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DECOMPOSITIONS OF RATIONAL FUNCTIONS OVER
REAL AND COMPLEX NUMBERS AND A QUESTION

ABOUT INVARIANT CURVES

PETER MÜLLER

Abstract. We consider the connection of functional decompo-
sitions of rational functions over the real and complex numbers,

and a question about curves in the complex plane which are in-
variant under a rational function.

1. Introduction

Let Ĉ = C ∪ {∞} be the Riemann sphere, and R̂ = R ∪ {∞}. A circle in

Ĉ is either a usual circle in C, or a line in Ĉ. So the circles in Ĉ are just
the curves Γ = λ(R̂), where λ(z) = az+b

cz+d ∈C(z) is a linear fractional function

(with ad− bc �= 0).

Long ago Fatou suggested to study (Jordan) curves Γ ⊂ Ĉ which are in-
variant under a rational function of degree ≥ 2. See [3] for recent progress on

this. The case that Γ is a circle λ(R̂) is not interesting, because any rational
function r = λ ◦ s ◦ λ−1 with s ∈ R(z) leaves Γ invariant, and there are no
other rational functions with this property.

Motivated by his results on invariant curves in [3], Alexandre Eremenko
suggested to investigate the following source of invariant curves, and raised
two questions about this family.

Question 1.1. Let f, g ∈ C(z) be non-constant rational functions, such

that f(g(z)) ∈R(z), so the curve Γ = g(R̂) is invariant under r = g◦f . Assume
that Γ is not contained in a circle.

(a) Is it possible that Γ is a Jordan curve? ([3], [2])
(b) Is it possible that r : Γ→ Γ is injective? ([5], and special case of [4])
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Note that Γ = g(R̂) is contained in a circle if and only if there is a linear

fractional function λ ∈C(z) such that g̃ = λ◦g ∈R(z). In this case, f ◦g = f̃ ◦ g̃
with f̃ = f ◦λ−1 ∈R(z). So the decomposition of f ◦g over C essentially arises
from a decomposition over R.

There are rational functions f ◦ g ∈ R(z) whose decompositions do not
come from a decomposition over the reals. On the other hand, it is known
that decompositions of real polynomials over the complex numbers always
arise from real decompositions. See Section 5 for more about this.

The purpose of this paper is to give a positive answer to question (a), and
a negative answer to a slight weakening of (b). More precisely, regarding (a),
we show the following theorem.

Theorem 1.2. For every odd prime � there are rational functions f, g ∈
C(z), both of degree �, such that

(a) f(g(z)) ∈R(z).

(b) g : R̂→ Ĉ is injective, so g(R̂) is a Jordan curve.

(c) g(R̂) is not a circle.

In order to formulate the next two results, we define a weakening of injec-
tivity of rational functions on R.

Definition 1.3. A rational function g ∈R(z) is said to be weakly injective
on R, if there exists z0 ∈ R which is not a critical point of g, and besides z0
there is no y0 ∈ R̂ with g(z0) = g(y0).

A partial answer to question (b) is the following.

Theorem 1.4. Let f, g ∈C(z) be non-constant rational functions, such that

f ◦ g ∈ R(z). Assume that g is weakly injective, and that the curve Γ = g(R̂)
is not contained in a circle. Then the map g ◦ f : Γ→ Γ is not injective.

A slight variant of this theorem shows that for a fairly large class of rational
functions from R(z), each decomposition over C arises from a decomposition
over R.

Theorem 1.5. Let f, g ∈C(z) be non-constant rational functions such that
h(z) = f(g(z)) ∈ R(z) is weakly injective. Then there is a linear fractional
function λ ∈C(z) such that λ ◦ g ∈R(z).

The main ingredient (besides Galois theory) in the proof of the previous
two theorems is the following group-theoretic result. (See Section 3 for the
notation.)

Proposition 1.6. Let G be a group of permutations of the finite set Ω.
Let σ be a permutation of Ω of order 2 which fixes exactly one element ω, and
which normalizes G, that is Gσ =G. Let Gω be the stabilizer of ω in G. Then
Mσ =M for each group M with Gω ≤M ≤G.
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The proof of Theorem 1.2 uses elliptic curves. The construction was moti-
vated by a group-theoretic analysis similar to the one which led to the proofs
of Theorems 1.4 and 1.5.

