DECOMPOSITIONS OF RATIONAL FUNCTIONS OVER REAL AND COMPLEX NUMBERS AND A QUESTION ABOUT INVARIANT CURVES

PETER MÜLLER

ABSTRACT. We consider the connection of functional decompositions of rational functions over the real and complex numbers, and a question about curves in the complex plane which are invariant under a rational function.

1. Introduction

Let $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere, and $\hat{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$. A *circle* in $\hat{\mathbb{C}}$ is either a usual circle in \mathbb{C} , or a line in $\hat{\mathbb{C}}$. So the circles in $\hat{\mathbb{C}}$ are just the curves $\Gamma = \lambda(\hat{\mathbb{R}})$, where $\lambda(z) = \frac{az+b}{cz+d} \in \mathbb{C}(z)$ is a linear fractional function (with $ad - bc \neq 0$).

Long ago Fatou suggested to study (Jordan) curves $\Gamma \subset \hat{\mathbb{C}}$ which are invariant under a rational function of degree ≥ 2 . See [3] for recent progress on this. The case that Γ is a circle $\lambda(\hat{\mathbb{R}})$ is not interesting, because any rational function $r = \lambda \circ s \circ \lambda^{-1}$ with $s \in \mathbb{R}(z)$ leaves Γ invariant, and there are no other rational functions with this property.

Motivated by his results on invariant curves in [3], Alexandre Eremenko suggested to investigate the following source of invariant curves, and raised two questions about this family.

QUESTION 1.1. Let $f, g \in \mathbb{C}(z)$ be non-constant rational functions, such that $f(g(z)) \in \mathbb{R}(z)$, so the curve $\Gamma = g(\hat{\mathbb{R}})$ is invariant under $r = g \circ f$. Assume that Γ is not contained in a circle.

- (a) Is it possible that Γ is a Jordan curve? ([3], [2])
- (b) Is it possible that $r: \Gamma \to \Gamma$ is injective? ([5], and special case of [4])

Received March 19, 2015; received in final form September 20, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary 30D05, 37F10. Secondary 14H52, 20B05.

Note that $\Gamma = g(\hat{\mathbb{R}})$ is contained in a circle if and only if there is a linear fractional function $\lambda \in \mathbb{C}(z)$ such that $\tilde{g} = \lambda \circ g \in \mathbb{R}(z)$. In this case, $f \circ g = \tilde{f} \circ \tilde{g}$ with $\tilde{f} = f \circ \lambda^{-1} \in \mathbb{R}(z)$. So the decomposition of $f \circ g$ over \mathbb{C} essentially arises from a decomposition over \mathbb{R} .

There are rational functions $f \circ g \in \mathbb{R}(z)$ whose decompositions do not come from a decomposition over the reals. On the other hand, it is known that decompositions of real polynomials over the complex numbers always arise from real decompositions. See Section 5 for more about this.

The purpose of this paper is to give a positive answer to question (a), and a negative answer to a slight weakening of (b). More precisely, regarding (a), we show the following theorem.

THEOREM 1.2. For every odd prime ℓ there are rational functions $f, g \in \mathbb{C}(z)$, both of degree ℓ , such that

- (a) $f(g(z)) \in \mathbb{R}(z)$.
- (b) $g: \hat{\mathbb{R}} \to \hat{\mathbb{C}}$ is injective, so $g(\hat{\mathbb{R}})$ is a Jordan curve.
- (c) $g(\hat{\mathbb{R}})$ is not a circle.

In order to formulate the next two results, we define a weakening of injectivity of rational functions on \mathbb{R} .

DEFINITION 1.3. A rational function $g \in \mathbb{R}(z)$ is said to be weakly injective on \mathbb{R} , if there exists $z_0 \in \mathbb{R}$ which is not a critical point of g, and besides z_0 there is no $y_0 \in \hat{\mathbb{R}}$ with $g(z_0) = g(y_0)$.

A partial answer to question (b) is the following.

THEOREM 1.4. Let $f, g \in \mathbb{C}(z)$ be non-constant rational functions, such that $f \circ g \in \mathbb{R}(z)$. Assume that g is weakly injective, and that the curve $\Gamma = g(\hat{\mathbb{R}})$ is not contained in a circle. Then the map $g \circ f : \Gamma \to \Gamma$ is not injective.

A slight variant of this theorem shows that for a fairly large class of rational functions from $\mathbb{R}(z)$, each decomposition over \mathbb{C} arises from a decomposition over \mathbb{R} .

THEOREM 1.5. Let $f, g \in \mathbb{C}(z)$ be non-constant rational functions such that $h(z) = f(g(z)) \in \mathbb{R}(z)$ is weakly injective. Then there is a linear fractional function $\lambda \in \mathbb{C}(z)$ such that $\lambda \circ g \in \mathbb{R}(z)$.

The main ingredient (besides Galois theory) in the proof of the previous two theorems is the following group-theoretic result. (See Section 3 for the notation.)

PROPOSITION 1.6. Let G be a group of permutations of the finite set Ω . Let σ be a permutation of Ω of order 2 which fixes exactly one element ω , and which normalizes G, that is $G^{\sigma} = G$. Let G_{ω} be the stabilizer of ω in G. Then $M^{\sigma} = M$ for each group M with $G_{\omega} \leq M \leq G$. The proof of Theorem 1.2 uses elliptic curves. The construction was motivated by a group-theoretic analysis similar to the one which led to the proofs of Theorems 1.4 and 1.5.

2. Non-circle Jordan curves invariant under a rational function

In this section, we work out our sketch from [10] and prove Theorem 1.2. Let E be an elliptic curve given by a Weierstrass equation $Y^2 = X^3 + aX + b$ with $a, b \in \mathbb{R}$. By $E(\mathbb{C})$ and $E(\mathbb{R})$ we denote the complex and real points of E. For $p \in E(\mathbb{C})$ we let \bar{p} be the complex conjugate of p. We use the structure of $E(\mathbb{C})$ as an abelian group, with neutral element 0_E the unique point at infinity. Denote by $\langle c \rangle$ the cyclic group generated by $c \in E(\mathbb{C})$.

