivates the study of
representations of the orbifold fundamental groups πO

1 (S2(p, q, r)), that are
isomorphic to the (orientable) triangle groups

πO
1

(
S2(p, q, r)

)∼=D(p, q, r) =
〈
k, l | kp, lq, (kl)r

〉
.

These surjections of π1(K(±s)), s = 1,2,3, onto the corresponding triangle
group are given by taking the quotient of the fundamental group of the small
Seifert fibered manifold π1(K(±s)) by its center.

In particular, using the Wirtinger Presentation (2), we have an epimor-
phism φ : Γ→D(3,3,4) = 〈k, l | l3, k3, (kl)4〉 given by

φ(S) = klk and φ(T ) = klklk.

With Presentation (1),

(27) φ(a) = k−1l−1kl, φ(b) = φ
(
TS−1

)
= kl and φ(t) = klk.

It satisfies φ(b)4 = 1 and φ(m3�) = 1. Notice that the surjection φ induces an
injection

φ∗ : X
(
D(3,3,4),SL(3,C)

)
↪→X

(
Γ,SL(3,C)

)
.

Characters χ in V1 satisfy χ(b±1) = 1. In addition, by (27), φ(b) = kl has
order 4. This motivates the following lemma.

Lemma 10.1. The variety X irr(D(3,3,4),SL(3,C)) has a component W of
dimension 2 and three isolated points. The variety W is isomorphic to the
hypersurface in C3 given by the equation

ζ2 − (νν̄ − 2)ζ + ν3 + ν̄3 − 5νν̄ + 5= 0.
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Here, the parameters are ν = χ(k−1l), ν̄ = χ(kl−1) and ζ = χ([k, l]). For every
χ ∈W , χ(k±1) = χ(l±1) = 0 and χ((kl)±1) = 1.

Moreover, all characters in W are irreducible except for the three points
(ν, ν̄, ζ) = (2,2,1), (2�,2�2,1), (2�2,2�,1), � = e2πi/3.

Proof. For an irreducible representation of D(3,3,4), the eigenvalues of the
image of elements of order three k and l are {1,�,�2} (otherwise the image
of k or l would be central and the representation reducible). In particular
χ(k±1) = χ(l±1) = 0. For the image of kl there are three possible set of eigen-
values: {1, i,−i}, {−1, i, i}, {−1,−i,−i}, and {1,−1,−1}. We shall see that
for {1, i,−i} we get a two dimensional variety and for {−1, i, i}, {−1,−i,−i},
and {1,−1,−1}, isolated points.

First, assume that the eigenvalues of the image of kl are {1, i,−i}, namely
χ(kl) = χ((kl)−1) = 1. Then, by applying Lawton’s theorem and by taking
coordinates ν(χ) = χ(k−1l), ν̄(χ) = χ(kl−1), and ζ(χ) = χ([k, l]), we get the
hypersurface of C3,

ζ2 − (νν̄ − 2)t+ ν3 + ν̄3 − 5νν̄ + 5= 0,

that we denote W .
Next, we deal with the case where the eigenvalues of a representation of

kl are {−1, i, i}, namely χ(kl) =−1 + 2i and χ((kl)−1) =−1− 2i. We apply
Lawton’s theorem again, but this is not sufficient to determine a representa-
tion, as the image of kl could not diagonalize. We need to impose further
conditions that determine the value of the characters at kl−1 and k−1l, which
will imply that the dimension of the component of the character variety is
zero. Namely, denote by K and L the respective images of k and l by a
representation. As we require that KL is diagonalizable, we have

0 = (KL+ Id)(KL− i Id) = (KL)2 + (1− i)KL− i Id .

Equivalently, KL+(1−i) Id−i(KL)−1 = 0. Multiplying withK−1, KLK−1+
(1− i)K−1 − iL−1K−2 = 0, and since trL= trK−1 = 0, we get trL−1K−2 =
0. In addition, since K−2 = K, trKL−1 = trL−1K−2 = 0. Similarly,
trK−1L = 0, thus we get a zero dimensional variety. Lawton’s formulas
[34] yield that the trace of the commutator and its inverse are the same:
tr[K,L] = tr[K−1,L−1] = 1. Thus, this is a single point in the character vari-
ety, by Lawton’s coordinates. The case where the eigenvalues are {−1,−i,−i}
is precisely the same computation, by considering complex conjugation, and
the case {1,−1,−1} is completely analogous.