2. Non-circle Jordan curves invariant under a rational function

In this section, we work out our sketch from [10] and prove Theorem 1.2.
Let E be an elliptic curve given by a Weierstrass equation Y 2 =X3+aX+b

with a, b ∈R. By E(C) and E(R) we denote the complex and real points of E.
For p ∈ E(C) we let p̄ be the complex conjugate of p. We use the structure
of E(C) as an abelian group, with neutral element 0E the unique point at
infinity. Denote by 〈c〉 the cyclic group generated by c ∈E(C).

For general facts about elliptic curves see, for example, [12].

Lemma 2.1. Let �≥ 3 be a prime. Then there is a point c ∈E(C) of order
�, with c̄ /∈ 〈c〉.

Proof. Let E[�] ⊂ E(C) be the group of �-torsion points. Then E[�] is
isomorphic to the vector space F2

� , and the complex conjugation acts linearly
on this space.

Suppose that the claim does not hold, so the complex conjugation fixes each
1-dimensional subspace of E[�] setwise. Then the complex conjugation acts
as a scalar map. Therefore, either E[�]⊂ E(R), or c̄=−c for each c ∈ E[�].
In the latter case, write c = (u, v). So u is real and v is purely imaginary.
Thus, upon replacing E with the twisted curve −Y 2 =X3 + aX + b (which is
isomorphic over R to Y 2 =X3 + aX − b), we obtain in either case an elliptic
curve E with E[�]⊆E(R). On the other hand, E(R) is isomorphic to R/Z or
to R/Z×Z/2Z (see, e.g., [12, V. Cor. 2.3.1]). However, R/Z×Z/2Z does not
have a subgroup isomorphic to Z/�Z×Z/�Z. This proves the claim. �

Lemma 2.2. Suppose that X3 + aX + b has three distinct real roots. Then
there are elements w ∈E(R) such that there is no ŵ ∈E(R) with w = 2ŵ.

Proof. If X3 + aX + b has three distinct real roots, then E(R) ∼= R/Z ×
Z/2Z, so any w corresponding to (s,1), s ∈ R/Z arbitrary, has the property
that there is no ŵ ∈E(R) with w = 2ŵ. (In this case, E(R) has two connected
components, and for each ŵ ∈E(R) the element 2ŵ is on the connected com-
ponent of 0E .) �

By an automorphism of an elliptic curve we mean a birational map of the
curve to itself which need not fix the neutral element.

Pick c ∈E(C) of order � such that c̄ /∈ 〈c〉, and set C = 〈c〉.
Let Φ : E → E′ = E/C be the isogeny with kernel C. Let Φ′ : E′ → E be

the dual isogeny. Then Φ′ ◦Φ :E →E is the multiplication by � map on E.
For w ∈E(R) as in the previous lemma define involutory automorphisms

• β of E by β(p) =w− p,
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• β′ of E′ by β′(p′) = Φ(w)− p′, and
• β′′ of E by β′′(p′′) = Φ′(Φ(w))− p′′ = �w− p′′.

Note that β′(Φ(p)) = Φ(w)−Φ(p) = Φ(w− p) = Φ(β(p)), so

(2.1) β′ ◦Φ=Φ ◦ β and likewise β′′ ◦Φ′ =Φ′ ◦ β′.

In the following, we show that

• E/〈β〉, E′/〈β′〉, and E/〈β′′〉 are projective lines, and
• that there are degree 2 branched covering maps ψ, ψ′, and ψ′′ from the
elliptic curves to these lines,

• such that ψ and ψ′′ are defined over R, and
• that after selecting uniformizing elements of the projective lines, there are
unique rational functions f and g such that the following diagram com-
mutes:

E
Φ

Ψ

multiplication by �

E′ Φ′

Ψ′

E

Ψ′′

E/〈β〉 g
E′/〈β′〉 f

E/〈β′′〉
We give an algebraic rather than a geometric description of the functions f
and g. This has the advantage that the method can be used to compute
explicit examples, as we do at the end of this section.

Let C(E) and C(E′) be the function fields of E and E′, respectively. Let x
and y be the coordinate functions with x(p) = u and y(p) = v for p= (u, v) ∈
E(C). So E(C) = C(x, y) with y2 = x3 + ax+ b. The comorphism β� is an
automorphism of order 2 of the real function field R(E) (recall that w ∈E(R)).
We compute the fixed field of β� in R(E): Write w = (wx,wy), and set z =
wy+y
wx−x (this choice of z is taken from [8]). The addition formula for elliptic
curves shows that

β�(x) = z2 −ww − x and β�(y) = z
(
wx − β�(x)

)
−wy.