For general facts about elliptic curves see, for example, [12].

LEMMA 2.1. Let $\ell \geq 3$ be a prime. Then there is a point $c \in E(\mathbb{C})$ of order ℓ , with $\bar{c} \notin \langle c \rangle$.

Proof. Let $E[\ell] \subset E(\mathbb{C})$ be the group of ℓ -torsion points. Then $E[\ell]$ is isomorphic to the vector space \mathbb{F}^2_{ℓ} , and the complex conjugation acts linearly on this space.

Suppose that the claim does not hold, so the complex conjugation fixes each 1-dimensional subspace of $E[\ell]$ setwise. Then the complex conjugation acts as a scalar map. Therefore, either $E[\ell] \subset E(\mathbb{R})$, or $\bar{c} = -c$ for each $c \in E[\ell]$. In the latter case, write c = (u, v). So u is real and v is purely imaginary. Thus, upon replacing E with the twisted curve $-Y^2 = X^3 + aX + b$ (which is isomorphic over \mathbb{R} to $Y^2 = X^3 + aX - b$), we obtain in either case an elliptic curve E with $E[\ell] \subseteq E(\mathbb{R})$. On the other hand, $E(\mathbb{R})$ is isomorphic to \mathbb{R}/\mathbb{Z} or to $\mathbb{R}/\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (see, e.g., [12, V. Cor. 2.3.1]). However, $\mathbb{R}/\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ does not have a subgroup isomorphic to $\mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z}$. This proves the claim.

LEMMA 2.2. Suppose that $X^3 + aX + b$ has three distinct real roots. Then there are elements $w \in E(\mathbb{R})$ such that there is no $\hat{w} \in E(\mathbb{R})$ with $w = 2\hat{w}$.

Proof. If $X^3 + aX + b$ has three distinct real roots, then $E(\mathbb{R}) \cong \mathbb{R}/\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, so any w corresponding to (s,1), $s \in \mathbb{R}/\mathbb{Z}$ arbitrary, has the property that there is no $\hat{w} \in E(\mathbb{R})$ with $w = 2\hat{w}$. (In this case, $E(\mathbb{R})$ has two connected components, and for each $\hat{w} \in E(\mathbb{R})$ the element $2\hat{w}$ is on the connected component of 0_E .)

By an *automorphism* of an elliptic curve we mean a birational map of the curve to itself which need not fix the neutral element.

Pick $c \in E(\mathbb{C})$ of order ℓ such that $\bar{c} \notin \langle c \rangle$, and set $C = \langle c \rangle$.

Let $\Phi: E \to E' = E/C$ be the isogeny with kernel C. Let $\Phi': E' \to E$ be the dual isogeny. Then $\Phi' \circ \Phi: E \to E$ is the multiplication by ℓ map on E.

For $w \in E(\mathbb{R})$ as in the previous lemma define involutory automorphisms

• β of E by $\beta(p) = w - p$,

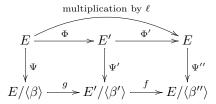
- β' of E' by $\beta'(p') = \Phi(w) p'$, and
- β'' of E by $\beta''(p'') = \Phi'(\Phi(w)) p'' = \ell w p''$.

Note that $\beta'(\Phi(p)) = \Phi(w) - \Phi(p) = \Phi(w - p) = \Phi(\beta(p))$, so

(2.1)
$$\beta' \circ \Phi = \Phi \circ \beta$$
 and likewise $\beta'' \circ \Phi' = \Phi' \circ \beta'$.

In the following, we show that

- $E/\langle \beta \rangle$, $E'/\langle \beta' \rangle$, and $E/\langle \beta'' \rangle$ are projective lines, and
- that there are degree 2 branched covering maps ψ , ψ' , and ψ'' from the elliptic curves to these lines,
- such that ψ and ψ'' are defined over \mathbb{R} , and
- that after selecting uniformizing elements of the projective lines, there are unique rational functions f and g such that the following diagram commutes:



We give an algebraic rather than a geometric description of the functions f and g. This has the advantage that the method can be used to compute explicit examples, as we do at the end of this section.

Let $\mathbb{C}(E)$ and $\mathbb{C}(E')$ be the function fields of E and E', respectively. Let x and y be the coordinate functions with x(p) = u and y(p) = v for $p = (u, v) \in E(\mathbb{C})$. So $E(\mathbb{C}) = \mathbb{C}(x, y)$ with $y^2 = x^3 + ax + b$. The comorphism β^* is an automorphism of order 2 of the real function field $\mathbb{R}(E)$ (recall that $w \in E(\mathbb{R})$). We compute the fixed field of β^* in $\mathbb{R}(E)$: Write $w = (w_x, w_y)$, and set $z = \frac{w_y + y}{w_x - x}$ (this choice of z is taken from [8]). The addition formula for elliptic curves shows that

$$\beta^*(x) = z^2 - w_w - x$$
 and $\beta^*(y) = z(w_x - \beta^*(x)) - w_y$.

From that, we get

$$\beta^{\star}(z) = \frac{w_y + \beta^{\star}(y)}{w_x - \beta^{\star}(x)} = \frac{w_y + z(w_x - \beta^{\star}(x)) - w_y}{w_x - \beta^{\star}(x)} = z,$$

so z is in the fixed field of β^* . Clearly $\mathbb{R}(x,z) = \mathbb{R}(y,z) = \mathbb{R}(x,y)$. Let $F \subseteq \mathbb{R}(E)$ be the fixed field of β^* . From $z \in F$ and $[\mathbb{R}(E) : F] = 2$, we get $F = \mathbb{R}(z)$ once we know that $[\mathbb{R}(E) : \mathbb{R}(z)] \leq 3$. But this holds, as

$$(z(w_x - x) - w_y)^2 = y^2 = x^3 + ax + b,$$

so x has at most degree 3 over $\mathbb{R}(z)$. Now ψ is just the rational function $E \to \hat{\mathbb{C}}$ for which $z = \psi(x, y)$.