Finally, let ρ be a reducible semisimple representation with character
χρ in W . Hence, up to conjugation we can assume that ρ = ρ1 ⊕ ρ2,
where ρ1 : D(3,3,4) → GL(2,C) is irreducible, and ρ2 : D(3,3,4) → μ3 sat-
isfies ρ2(g)det(ρ1(g)) = 1 for all g ∈ D(3,3,4). First, let us assume that
det◦ρ1 = ρ2 is trivial, i.e., ρ1 : D(3,3,4) → SL(2,C). This implies that
tr(ρ(g)) = tr(ρ1(g))+1 for all g ∈D(3,3,4). Hence, K1 = ρ1(k) and L1 = ρ1(l)
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are matrices of order three without common eigenspaces. Hence, up to con-
jugation, we can assume that

K1 =

(
ω 0
a ω−1

)
and L1 =

(
ω 1
0 ω−1

)
.

Now, the condition tr(KL) = 1 implies tr(K1L1) = 0 and hence a= 1. This
gives

K1L
−1
1 =

(
1 −ω

ω−1 0

)
, K−1

1 L1 =

(
1 ω−1

−ω 0

)
, and

[K1,L1] =

(
0 1
−1 0

)
.

Hence, tr(ρ(kl−1)) = 2, tr(ρ(k−1l)) = 2 and tr(ρ([k, l])) = 1.
If λ = det◦ρ1 is a non-trivial homomorphism, then λ · ρ : D(3,3,4) →

SL(3,C) is still a reducible representation λ · ρ = (λ · ρ1) ⊕ (λ · ρ2). Now,
λ · ρ2 is trivial and the preceding argument applies to λ · ρ. Finally, we have
that Hom(D(3,3,4), μ3)∼= μ3 and λ(kl−1) = λ(k−1l)2 implies the result. �

Remark 10.2. Further details in the proof of Lemma 10.1 allow to describe
those three isolated points. Composing with φ∗, they correspond to the points
in X(Γ,SL(3,C)) with coordinates:

(α, ᾱ, β, β̄) = (1,1,−1 + 2i,−1− 2i), (1,1,−1− 2i,−1 + 2i), (−1,−1,−1,−1).

For those characters of Γ, y = ȳ = z = z̄ = 0. Those are precisely the three
metabelian irreducible characters of Γ that do not lie in V2, see Corollary 5.8.

Proposition 10.3. The components V1 and V2 are characters of repre-
sentations which factor through the surjections Γ � π1(K(±3)) respectively.
These components are isomorphic to the hypersurface

ζ2 − (νν̄ − 2)ζ + ν3 + ν̄3 − 5νν̄ + 5= 0.

Here, the parameters are

ν =

{
χ(t) for V2,

χ(t−1) for V1,
ν̄ =

{
χ(t−1) for V2,

χ(t) for V1,
ζ =

{
χ(a) for V2,

χ(b−1) for V1.

All characters are irreducible except for the three points (ν, ν̄, ζ) = (2,2,1),
(2�,2�2,1), (2�2,2�,1), with � = e2πi/3, that correspond to the intersection
V1 ∩ V2 = V0 ∩ V1 ∩ V2. The intersection of Vi ∩ V0 is the zero locus of the
discriminant on ζ:

ν2ν̄2 − 4ν3 − 4ν̄3 + 16νν̄ − 16 = 0.

The restriction map X(Γ,SL(3,C))→X(F2,SL(3,C)) maps the intersection
V1 ∩ V2 onto a single point α= ᾱ= β = β̄ = 1.