From that, we get

β�(z) =
wy + β�(y)

wx − β�(x)
=

wy + z(wx − β�(x))−wy

wx − β�(x)
= z,

so z is in the fixed field of β�. Clearly ,R(x, z) = R(y, z) = R(x, y). Let
F ⊆ R(E) be the fixed field of β�. From z ∈ F and [R(E) : F ] = 2, we get
F =R(z) once we know that [R(E) :R(z)]≤ 3. But this holds, as(

z(wx − x)−wy

)2
= y2 = x3 + ax+ b,

so x has at most degree 3 over R(z). Now ψ is just the rational function

E → Ĉ for which z = ψ(x, y).
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Suppose (without loss of generality) that E′ has also a Weierstrass from
Y 2 =X3 + a′X + b′, and let x′ and y′ be the associated coordinate functions.
Note that Φ((u, v)) = (A(u),B(u)v) for rational functions A,B ∈C(z) and all
p= (u, v) ∈E(C). Therefore, Φ�(x′) =A(x), where Φ� :C(E′)→C(E) is the
comorphism of Φ.

Pick z′ in C(x′, y′) such that C(z′) is the fixed field of β′�. (Here z′ can
not be taken from R(x′, y′), because E′ is not defined over R.) As before, let
ψ′ be the rational function with z′ = ψ′(x′, y′).

From (2.1), we obtain Φ� ◦β′� = β� ◦Φ�, so Φ�(z′) = β�(Φ�(z′)) and hence
Φ�(z′) ∈C(z). So Φ�(z′) = g(z) for a rational function g ∈C(z). This is just
the algebraic description of g from above. Similarly one computes f .

For the rest of this section, we work with the morphisms rather than the
comorphisms. Recall that Ψ and Ψ′′ are defined over R. So Ψ(p) = Ψ(p̄) for
all p ∈E(C).

We now prove the required properties of f and g. The assertion about the
degrees follows from well-known facts about isogenies.

(a) As the multiplication by � map is defined over R, and so are Ψ and Ψ′′,
we have f ◦ g ∈R(x).

(b) We next show that g is injective on R̂. Suppose that there are distinct

z1, z2 ∈ R̂ such that g(z1) = g(z2). Pick p, q ∈ E(C) such that Ψ(p) = z1,
Ψ(q) = z2. Then

Ψ′(Φ(p)) = g
(
Ψ(p)

)
= g(z1) = g(z2) = g

(
Ψ′(q)

)
=Ψ′(Φ(q)),

so Φ(p) = Φ(q) or Φ(p) = Φ(w)− Φ(q). Upon possibly replacing q with
w− q we may and do assume Φ(p) = Φ(q), hence p− q ∈C.

Recall that Ψ is defined over R and Ψ(p) = z1 is real. So Ψ(p̄) = Ψ(p),
and therefore p̄= p or p̄=w− p. Likewise q̄ = q or q̄ =w− q. Recall that
p− q ∈ C, and that C ∩ C̄ = {0E} by the choice of C. So we can’t have
(p̄, q̄) = (p, q), nor (p̄, q̄) = (w− p,w− q).

Thus, without loss of generality, p̄ = p and q̄ = w − q. So p ∈ E(R).
Note that p− q and p̄− q̄ = p−w+ q both have order �. Set r = (p− q)+
(p̄− q̄) = 2p−w. Then �r = 0E , and r ∈E(R). We obtain w = 2(p+ �−1

2 r)

with p+ �−1
2 r ∈E(R), contrary to the choice of w.

(c) Finally, we need to show that g(R̂) is not a circle. Suppose otherwise. Let

λ be a linear fractional function which maps this circle to R̂. Then λ ◦ g
maps R to R̂, so λ ◦ g ∈R(x).

Then λ ◦ Ψ′ ◦ Φ = λ ◦ g ◦ Ψ is defined over R, so λ(Ψ′(Φ(p))) =
λ(Ψ′(Φ(p̄))) for all p ∈ E(C). As λ is bijective, Ψ′ respects β′, and C
is the kernel of Φ, we get that for each p ∈ E(C) either p − p̄ ∈ C, or
p+ p̄−w ∈C.