Suppose (without loss of generality) that E' has also a Weierstrass from $Y^2 = X^3 + a'X + b'$, and let x' and y' be the associated coordinate functions. Note that $\Phi((u,v)) = (A(u),B(u)v)$ for rational functions $A,B \in \mathbb{C}(z)$ and all $p = (u,v) \in E(\mathbb{C})$. Therefore, $\Phi^*(x') = A(x)$, where $\Phi^*: \mathbb{C}(E') \to \mathbb{C}(E)$ is the comorphism of Φ .

Pick z' in $\mathbb{C}(x',y')$ such that $\mathbb{C}(z')$ is the fixed field of β'^* . (Here z' can not be taken from $\mathbb{R}(x',y')$, because E' is not defined over \mathbb{R} .) As before, let ψ' be the rational function with $z' = \psi'(x',y')$.

From (2.1), we obtain $\Phi^* \circ \beta'^* = \beta^* \circ \Phi^*$, so $\Phi^*(z') = \beta^*(\Phi^*(z'))$ and hence $\Phi^*(z') \in \mathbb{C}(z)$. So $\Phi^*(z') = g(z)$ for a rational function $g \in \mathbb{C}(z)$. This is just the algebraic description of g from above. Similarly one computes f.

For the rest of this section, we work with the morphisms rather than the comorphisms. Recall that Ψ and Ψ'' are defined over \mathbb{R} . So $\overline{\Psi(p)} = \Psi(\bar{p})$ for all $p \in E(\mathbb{C})$.

We now prove the required properties of f and g. The assertion about the degrees follows from well-known facts about isogenies.

- (a) As the multiplication by ℓ map is defined over \mathbb{R} , and so are Ψ and Ψ'' , we have $f \circ g \in \mathbb{R}(x)$.
- (b) We next show that g is injective on $\hat{\mathbb{R}}$. Suppose that there are distinct $z_1, z_2 \in \hat{\mathbb{R}}$ such that $g(z_1) = g(z_2)$. Pick $p, q \in E(\mathbb{C})$ such that $\Psi(p) = z_1$, $\Psi(q) = z_2$. Then

$$\Psi'(\Phi(p)) = g(\Psi(p)) = g(z_1) = g(z_2) = g(\Psi'(q)) = \Psi'(\Phi(q)),$$

so $\Phi(p) = \Phi(q)$ or $\Phi(p) = \Phi(w) - \Phi(q)$. Upon possibly replacing q with w - q we may and do assume $\Phi(p) = \Phi(q)$, hence $p - q \in C$.

Recall that Ψ is defined over \mathbb{R} and $\Psi(p) = z_1$ is real. So $\Psi(\bar{p}) = \Psi(p)$, and therefore $\bar{p} = p$ or $\bar{p} = w - p$. Likewise $\bar{q} = q$ or $\bar{q} = w - q$. Recall that $p - q \in C$, and that $C \cap \bar{C} = \{0_E\}$ by the choice of C. So we can't have $(\bar{p}, \bar{q}) = (p, q)$, nor $(\bar{p}, \bar{q}) = (w - p, w - q)$.

Thus, without loss of generality, $\bar{p}=p$ and $\bar{q}=w-q$. So $p\in E(\mathbb{R})$. Note that p-q and $\bar{p}-\bar{q}=p-w+q$ both have order ℓ . Set $r=(p-q)+(\bar{p}-\bar{q})=2p-w$. Then $\ell r=0_E$, and $r\in E(\mathbb{R})$. We obtain $w=2(p+\frac{\ell-1}{2}r)$ with $p+\frac{\ell-1}{2}r\in E(\mathbb{R})$, contrary to the choice of w.

(c) Finally, we need to show that $g(\hat{\mathbb{R}})$ is not a circle. Suppose otherwise. Let λ be a linear fractional function which maps this circle to $\hat{\mathbb{R}}$. Then $\lambda \circ g$ maps \mathbb{R} to $\hat{\mathbb{R}}$, so $\lambda \circ g \in \mathbb{R}(x)$.

Then $\lambda \circ \Psi' \circ \Phi = \lambda \circ g \circ \Psi$ is defined over \mathbb{R} , so $\lambda(\Psi'(\Phi(p))) = \lambda(\Psi'(\Phi(\bar{p})))$ for all $p \in E(\mathbb{C})$. As λ is bijective, Ψ' respects β' , and C is the kernel of Φ , we get that for each $p \in E(\mathbb{C})$ either $p - \bar{p} \in C$, or $p + \bar{p} - w \in C$.

In the first case, note that $\bar{p} - p \in \bar{C}$, so also $p - \bar{p} = -(\bar{p} - p) \in \bar{C}$, and therefore $p - \bar{p} \in C \cap \bar{C} = \{0_E\}$. So $p \in E(\mathbb{R})$ if the first case happens.

We see that $p + \bar{p} - w \in C$ whenever $p \in E(\mathbb{C}) \setminus E(\mathbb{R})$. Recall that $w \in E(\mathbb{R})$. So $p + \bar{p} - w \in C \cap \bar{C} = \{0_E\}$, and therefore $p + \bar{p} = w$ for all $p \in E(\mathbb{C}) \setminus E(\mathbb{R})$. As $(p+q) + \overline{p+q} = 2w \neq w$ for all $p, q \in E(\mathbb{C}) \setminus E(\mathbb{R})$, we get the absurd consequence that $p+q \in E(\mathbb{R})$ whenever $p, q \in E(\mathbb{C}) \setminus E(\mathbb{R})$, so $E(\mathbb{R})$ is a subgroup of index 2 in $E(\mathbb{C})$. This final contradiction proves all the properties about the functions f and g.