THE SL(3,C)-CHARACTER VARIETY OF THE FIGURE EIGHT KNOT 93

Proof. By (27), the surjection φ : Γ → D(3,3,4) maps b to kl, and a to
a conjugate to [k, l]. Hence, for every character χ ∈ W we obtain that
res◦φ∗(χ) = res(χ ◦ φ) : F2 → C maps b and b−1 to 1 (recall that φ(b)4 = 1).
Therefore, the map

res◦φ∗ : W →X
(
F2,SL(3,C)

)
maps W onto the 2-dimensional component V2 given by the equations β =
β̄ = 1. On this component, we have α= ζ, and ᾱ= (νν̄ − 2)− ζ (i.e., α and
ᾱ are the solutions of the equation on ζ). In addition, the intersection with
α = ᾱ corresponds to the two possible values of ζ (for fixed ν and ν̄) being
equal, that is to the zero set of the discriminant of the quadratic equation
on t. The parameters for χ ∈W are χ(k−1l), χ(kl−1) and χ([k, l]). Now, by
(27) we have

φ(t) = klk ∼ k2l= k−1l and φ(a) = k−1l−1kl∼ [k, l],

and hence the parameters for φ∗χ ∈X(Γ,SL(3,C)) are

ν = φ∗χ(t), ν̄ = φ∗χ
(
t−1

)
and ζ = φ∗χ(a).

We obtain the component V2 by the same considerations and by replacing
φ by φ ◦ h. Notice that by (25) we have h(t) = t−1 and h(a) = b−1. �

The definition of the volume of a representation in SL(3,C) and its main
properties can be found in [3], [10], [22]. Since characters in V1 and V2 factor
through a closed Seifert fibered manifold, we have:

Corollary 10.4. The volume of any representation in V1 or V2 vanishes.

Remark 10.5. One may ask why the Dehn fillings K(±3) give new com-
ponents of X(Γ,SL(3,C)), while K(±1) and K(±2) do not, even if all of
them are small Seifert fibered orbifolds. The reason is that the groups of
the base orbifolds are different and their varieties of representations have dif-
ferent dimension: X(πO

1 (S2(3,3,4)),SL(3,C)) has a component of dimension
two, though X(πO

1 (S2(2, q, r)),SL(3,C)) (q, r ≥ 2) has dimension zero. This
can be checked with the same argument as in the proof of Lemma 10.1.

11. Parametrizing representations

Similar representations of knot groups into SL(3,C) have been used in
the literature before. In particular Bing and Martin used them to prove
Property P for twist knots (see [5]). The study of representations of D(3, q, r)
to SL(3,C) goes back to [12]. Some of this is presented in [11, Section 15B].

We consider the following two matrices K and L of SL(3,C):

K =

⎛
⎝ 0 0 1

x0 1 x1

−1 0 −1

⎞
⎠ and L=

⎛
⎝1 y0 y1
0 −1 −1
0 1 0

⎞
⎠ .
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Notice that K and L are of order three,

KL=

⎛
⎝ 0 1 0

x0 x0y0 + x1 − 1 x0y1 − 1
−1 −y0 − 1 −y1

⎞
⎠ ,

thus the characteristic polynomial of KL is given by

PKL(t) = t3 − (x0y0 + x1 − y1 − 1)t2 + (x0y1 − x1y1 − x0 − y0 + y1 − 1)t− 1.

Hence, tr(KL) = tr(L−1K−1) = 1 if and only if

x0y0 + x1 − y1 − 2 = 0 and x0y1 − x1y1 − x0 − y0 + y1 − 2 = 0.

Now, define the ideal

I = (x0y0 + x1 − y1 − 2, x0y1 − x1y1 − x0 − y0 + y1 − 2)⊂C[x0, x1, y0, y1]

and X =V(I)⊂C4 its zero set. For each point (x0, x1, y0, y1) ∈X we obtain
a representation ρ(x0,x1,y0,y1) : D(3,3,4) → SL(3,C) mapping φ(b) = kl to a

matrix B such that tr(B) = tr(B−1) = 1.
An easy computation gives that X is a smooth irreducible variety, that we

view as a subvariety of R(D(3,3,4),SL(3,C)). The following proposition says
that we can view it as a birational slice.

Proposition 11.1. The projection

R
(
D(3,3,4),SL(3,C)

)
→X

(
D(3,3,4),SL(3,C)

)
restricts to a birational map X →W .