In the first case, note that p̄− p ∈ C̄, so also p− p̄=−(p̄− p) ∈ C̄, and
therefore p− p̄ ∈C ∩ C̄ = {0E}. So p ∈E(R) if the first case happens.
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We see that p + p̄ − w ∈ C whenever p ∈ E(C) \ E(R). Recall that
w ∈ E(R). So p+ p̄−w ∈ C ∩ C̄ = {0E}, and therefore p+ p̄= w for all
p ∈E(C)\E(R). As (p+q)+p+ q = 2w �=w for all p, q ∈E(C)\E(R), we
get the absurd consequence that p+q ∈E(R) whenever p, q ∈E(C)\E(R),
so E(R) is a subgroup of index 2 in E(C). This final contradiction proves
all the properties about the functions f and g.

Remark 2.3. For fixed curves E, E′ and isogeny Φ as in the proof of Theo-
rem 1.2, and w ∈E(R) (which need not fulfill the property of Lemma 2.2), let
hw = f ◦g ∈R(z) be the rational function constructed there. The case w = 0E
gives a Lattès function h0 ∈R(z). It is easy to see that hw = λ1 ◦h0 ◦λ2 for lin-
ear fractional functions λ1, λ2 ∈C(z). If w has the property from Lemma 2.2,
then λ1, λ2 cannot be chosen in R(z). So hw is a twist of h0 over a quadratic
field. Therefore, the relation of hw to the Lattès map h0 is analogous to the
relation of Rédei functions (see [11]) fn(a, z) to cyclic polynomials zn, where

fn(z) = λ−1(λ(z)n) for λ(z) = z+
√
a

z−√
a
. Note that despite the appearance of the

term
√
a, the coefficients of the degree n rational function fn(a, z) lie in the

field generated by Q and a ∈C.
A construction like hw appeared in an arithmetic context in [7].
Lattès functions, which were known before Lattès work in 1918, are classical

objects in complex analysis. See [13] and [9] for the relevance of these functions
in complex dynamics, and especially [9] for a lot of information about the
history of these functions.

Example 2.4. Here we explicitly compute an example for the case �= 3.
We aim to find an example where the elliptic curve E is defined over Q,
f ◦ g ∈ Q(z), and f, g ∈ K(z), where K is an as small as possible number
field. Let ω be a primitive third root of unity, so ω2 +ω+1 and ω̄ =−1−ω.
As c ∈ E(C) is required to be a non-real point, and the coordinates of the
�-torsion group of an elliptic curve over Q generate the field of �-th roots of
unity, we necessarily have ω ∈K. Indeed, there are examples with K =Q(ω).

The in terms of the conductor smallest elliptic curve E over Q which has a
3-torsion point in E(K) \E(Q) has the Cremona label 14a2 and Weierstrass
form Y 2 =X3−46035X−3116178. One computes that c= (72ω−33,1080ω−
648) ∈ E(C) has order 3. Set C = 〈c〉. Then C ∩ C̄ = {0E}. There is an
isogeny Φ :E →E′ with kernel C, where E′ is given by Y 2 =X3+(298080ω+
537165)X + (86819040ω− 39204594).

Set w = (−78,0) ∈ E(Q). The X-coordinates of ŵ with 2ŵ = w are roots
of X2 + 156X + 33867 = (X + 78)2 + 27783, so there is no ŵ ∈ E(R) with
2ŵ =w.

Thus E, C and w fulfill all the assumptions which we needed in the
existence proof of f(z) and g(z). We now compute these functions. Let
β and β′ be the automorphisms of E and E′ given by β(p) = w − p and
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Figure 1. The plot shows the image of R̂ under 1
1+g(z) . As

expected, this curve is a Jordan curve, but not a circle.

β′(p′) = Φ(w)− p′. Write w = (wx,wy) and Φ(w) = (w′
x,w

′
y). Set z =

wy+y
wx−x

and z′ =
w′

y+y′

w′
x−x′ . Recall that Φ�(x′) = A(x), where Φ((u, v)) = (A(u),B(u)v)

for all (u, v) ∈E(C). From that we see also Φ�(y′) =B(x)y.
Now recall that the function g(z) we are looking for fulfills g(z) = Φ�(z′).

We compute

g(z) = Φ�

(
w′

y + y′

w′
x − x′

)
=

w′
y +B(x)y

w′
x −A(x)

.