REMARK 2.3. For fixed curves E, E' and isogeny Φ as in the proof of Theorem 1.2, and $w \in E(\mathbb{R})$ (which need not fulfill the property of Lemma 2.2), let $h_w = f \circ g \in \mathbb{R}(z)$ be the rational function constructed there. The case $w = 0_E$ gives a Lattès function $h_0 \in \mathbb{R}(z)$. It is easy to see that $h_w = \lambda_1 \circ h_0 \circ \lambda_2$ for linear fractional functions $\lambda_1, \lambda_2 \in \mathbb{C}(z)$. If w has the property from Lemma 2.2, then λ_1, λ_2 cannot be chosen in $\mathbb{R}(z)$. So h_w is a twist of h_0 over a quadratic field. Therefore, the relation of h_w to the Lattès map h_0 is analogous to the relation of Rédei functions (see [11]) $f_n(a,z)$ to cyclic polynomials z^n , where $f_n(z) = \lambda^{-1}(\lambda(z)^n)$ for $\lambda(z) = \frac{z+\sqrt{a}}{z-\sqrt{a}}$. Note that despite the appearance of the term \sqrt{a} , the coefficients of the degree n rational function $f_n(a,z)$ lie in the field generated by \mathbb{Q} and $a \in \mathbb{C}$.

A construction like h_w appeared in an arithmetic context in [7].

Lattès functions, which were known before Lattès work in 1918, are classical objects in complex analysis. See [13] and [9] for the relevance of these functions in complex dynamics, and especially [9] for a lot of information about the history of these functions.

EXAMPLE 2.4. Here we explicitly compute an example for the case $\ell = 3$. We aim to find an example where the elliptic curve E is defined over \mathbb{Q} , $f \circ g \in \mathbb{Q}(z)$, and $f,g \in K(z)$, where K is an as small as possible number field. Let ω be a primitive third root of unity, so $\omega^2 + \omega + 1$ and $\bar{\omega} = -1 - \omega$. As $c \in E(\mathbb{C})$ is required to be a non-real point, and the coordinates of the ℓ -torsion group of an elliptic curve over \mathbb{Q} generate the field of ℓ -th roots of unity, we necessarily have $\omega \in K$. Indeed, there are examples with $K = \mathbb{Q}(\omega)$.

The in terms of the conductor smallest elliptic curve E over \mathbb{Q} which has a 3-torsion point in $E(K) \setminus E(\mathbb{Q})$ has the Cremona label 14a2 and Weierstrass form $Y^2 = X^3 - 46035X - 3116178$. One computes that $c = (72\omega - 33, 1080\omega - 648) \in E(\mathbb{C})$ has order 3. Set $C = \langle c \rangle$. Then $C \cap \overline{C} = \{0_E\}$. There is an isogeny $\Phi: E \to E'$ with kernel C, where E' is given by $Y^2 = X^3 + (298080\omega + 537165)X + (86819040\omega - 39204594)$.

Set $w=(-78,0)\in E(\mathbb{Q})$. The X-coordinates of \hat{w} with $2\hat{w}=w$ are roots of $X^2+156X+33867=(X+78)^2+27783$, so there is no $\hat{w}\in E(\mathbb{R})$ with $2\hat{w}=w$.

Thus E, C and w fulfill all the assumptions which we needed in the existence proof of f(z) and g(z). We now compute these functions. Let β and β' be the automorphisms of E and E' given by $\beta(p) = w - p$ and

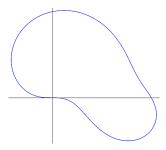


FIGURE 1. The plot shows the image of $\hat{\mathbb{R}}$ under $\frac{1}{1+g(z)}$. As expected, this curve is a Jordan curve, but not a circle.

 $\beta'(p') = \Phi(w) - p'$. Write $w = (w_x, w_y)$ and $\Phi(w) = (w'_x, w'_y)$. Set $z = \frac{w_y + y}{w_x - x}$ and $z' = \frac{w'_y + y'}{w'_x - x'}$. Recall that $\Phi^*(x') = A(x)$, where $\Phi((u, v)) = (A(u), B(u)v)$ for all $(u, v) \in E(\mathbb{C})$. From that we see also $\Phi^*(y') = B(x)y$.

Now recall that the function g(z) we are looking for fulfills $g(z) = \Phi^*(z')$. We compute

$$g(z) = \Phi^{\star}\left(\frac{w_y' + y'}{w_x' - x'}\right) = \frac{w_y' + B(x)y}{w_x' - A(x)}.$$

Use this equation, and the equations $z = \frac{w_y + y}{w_x - x}$ and $y^2 = x^3 - 46035x - 3116178$ to eliminate the variables x and y. So we are left with a polynomial equation in z and the unknown function g(z) which we treat as a variable. This polynomial has a factor of degree 1 with respect to g(z), from which we obtain g(z). Analogously we get f(z). After minor linear changes over $\mathbb Q$ (which slightly simplify f and g) we obtain

$$\begin{split} f(z) &= \frac{z^3 - 6(\omega + 1)z}{3z^2 + 1}, \\ g(z) &= \frac{2z^3 + (\omega + 1)z}{z^2 - \omega}, \\ f\left(g(z)\right) &= \frac{8z^9 - 24z^5 - 13z^3 - 6z}{12z^8 + 13z^6 + 12z^4 - 1} \in \mathbb{Q}(z). \end{split}$$

See Figure 1 for the image of the reals under g.

3. Proof of Proposition 1.6

If G acts on a set Ω , then ω^g denotes the image of $\omega \in \Omega$ under $g \in G$. Furthermore, $G_{\omega} = \{g \in G \mid \omega^g = \omega\}$ is the stabilizer of ω in G.

For $g, h \in G$ we write g^h for the conjugate $h^{-1}gh$ of g under h. Similarly, if S is a subset or subgroup of G, then $S^h = \{s^h \mid s \in S\}$.