Proof. We write the projection restricted to X as a regular map f : X →
W ⊂C3 given by

f(x0, x1, y0, y1) =
(
ν(x0, x1, y0, y1), ν̄(x0, x1, y0, y1), ζ(x0, x1, y0, y1)

)
,

where we have used the parameters of Lemma 10.1,

ν = trρ(x0,x1,y0,y1)

(
k−1l

)
,

ν̄ = trρ(x0,x1,y0,y1)

(
kl−1

)
,

ζ = trρ(x0,x1,y0,y1)

(
[k, l]

)
.

In the ambient coordinates the map f is given by

ν(x0, x1, y0, y1) = x0y0 − x1y0 + x0 + y1 − 2,

ν̄(x0, x1, y0, y1) = x0y1 − x1 + y0 − y1 + 1,

ζ(x0, x1, y0, y1) = x2
0y0y1 − x0x1y0y1 − x2

0y0 + x0y
2
0 − x1y

2
0 + x0x1y1

− x2
1y1 − x0y0y1 + x1y0y1 + x0y

2
1 − x0x1 + 2x0y0

− x1y0 − 3x0y1 + 2x1y1 + y0y1 − y21 + 4x0 − x1 − 2y0 − 2.
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The rational inverse is the map g : W →X given by

g(ν, ν̄, ζ) =

(
ν2 + νν̄ − 2ν̄ − ζ − 3

ζ − 1
,

ν2 − ν̄2 + 2ν − 2ν̄ + ζ − 1

ζ − 1
,

νν̄ − ν̄2 + 2ν − 2ζ − 2

−νν̄ + ζ + 3
,
−ν2 + 2ν̄ − ζ + 1

−νν̄ + ζ + 3

)
.

The map g is defined off the algebraic set Y = (X ∩ {ζ = 1}) ∪ (X ∩ {νν̄ =
ζ + 3}). The decomposition of Y = Y1 ∪ · · · ∪ Y6 into irreducible components
is obtained by computer supported calculations [27], and it is given by

Y1 =V(ζ − 1, ν + ν̄ + 2), Y2 =V
(
ζ − 1, ν + η2ν̄ − 2η

)
,

Y3 =V
(
ζ − 1, ν − ην̄ + 2η2

)
, Y4 =V

(
ν + ν̄ + 2, ν̄2 + 2ν̄ + ζ + 3

)
,

Y5 =V
(
ν + η2ν̄ − 2η, ν̄2 + 2η2ν̄ − ηζ − 3η

)
,

Y6 =V
(
ν − ην̄ + 2η2, ν̄2 − 2ην̄ + η2ζ + 3η2

)
.

Each Yi is isomorphic to an affine line and η is a primitive 6th root of unity. �

This permits to give explicitly a representation Γ→ SL(3,C) which corre-
sponds to a given point in W \ Y .

Example 11.2. Let us compute all irreducible representations ρ : Γ →
SL(3,C) such that χρ ∈ V1 and trρ(m) = trρ(m−1) = 3, i.e., ν = ν̄ = 3. By

Proposition 10.3, we obtain ζ2 − 7ζ + 14 = 0 and hence ζ± = 7/2 ± i
√
7/2.

Now,

g(3,3, ζ±) =

(
3

2
± i

√
7

2
+,1,

1

2
∓ i

√
7

2
,
3

2
∓ i

√
7

2

)
.

Hence,

ρ(S) =

⎛
⎜⎝

√
7
2 i+ 3

2 1 1√
7
2 i+ 5

2 −
√
7
2 i+ 5

2 1

−
√
7
2 i− 5

2

√
7
2 i− 3

2 −1

⎞
⎟⎠ ,

ρ(T ) =

⎛
⎜⎝

√
7
2 i+ 5

2 −
√
7
2 i+ 5

2 1

1 −
√
7
2 i+ 3

2 1

−
√
7
2 i− 3

2

√
7
2 i− 5

2 −1

⎞
⎟⎠ .

Moreover, we obtain that

ρ(�) =

⎛
⎜⎝ 3i

√
7− 2 3

√
7

2 i+ 9
2

3
√
7

2 i+ 3
2

3i
√
7 + 15 −3i

√
7 + 10 9

− 3
√
7

2 i− 15
2

3
√
7

2 i− 9
2 −5

⎞
⎟⎠

is also a unipotent matrix. These representations where previously studied by
Deraux and Falbel in connection with spherical CR structures on the comple-
ment of the figure eight knot [14], [15], [16].
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