Use this equation, and the equations z =
wy+y
wx−x and y2 = x3−46035x−3116178

to eliminate the variables x and y. So we are left with a polynomial equation in
z and the unknown function g(z) which we treat as a variable. This polynomial
has a factor of degree 1 with respect to g(z), from which we obtain g(z).
Analogously we get f(z). After minor linear changes over Q (which slightly
simplify f and g) we obtain

f(z) =
z3 − 6(ω+ 1)z

3z2 + 1
,

g(z) =
2z3 + (ω+ 1)z

z2 − ω
,

f
(
g(z)

)
=

8z9 − 24z5 − 13z3 − 6z

12z8 + 13z6 + 12z4 − 1
∈Q(z).

See Figure 1 for the image of the reals under g.

3. Proof of Proposition 1.6

If G acts on a set Ω, then ωg denotes the image of ω ∈ Ω under g ∈ G.
Furthermore, Gω = {g ∈G | ωg = ω} is the stabilizer of ω in G.

For g,h ∈G we write gh for the conjugate h−1gh of g under h. Similarly,
if S is a subset or subgroup of G, then Sh = {sh | s ∈ S}.

If G is transitive on Ω, then ∅ �= Δ ⊆ Ω is called a block if Δ = Δg or
Δ ∩Δg = ∅ for each g ∈ G. If this is the case, then Ω is a disjoint union of
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sets Δi =Δgi for gi in a subset of G. These sets Δi are called a block system.
Note that G acts by permuting these sets Δi.

We assume that Proposition 1.6 is false, so there is a group M with Gω ≤
M ≤G and M �=Mσ . Among the counterexamples with |G| minimal we pick
one with |Ω| minimal. In a series of lemmas, we derive properties of such a
potential counterexample, and eventually we will see that it does not exist.

Note that Gσ
ω fixes ωσ = ω, hence Gσ

ω ≤Gω and therefore Gω =Gσ
ω , a fact

we will use frequently. Also note that the condition on σ implies that |Ω| is
odd. Another trivial fact which we use throughout the proof is the following:
If B is a subgroup of G, then σ normalizes B ∩Bσ and 〈B,Bσ〉.

Lemma 3.1. G is transitive on Ω.

Proof. Set Δ= ωG. If Δ =Ω then we are done. So assume that Δ�Ω. If
Δ = {ω}, then Gω =G, and therefore of course M =G=Mσ .

Thus {ω} � Δ � Ω. Note that Δσ = ωGσ = ωσG = ωG = Δ. By the as-
sumption of a minimal counterexample, we obtain that the proposition holds
for the action of 〈G,σ〉 on Δ, hence M =Mσ , a contradiction. �

Lemma 3.2. G= 〈M,Mσ〉.

Proof. Set H = 〈M,Mσ〉. Then Hσ =H , so if H is a proper subgroup of
G, then M =Mσ by the minimality assumption of a counterexample. �

Lemma 3.3. M ∩Mσ =Gω .

Proof. Set W =M ∩Mσ . Note that Gω ≤W and W σ =W . Therefore,
Δ = ωW is a block for the action of 〈G,σ〉 on Ω, and Δσ =Δ. Let Ω̄ be the
block system which contains Δ, so 〈G,σ〉 acts on Ω̄. By the transitivity of G
all blocks in Ω̄ have the same size, and this size divides the odd number |Ω|.
So the blocks have odd size, therefore σ has a fixed point in each block which
is fixed setwise. Thus Δ is the only block fixed by σ. For g ∈G let ḡ be the
induced permutation on Ω̄. The stabilizer of Δ in Ḡ is W̄ .

Now suppose that W >Gω , hence |Δ| > 1 and therefore |Ω̄| < |Ω|. Note
that W̄ ≤ M̄ . So the proposition applies and yields M̄σ = M̄ . But the kernel
of the map g �→ ḡ is contained in W =M ∩Mσ , so Mσ =M , a contradiction.

�

Lemma 3.4. If B ≤M , then either G= 〈B,Bσ〉, or B ≤Gω .