If G is transitive on Ω , then $\emptyset \neq \Delta \subseteq \Omega$ is called a block if $\Delta = \Delta^g$ or $\Delta \cap \Delta^g = \emptyset$ for each $g \in G$. If this is the case, then Ω is a disjoint union of

sets $\Delta_i = \Delta^{g_i}$ for g_i in a subset of G. These sets Δ_i are called a block system. Note that G acts by permuting these sets Δ_i .

We assume that Proposition 1.6 is false, so there is a group M with $G_{\omega} \leq M \leq G$ and $M \neq M^{\sigma}$. Among the counterexamples with |G| minimal we pick one with $|\Omega|$ minimal. In a series of lemmas, we derive properties of such a potential counterexample, and eventually we will see that it does not exist.

Note that G^{σ}_{ω} fixes $\omega^{\sigma} = \omega$, hence $G^{\sigma}_{\omega} \leq G_{\omega}$ and therefore $G_{\omega} = G^{\sigma}_{\omega}$, a fact we will use frequently. Also note that the condition on σ implies that $|\Omega|$ is odd. Another trivial fact which we use throughout the proof is the following: If B is a subgroup of G, then σ normalizes $B \cap B^{\sigma}$ and $\langle B, B^{\sigma} \rangle$.

Lemma 3.1. G is transitive on Ω .

Proof. Set $\Delta = \omega^G$. If $\Delta = \Omega$ then we are done. So assume that $\Delta \subsetneq \Omega$. If $\Delta = \{\omega\}$, then $G_{\omega} = G$, and therefore of course $M = G = M^{\sigma}$.

Thus $\{\omega\} \subsetneq \Delta \subsetneq \Omega$. Note that $\Delta^{\sigma} = \omega^{G\sigma} = \omega^{\sigma G} = \omega^{G} = \Delta$. By the assumption of a minimal counterexample, we obtain that the proposition holds for the action of $\langle G, \sigma \rangle$ on Δ , hence $M = M^{\sigma}$, a contradiction.

Lemma 3.2. $G = \langle M, M^{\sigma} \rangle$.

Proof. Set $H = \langle M, M^{\sigma} \rangle$. Then $H^{\sigma} = H$, so if H is a proper subgroup of G, then $M = M^{\sigma}$ by the minimality assumption of a counterexample. \square

Lemma 3.3. $M \cap M^{\sigma} = G_{\omega}$.

Proof. Set $W=M\cap M^{\sigma}$. Note that $G_{\omega}\leq W$ and $W^{\sigma}=W$. Therefore, $\Delta=\omega^W$ is a block for the action of $\langle G,\sigma\rangle$ on Ω , and $\Delta^{\sigma}=\Delta$. Let $\bar{\Omega}$ be the block system which contains Δ , so $\langle G,\sigma\rangle$ acts on $\bar{\Omega}$. By the transitivity of G all blocks in $\bar{\Omega}$ have the same size, and this size divides the odd number $|\Omega|$. So the blocks have odd size, therefore σ has a fixed point in each block which is fixed setwise. Thus Δ is the only block fixed by σ . For $g\in G$ let \bar{g} be the induced permutation on $\bar{\Omega}$. The stabilizer of Δ in \bar{G} is \bar{W} .

Now suppose that $W > G_{\omega}$, hence $|\Delta| > 1$ and therefore $|\bar{\Omega}| < |\Omega|$. Note that $\bar{W} \leq \bar{M}$. So the proposition applies and yields $\bar{M}^{\sigma} = \bar{M}$. But the kernel of the map $g \mapsto \bar{g}$ is contained in $W = M \cap M^{\sigma}$, so $M^{\sigma} = M$, a contradiction.

LEMMA 3.4. If $B \leq M$, then either $G = \langle B, B^{\sigma} \rangle$, or $B \leq G_{\omega}$.

Proof. Set $H = \langle B, B^{\sigma} \rangle$, and suppose that H < G. Hence, the proposition holds for H, in particular $\langle B, H_{\omega} \rangle^{\sigma} = \langle B, H_{\omega} \rangle$. Thus, $B \leq \langle B, H_{\omega} \rangle^{\sigma} \leq \langle M, G_{\omega} \rangle^{\sigma} = M^{\sigma}$. Together with the previous lemma we get $B \leq M \cap M^{\sigma} = G_{\omega}$.

Lemma 3.5. G has even order.

Proof. Suppose that the order of G is odd. Pick $g \in M \setminus G_{\omega}$. Note that

$$(gg^{-\sigma})^{\sigma} = g^{\sigma}g^{-1} = (gg^{-\sigma})^{-1},$$

so σ acts on $\langle gg^{-\sigma}\rangle$ by inverting the elements. As $\langle gg^{-\sigma}\rangle$ has odd order, there is $h \in \langle gg^{-\sigma}\rangle$ with $gg^{-\sigma} = h^2$. Set $c = hg^{\sigma}$. First, note that c is fixed under σ :

$$c^{\sigma} = (hg^{\sigma})^{\sigma} = h^{\sigma}g = h^{-1}g = h^{-1}h^{2}g^{\sigma} = hg^{\sigma} = c$$

From this, we obtain that c permutes the fixed points of σ , so $c \in G_{\omega}$ because ω is the only fixed point of σ .

Another calculation shows

$$cg^{-\sigma}c = hg^{\sigma}g^{-\sigma}hg^{\sigma} = h^2g^{\sigma} = g,$$

hence

$$g \in \langle G_{\omega}, g^{-\sigma} \rangle \leq M^{\sigma},$$

contrary to $M \cap M^{\sigma} = G_{\omega}$ and the choice of g.

Lemma 3.6. M contains at least one involution which is not contained in G_{ω} .

Proof. Let J be the set of involutions of M. Then $J^m = J$ for all $m \in M$. Suppose that $J \subseteq G_{\omega}$. Then J is the set of involutions of G_{ω} , and together with $G_{\omega}^{\sigma} = G_{\omega}$ we obtain $J^{\sigma} = J$. So J is normalized by $\langle M, \sigma \rangle$. But $\langle M, \sigma \rangle = G$ by Lemma 3.2. In particular, $\langle J \rangle \leq G_{\omega}$ is a normal subgroup of G, hence $|\langle J \rangle| = 1$ as G acts faithfully.