Proof. Set H = 〈B,Bσ〉, and suppose that H < G. Hence, the proposi-
tion holds for H , in particular 〈B,Hω〉σ = 〈B,Hω〉. Thus, B ≤ 〈B,Hω〉σ ≤
〈M,Gω〉σ =Mσ . Together with the previous lemma we get B ≤M ∩Mσ =
Gω . �

Lemma 3.5. G has even order.
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Proof. Suppose that the order of G is odd. Pick g ∈M \Gω . Note that

(
gg−σ

)σ
= gσg−1 =

(
gg−σ

)−1
,

so σ acts on 〈gg−σ〉 by inverting the elements. As 〈gg−σ〉 has odd order, there
is h ∈ 〈gg−σ〉 with gg−σ = h2. Set c= hgσ . First, note that c is fixed under σ:

cσ =
(
hgσ

)σ
= hσg = h−1g = h−1h2gσ = hgσ = c

From this, we obtain that c permutes the fixed points of σ, so c ∈Gω because
ω is the only fixed point of σ.

Another calculation shows

cg−σc= hgσg−σhgσ = h2gσ = g,

hence

g ∈
〈
Gω, g

−σ
〉
≤Mσ,

contrary to M ∩Mσ =Gω and the choice of g. �

Lemma 3.6. M contains at least one involution which is not contained in
Gω .

Proof. Let J be the set of involutions of M . Then Jm = J for all m ∈M .
Suppose that J ⊆Gω . Then J is the set of involutions of Gω , and together
with Gσ

ω =Gω we obtain Jσ = J . So J is normalized by 〈M,σ〉. But 〈M,σ〉=
G by Lemma 3.2. In particular, 〈J〉 ≤Gω is a normal subgroup of G, hence
|〈J〉|= 1 as G acts faithfully.

We obtain J = ∅, contrary to |G| being even by the previous lemma, to-
gether with [G :Gω] = |Ω| being odd. �

We now obtain the final contradiction: Let a ∈M \Gω be an involution.
Set b= aσ ∈Mσ and let D be the dihedral group generated by a and b. From
Lemma 3.4, with B = 〈a〉, we get D =G.

Set C = 〈ab〉. Then [G : C] = 2 (because G = C ∪ Ca). We claim that C
is transitive on Ω. If this were not the case, then, by the transitivity of G
and C �G, C would have exactly two orbits of equal size, so |Ω| were even, a
contradiction.

So G=CGω , and C ∩Gω = 1, because transitive abelian groups act regu-
larly. The modular law yields M = (C ∩M)Gω and Mσ = (C ∩Mσ)Gω .

From |M | = |Mσ| we get |C ∩M | = |C ∩Mσ|. But the subgroups of the
cyclic group C are determined uniquely by their order, hence C∩M =C∩Mσ

and finally M =Mσ .



834 P. MÜLLER

4. Proof of Theorems 1.4 and 1.5

For the rational function g(z) ∈C(z), let ḡ(z) be the function with complex

conjugate coefficients. Recall that g(R̂) is a circle in Ĉ if and only if there
is a linear fractional function λ ∈ C(z) such that λ ◦ g ∈ R(z). The following
lemma gives a useful necessary and sufficient criterion for this to hold. By
C(g(z)) we mean the field of rational functions in g(z).

Lemma 4.1. Let g(z) ∈C(z). Then λ ◦ g ∈R(z) for some linear fractional
function λ ∈C(z) if and only if C(g(z)) =C(ḡ(z)).

Proof. If λ ◦ g ∈R(z), then λ ◦ g = λ ◦ g = λ̄ ◦ ḡ, hence ḡ(z) = λ̄−1(λ(g(z))),
and therefore C(ḡ(z)) =C(g(z)).

To prove the other direction, suppose that C(g(z)) =C(ḡ(z)). This assump-
tion is preserved upon replacing g with μ ◦ g for a linear fractional function
μ ∈ C(z). Thus, without loss of generality, we may assume that there are
r1, r2, r3 ∈ R with g(r1) =∞, g(r2) = 0, g(r3) = 1. From C(g(z)) = C(ḡ(z)),
we get ḡ = ρ ◦ g for a linear fractional function ρ ∈C(z). Evaluating in r1, r2,
and r3 yields that ρ fixes ∞, 0 and 1, hence ρ(z) = z. So ḡ = g, and therefore
g ∈R(z). �

Remark 4.2. The lemma holds more generally if we replace R with a
field K and C with a Galois extension E of K, and C(g(z)) =C(ḡ(z)) by the
condition E(g(z)) =E(gσ(z)) for all σ ∈Gal(E/K). Indeed, if K is an infinite
field, then we find r1, r2, r3 ∈K such that the values g(r1), g(r2), and g(r3)
are distinct and therefore without loss of generality equal to ∞, 0 and 1. So,
as above, g = gσ for all σ ∈ Gal(E/K). Thus, the coefficients of g are fixed
under Gal(E/K) and therefore contained in K.

If K is finite, we can argue as follows: We may assume that g(∞) =∞,
so g(z) = p(z)/q(z) for relatively prime polynomials p, q ∈ E[z] with deg p >
deg q. In addition, we may assume that p and q are monic. Let σ be a
generator of the cyclic group Gal(E/K). From gσ(z) ∈ E(g(z)) and gσ(z) =
pσ(z)
qσ(z) we obtain gσ = g + b for some b ∈ E. Repeated application of σ shows

that TraceE/Kb = 0. So by the additive Hilbert’s theorem 90 there is c ∈ E
with c− cσ = b, hence (g+ c)σ = g+ c and therefore g+ c ∈K(z). (The same
argument, except that Hilbert’s theorem 90 is a trivial fact for the extension
C/R, works as an alternative proof of the lemma too.)

Theorem 1.4 is a direct consequence of Theorem 1.5. For if g is weakly
injective, and g ◦ f is injective on g(R̂), then g ◦ f ◦ g is weakly injective, so
f ◦ g is weakly injective even more.

Thus, we only need to prove Theorem 1.5.
Let t be a variable over C, and Z be another variable over the field C(t) of

rational functions in t.
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If h(∞) �= ∞, then upon replacing h(Z) with 1
h(Z)−h(∞) (and τ with

1
τ−h(∞) ) we may assume that h(∞) = ∞. By further replacing h(Z) with

h(Z) − τ , we may and do assume that h(Z) = p(Z)
q(Z) , where p(Z), q(Z) ∈

R[Z] are relatively prime polynomials, deg p(Z) = n > deg q(Z), and p(Z) =∏n
i=1(Z − αi), where the αi are pairwise distinct, α1 ∈R, and αi /∈C \R for

i≥ 2.
By Hensel’s lemma, p(Z) − tq(Z) =

∏n
i=1(Z − zi), where zi ∈ C[[t]] has

constant term αi. As α1 ∈ R and p, q ∈ R[Z], we actually have z1 ∈ R[[t]].
Write z = z1. The complex conjugation acts on the coefficients of the formal
Laurent series C((t)) and fixes t. Under this action, z is fixed, and the z′i’s
for i≥ 2 are flipped in pairs. Note that t= h(zi) for all i.

The field C(z1, z2, . . . , zn) is a Galois extension of R(t) and a subfield of
C((t)). So the restriction to C(z1, z2, . . . , zn) of the complex conjugation
action on the coefficients of C((t)) is an involution σ in the Galois group
A=Gal(C(z1, z2, . . . , zn)/R(t)) which fixes z = z1, and moves all zi with i > 1.

Now write h(z) = f(g(z)) as in Theorem 1.5. Then also t = h(z) =
f(g(z)) = f̄(ḡ(z)). This yields the following inclusion of fields and the corre-
sponding subgroups of A by Galois correspondence:

C(z1, . . . , zn) 1

C(z) Gz

C(g(z)) C(ḡ(z)) M Mσ

C(t) G

R(t) A

Here Gz is the stabilizer of z = z1 in G. As M is the stabilizer of g(z) in G,
and σ maps g(z) to ḡ(z), the stabilizer of ḡ(z) is σ−1Mσ =Mσ .

By construction, C(z1, z2, . . . , zn) is the splitting field of p(Z)− tq(Z) over
C(t), hence G acts faithfully on {z = z1, z2, . . . , zn}. Now G is normal in A, so
σ ∈A normalizes G. Furthermore, σ fixes exactly one of the zi. So M =Mσ

by Proposition 1.6. Thus C(g(z)) = C(ḡ(z)) by the Galois correspondence,
and finally λ(g(z)) ∈ R(z) for some linear fractional λ ∈C(z) by Lemma 4.1.
This proves Theorem 1.5.



836 P. MÜLLER

5. Some more examples

If h= f ◦ g for polynomials f, g ∈C[z], and h ∈R[z], then it is well known
that there is a linear polynomial λ ∈ C[z] such that λ ◦ g ∈ R[z]. See [6,
Theorem 3.5], or [14, Prop. 2.2] for a down to earth proof. A less elementary
but more conceptual proof can be based on the fact that the Galois group of
h(Z)− t over C(t) contains an element which cyclically permutes the roots
of h(Z)− t, and the other fact that subgroups of cyclic groups are uniquely
determined by their orders.