We obtain $J = \emptyset$, contrary to |G| being even by the previous lemma, together with $[G:G_{\omega}] = |\Omega|$ being odd.

We now obtain the final contradiction: Let $a \in M \setminus G_{\omega}$ be an involution. Set $b = a^{\sigma} \in M^{\sigma}$ and let D be the dihedral group generated by a and b. From Lemma 3.4, with $B = \langle a \rangle$, we get D = G.

Set $C = \langle ab \rangle$. Then [G:C] = 2 (because $G = C \cup Ca$). We claim that C is transitive on Ω . If this were not the case, then, by the transitivity of G and $C \triangleleft G$, C would have exactly two orbits of equal size, so $|\Omega|$ were even, a contradiction.

So $G = CG_{\omega}$, and $C \cap G_{\omega} = 1$, because transitive abelian groups act regularly. The modular law yields $M = (C \cap M)G_{\omega}$ and $M^{\sigma} = (C \cap M^{\sigma})G_{\omega}$.

From $|M| = |M^{\sigma}|$ we get $|C \cap M| = |C \cap M^{\sigma}|$. But the subgroups of the cyclic group C are determined uniquely by their order, hence $C \cap M = C \cap M^{\sigma}$ and finally $M = M^{\sigma}$.

4. Proof of Theorems 1.4 and 1.5

For the rational function $g(z) \in \mathbb{C}(z)$, let $\bar{g}(z)$ be the function with complex conjugate coefficients. Recall that $g(\hat{\mathbb{R}})$ is a circle in $\hat{\mathbb{C}}$ if and only if there is a linear fractional function $\lambda \in \mathbb{C}(z)$ such that $\lambda \circ g \in \mathbb{R}(z)$. The following lemma gives a useful necessary and sufficient criterion for this to hold. By $\mathbb{C}(g(z))$ we mean the field of rational functions in g(z).

LEMMA 4.1. Let $g(z) \in \mathbb{C}(z)$. Then $\lambda \circ g \in \mathbb{R}(z)$ for some linear fractional function $\lambda \in \mathbb{C}(z)$ if and only if $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z))$.

Proof. If $\lambda \circ g \in \mathbb{R}(z)$, then $\lambda \circ g = \overline{\lambda} \circ \overline{g} = \overline{\lambda} \circ \overline{g}$, hence $\overline{g}(z) = \overline{\lambda}^{-1}(\lambda(g(z)))$, and therefore $\mathbb{C}(\overline{g}(z)) = \mathbb{C}(g(z))$.

To prove the other direction, suppose that $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z))$. This assumption is preserved upon replacing g with $\mu \circ g$ for a linear fractional function $\mu \in \mathbb{C}(z)$. Thus, without loss of generality, we may assume that there are $r_1, r_2, r_3 \in \mathbb{R}$ with $g(r_1) = \infty$, $g(r_2) = 0$, $g(r_3) = 1$. From $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z))$, we get $\bar{g} = \rho \circ g$ for a linear fractional function $\rho \in \mathbb{C}(z)$. Evaluating in r_1, r_2 , and r_3 yields that ρ fixes ∞ , 0 and 1, hence $\rho(z) = z$. So $\bar{g} = g$, and therefore $g \in \mathbb{R}(z)$.

REMARK 4.2. The lemma holds more generally if we replace \mathbb{R} with a field K and \mathbb{C} with a Galois extension E of K, and $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z))$ by the condition $E(g(z)) = E(g^{\sigma}(z))$ for all $\sigma \in \operatorname{Gal}(E/K)$. Indeed, if K is an infinite field, then we find $r_1, r_2, r_3 \in K$ such that the values $g(r_1), g(r_2)$, and $g(r_3)$ are distinct and therefore without loss of generality equal to ∞ , 0 and 1. So, as above, $g = g^{\sigma}$ for all $\sigma \in \operatorname{Gal}(E/K)$. Thus, the coefficients of g are fixed under $\operatorname{Gal}(E/K)$ and therefore contained in K.

If K is finite, we can argue as follows: We may assume that $g(\infty) = \infty$, so g(z) = p(z)/q(z) for relatively prime polynomials $p, q \in E[z]$ with $\deg p > \deg q$. In addition, we may assume that p and q are monic. Let σ be a generator of the cyclic group $\operatorname{Gal}(E/K)$. From $g^{\sigma}(z) \in E(g(z))$ and $g^{\sigma}(z) = \frac{p^{\sigma}(z)}{q^{\sigma}(z)}$ we obtain $g^{\sigma} = g + b$ for some $b \in E$. Repeated application of σ shows that $\operatorname{Trace}_{E/K}b = 0$. So by the additive Hilbert's theorem 90 there is $c \in E$ with $c - c^{\sigma} = b$, hence $(g + c)^{\sigma} = g + c$ and therefore $g + c \in K(z)$. (The same argument, except that Hilbert's theorem 90 is a trivial fact for the extension \mathbb{C}/\mathbb{R} , works as an alternative proof of the lemma too.)

Theorem 1.4 is a direct consequence of Theorem 1.5. For if g is weakly injective, and $g \circ f$ is injective on $g(\hat{\mathbb{R}})$, then $g \circ f \circ g$ is weakly injective, so $f \circ g$ is weakly injective even more.

Thus, we only need to prove Theorem 1.5.

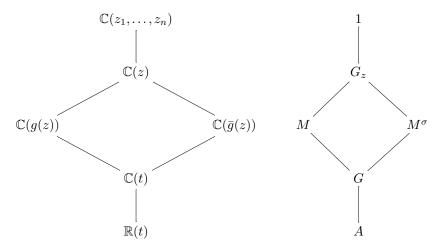
Let t be a variable over \mathbb{C} , and Z be another variable over the field $\mathbb{C}(t)$ of rational functions in t.