Note that if h= f ◦ g for a polynomial h and rational functions f, g, then
there is a linear fractional function ρ ∈C(z) such that h= (f ◦ ρ−1) ◦ (ρ ◦ g),
and f ◦ ρ−1 and ρ ◦ g are polynomials. (This follows from looking at the fiber
h−1(∞).)

So in order to get examples of rational functions h ∈R(z) which decompose
as h = f ◦ g with f, g ∈ C(z) such that there is no linear fractional function
λ ∈C(z) with λ ◦ g ∈R(z), one has to assume that h is not a polynomial.

One also has to assume that g is not a polynomial, as the following easy
result shows.

Lemma 5.1. Suppose that f ◦ g ∈R(z) where f ∈C(z) and g ∈C[z] are not
constant. Then λ ◦ g ∈R[z] for a linear polynomial λ ∈C[z].

Proof. Assume without loss of generality that g is monic. Write f = p
q with

p, q ∈C[z] relatively prime and p monic. From f ◦ g ∈R(z), we obtain

p̄(ḡ(z))

q̄(ḡ(z))
=

p(g(z))

q(g(z))
.

Clearly, both fractions are reduced, and the numerators of both sides are
monic. Therefore, p̄(ḡ(z)) = p(g(z)), hence p ◦ g ∈R[z], and the claim follows
from the polynomial case. �

Now we give some examples of rational functions h ∈ R(z) with a decom-
position h= f ◦ g with f, g ∈C(z) which is not equivalent to a decomposition

over R. Recall that this is equivalent to g(R̂) not being a circle. Of course,
Theorem 1.2 gives many example for this. But these examples are quite com-
plicated and not explicit. However, if one drops the requirement that g(R̂) is
a Jordan curve, then there are quite simple examples. We give two series.

Example 5.2 (Attributed to Pakovich by Eremenko in [3]). Let Tn ∈ R[z]
be the polynomial with Tn(z+

1
z ) = zn+ 1

zn (so Tn is essentially a Chebychev

polynomial.) Set g(z) = ζz+ 1
ζz for an n-th root of unity ζ. Then Tn(g(z)) =

zn + 1
zn ∈R(z), while g(R̂) is not a circle if ζ4 �= 1.

Example 5.3. Pick ζ ∈C with |ζ|= 1, and set

F = zk(1− z)n−k, G=
1− ζzk

1− ζzn
, μ(z) =

z + i

z − i
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for 1≤ k < n. A straightforward calculation shows that

(5.1) F (Ḡ

(
1

z

)
=

1

ζn−k
F

(
G(z)

)
.

Pick ρ ∈C with ρ2 = 1
ζn−k , and set

f(z) = ρF (z), g(z) =G
(
μ(z)

)
.

From μ̄(z) = μ( 1z ) and (5.1) we get f ◦ g = f ◦ g, hence f ◦ g ∈R(z).
On the other hand, it is easy to see that, except for a some degenerate

cases, g(R̂) is not a circle. Furthermore, we see that g(R̂) isn’t even a Jordan

curve (unless it is a circle), for if z runs through R̂, μ(z) runs through the
unit circle, so the numerator and denominator of g(z) =G(μ(z)) vanish k and

n times, respectively, so g(R̂) has several self intersections.
Originally I had only found the cases ζ = −1, k = n− 1. Mike Zieve ob-

served the strong similarity of these examples with functions which turned
up in work of Avanzi and Zannier. In [1], they classify triples F ∈ C[z],
G1,G2 ∈C(z) such that F ◦G1 = F ◦G2. One of their cases ([1, Prop. 4.7(3)])
is the above series with ζ = 1, and the series [1, Prop. 5.6(4)] is essentially our
series from above.

The connection with the work by Avanzi and Zannier is not a surprise:
If we look for polynomials F ∈ R[z] such that there is G ∈ C(z) \ R(z) with
F ◦G ∈R(z), then F ◦ Ḡ= F ◦G with G �= Ḡ. Furthermore, note that if ζ is

an m-th root of unity, then f(z)2m ∈ R(z). So upon setting f̃ = f2m = F 2m,

we have f̃ ◦ g = f̃ ◦ ḡ.
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