If $h(\infty) \neq \infty$, then upon replacing h(Z) with $\frac{1}{h(Z)-h(\infty)}$ (and τ with $\frac{1}{\tau-h(\infty)}$) we may assume that $h(\infty) = \infty$. By further replacing h(Z) with $h(Z) - \tau$, we may and do assume that $h(Z) = \frac{p(Z)}{q(Z)}$, where $p(Z), q(Z) \in \mathbb{R}[Z]$ are relatively prime polynomials, $\deg p(Z) = n > \deg q(Z)$, and $p(Z) = \prod_{i=1}^{n} (Z - \alpha_i)$, where the α_i are pairwise distinct, $\alpha_1 \in \mathbb{R}$, and $\alpha_i \notin \mathbb{C} \setminus \mathbb{R}$ for $i \geq 2$.

By Hensel's lemma, $p(Z) - tq(Z) = \prod_{i=1}^{n} (Z - z_i)$, where $z_i \in \mathbb{C}[[t]]$ has constant term α_i . As $\alpha_1 \in \mathbb{R}$ and $p, q \in \mathbb{R}[Z]$, we actually have $z_1 \in \mathbb{R}[[t]]$. Write $z = z_1$. The complex conjugation acts on the coefficients of the formal Laurent series $\mathbb{C}((t))$ and fixes t. Under this action, z is fixed, and the z_i' 's for $i \geq 2$ are flipped in pairs. Note that $t = h(z_i)$ for all i.

The field $\mathbb{C}(z_1, z_2, \dots, z_n)$ is a Galois extension of $\mathbb{R}(t)$ and a subfield of $\mathbb{C}((t))$. So the restriction to $\mathbb{C}(z_1, z_2, \dots, z_n)$ of the complex conjugation action on the coefficients of $\mathbb{C}((t))$ is an involution σ in the Galois group $A = \operatorname{Gal}(\mathbb{C}(z_1, z_2, \dots, z_n)/\mathbb{R}(t))$ which fixes $z = z_1$, and moves all z_i with i > 1.

Now write h(z) = f(g(z)) as in Theorem 1.5. Then also $t = h(z) = f(g(z)) = \bar{f}(\bar{g}(z))$. This yields the following inclusion of fields and the corresponding subgroups of A by Galois correspondence:



Here G_z is the stabilizer of $z = z_1$ in G. As M is the stabilizer of g(z) in G, and σ maps g(z) to $\bar{g}(z)$, the stabilizer of $\bar{g}(z)$ is $\sigma^{-1}M\sigma = M^{\sigma}$.

By construction, $\mathbb{C}(z_1, z_2, \dots, z_n)$ is the splitting field of p(Z) - tq(Z) over $\mathbb{C}(t)$, hence G acts faithfully on $\{z = z_1, z_2, \dots, z_n\}$. Now G is normal in A, so $\sigma \in A$ normalizes G. Furthermore, σ fixes exactly one of the z_i . So $M = M^{\sigma}$ by Proposition 1.6. Thus $\mathbb{C}(g(z)) = \mathbb{C}(\bar{g}(z))$ by the Galois correspondence, and finally $\lambda(g(z)) \in \mathbb{R}(z)$ for some linear fractional $\lambda \in \mathbb{C}(z)$ by Lemma 4.1. This proves Theorem 1.5.

5. Some more examples

If $h = f \circ g$ for polynomials $f, g \in \mathbb{C}[z]$, and $h \in \mathbb{R}[z]$, then it is well known that there is a linear polynomial $\lambda \in \mathbb{C}[z]$ such that $\lambda \circ g \in \mathbb{R}[z]$. See [6, Theorem 3.5], or [14, Prop. 2.2] for a down to earth proof. A less elementary but more conceptual proof can be based on the fact that the Galois group of h(Z) - t over $\mathbb{C}(t)$ contains an element which cyclically permutes the roots of h(Z) - t, and the other fact that subgroups of cyclic groups are uniquely determined by their orders.

Note that if $h = f \circ g$ for a polynomial h and rational functions f, g, then there is a linear fractional function $\rho \in \mathbb{C}(z)$ such that $h = (f \circ \rho^{-1}) \circ (\rho \circ g)$, and $f \circ \rho^{-1}$ and $\rho \circ g$ are polynomials. (This follows from looking at the fiber $h^{-1}(\infty)$.)

So in order to get examples of rational functions $h \in \mathbb{R}(z)$ which decompose as $h = f \circ g$ with $f, g \in \mathbb{C}(z)$ such that there is no linear fractional function $\lambda \in \mathbb{C}(z)$ with $\lambda \circ g \in \mathbb{R}(z)$, one has to assume that h is not a polynomial.

One also has to assume that g is not a polynomial, as the following easy result shows.

LEMMA 5.1. Suppose that $f \circ g \in \mathbb{R}(z)$ where $f \in \mathbb{C}(z)$ and $g \in \mathbb{C}[z]$ are not constant. Then $\lambda \circ g \in \mathbb{R}[z]$ for a linear polynomial $\lambda \in \mathbb{C}[z]$.

Proof. Assume without loss of generality that g is monic. Write $f = \frac{p}{q}$ with $p, q \in \mathbb{C}[z]$ relatively prime and p monic. From $f \circ g \in \mathbb{R}(z)$, we obtain

$$\frac{\bar{p}(\bar{g}(z))}{\bar{q}(\bar{g}(z))} = \frac{p(g(z))}{q(g(z))}.$$

Clearly, both fractions are reduced, and the numerators of both sides are monic. Therefore, $\bar{p}(\bar{g}(z)) = p(g(z))$, hence $p \circ g \in \mathbb{R}[z]$, and the claim follows from the polynomial case.

Now we give some examples of rational functions $h \in \mathbb{R}(z)$ with a decomposition $h = f \circ g$ with $f, g \in \mathbb{C}(z)$ which is not equivalent to a decomposition over \mathbb{R} . Recall that this is equivalent to $g(\hat{\mathbb{R}})$ not being a circle. Of course, Theorem 1.2 gives many example for this. But these examples are quite complicated and not explicit. However, if one drops the requirement that $g(\hat{\mathbb{R}})$ is a Jordan curve, then there are quite simple examples. We give two series.

EXAMPLE 5.2 (Attributed to Pakovich by Eremenko in [3]). Let $T_n \in \mathbb{R}[z]$ be the polynomial with $T_n(z+\frac{1}{z})=z^n+\frac{1}{z^n}$ (so T_n is essentially a Chebychev polynomial.) Set $g(z)=\zeta z+\frac{1}{\zeta z}$ for an n-th root of unity ζ . Then $T_n(g(z))=z^n+\frac{1}{z^n}\in\mathbb{R}(z)$, while $g(\hat{\mathbb{R}})$ is not a circle if $\zeta^4\neq 1$.

EXAMPLE 5.3. Pick $\zeta \in \mathbb{C}$ with $|\zeta| = 1$, and set

$$F = z^k (1-z)^{n-k}, \qquad G = \frac{1-\zeta z^k}{1-\zeta z^n}, \qquad \mu(z) = \frac{z+i}{z-i}$$

for $1 \le k < n$. A straightforward calculation shows that

(5.1)
$$F(\bar{G}\left(\frac{1}{z}\right) = \frac{1}{\zeta^{n-k}} F(G(z)).$$

Pick $\rho \in \mathbb{C}$ with $\rho^2 = \frac{1}{\zeta^{n-k}}$, and set

$$f(z) = \rho F(z),$$
 $g(z) = G(\mu(z)).$

From $\bar{\mu}(z) = \mu(\frac{1}{z})$ and (5.1) we get $\overline{f \circ g} = f \circ g$, hence $f \circ g \in \mathbb{R}(z)$.

On the other hand, it is easy to see that, except for a some degenerate cases, $g(\hat{\mathbb{R}})$ is not a circle. Furthermore, we see that $g(\hat{\mathbb{R}})$ isn't even a Jordan curve (unless it is a circle), for if z runs through $\hat{\mathbb{R}}$, $\mu(z)$ runs through the unit circle, so the numerator and denominator of $g(z) = G(\mu(z))$ vanish k and n times, respectively, so $g(\hat{\mathbb{R}})$ has several self intersections.

Originally I had only found the cases $\zeta = -1$, k = n - 1. Mike Zieve observed the strong similarity of these examples with functions which turned up in work of Avanzi and Zannier. In [1], they classify triples $F \in \mathbb{C}[z]$, $G_1, G_2 \in \mathbb{C}(z)$ such that $F \circ G_1 = F \circ G_2$. One of their cases ([1, Prop. 4.7(3)]) is the above series with $\zeta = 1$, and the series [1, Prop. 5.6(4)] is essentially our series from above.

The connection with the work by Avanzi and Zannier is not a surprise: If we look for polynomials $F \in \mathbb{R}[z]$ such that there is $G \in \mathbb{C}(z) \setminus \mathbb{R}(z)$ with $F \circ G \in \mathbb{R}(z)$, then $F \circ \bar{G} = F \circ G$ with $G \neq \bar{G}$. Furthermore, note that if ζ is an m-th root of unity, then $f(z)^{2m} \in \mathbb{R}(z)$. So upon setting $\tilde{f} = f^{2m} = F^{2m}$, we have $\tilde{f} \circ g = \tilde{f} \circ \bar{g}$.

Acknowledgments. I thank Alexandre Eremenko for inspiring discussions about invariant (Jordan) curves, and Theo Grundhöfer, Gábor Horváth, and Károly Podoski for remarks about Proposition 1.6 which led to a somewhat shorter proof. Furthermore, I thank Mike Zieve for discussions about an example in the final section and for pointing out its connection with work by Avanzi and Zannier.

References

- [1] R. M. Avanzi and U. M. Zannier, The equation f(X) = f(Y) in rational functions X = X(t), Y = Y(t), Compos. Math. 139 (2003), no. 3, 263–295. MR 2041613
- [2] A. Eremenko, Circles and rational functions, MathOverflow, http://mathoverflow.net/q/103949 (version: 2012-12-03).
- [3] A. Eremenko, Invariant curves and semiconjugacies of rational functions, Fund. Math. 219 (2012), no. 3, 263–270. MR 3001243
- [4] A. Eremenko, Analytic invariant curves for rational functions, 2013, unpublished note.
- [5] A. Eremenko, Personal communication, 2013.
- [6] M. D. Fried and R. E. MacRae, On the invariance of chains of fields, Illinois J. Math. 13 (1969), 165–171. MR 0238815

- [7] R. M. Guralnick, P. Müller and J. Saxl, The rational function analogue of a question of Schur and exceptionality of permutation representations, Memoirs of the American Mathematical Society, vol. 162, American Mathematical Society, 2003. MR 1955160
- [8] R. E. MacRae and P. Samuel, Subfields of index 2 of elliptic function fields, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Lecture Notes in Math., vol. 311, Springer, Berlin, 1973, pp. 171–193.
- [9] J. Milnor, On Lattès maps, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 9–43. MR 2348953
- [10] P. Müller, Circles and rational functions, MathOverflow, http://mathoverflow.net/ q/115979 (version: 2012-12-11).
- [11] L. Rédei, Über eindeutig umkehrbare Polynome in endlichen Körpern, Acta Univ. Szeged. Sect. Sci. Math. 11 (1946), 85–92. MR 0017323
- [12] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994.
- [13] J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007.
- [14] G. Turnwald, On Schur's conjecture, J. Aust. Math. Soc. A 58 (1995), 312–357. MR 1329867

PETER MÜLLER, INSTITUT FÜR MATHEMATIK, UNIVERSITÄT WÜRZBURG, 97074 WÜRZBURG, GERMANY

E-mail address: peter.mueller@mathematik.uni-wuerzburg.de