
Illinois Journal of Mathematics
Volume 59, Number 3, Fall 2015, Pages 819–824
S 0019-2082

HOLOMORPHIC FUNCTIONAL CALCULUS ON
UPPER TRIANGULAR FORMS IN FINITE

VON NEUMANN ALGEBRAS

K. DYKEMA, F. SUKOCHEV AND D. ZANIN

Abstract. The decompositions of an element of a finite von Neu-
mann algebra into the sum of a normal operator plus an s.o.t.-
quasinilpotent operator, obtained using the Haagerup–Schultz

hyperinvariant projections, behave well with respect to holomor-
phic functional calculus.

This note concerns the decomposition theorem for elements of a finite von
Neumann algebra, recently proved in [2]. In that paper, given a von Neumann
algebra M with a normal, faithful, tracial state τ , by using the hyperinvariant
subspaces found by Haagerup and Schultz [3] and their behavior with respect
to Brown measure, for every element T ∈M we constructed a decomposition
T =N +Q where N ∈M is a normal operator whose Brown measure agrees
with that of T and where Q is an s.o.t.-quasinilpotent operator. An element
Q ∈ M is said to be s.o.t.-quasinilpotent if ((Q∗)nQn)1/n converges in the
strong operator topology to the zero operator—by Corollary 2.7 in [3], this
is equivalent to the Brown measure of Q being concentrated at 0. In fact, N
is obtained as the conditional expectation of T onto the (abelian) subalgebra
generated by an increasing family of Haagerup–Schultz projections.

The Brown measure [1] of an element T of a finite von Neumann algebra
is a sort of spectral distribution measure, whose support is contained in the
spectrum σ(T ) of T . We will use νT to denote the Brown measure of T .
The Brown measure behaves well under holomorphic (or Riesz) functional
calculus. Indeed, Brown proved (Theorem 4.1 of [1]) that if h is holomorphic
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on a neighborhood of the spectrum of T , then νh(T ) = νT ◦ h−1 (the push-
forward measure by the function h).

In this note, we prove the following theorem.

Theorem 1. Let T be an element of a finite von Neumann algebra M (with
fixed normal, faithful tracial state τ ) and let T =N +Q be a decomposition
from [2], with N normal, νN = νT and Q s.o.t.-quasinilpotent.

(i) Let h be a complex-valued function that is holomorphic on a neighborhood
of the spectrum of T . Then

h(T ) = h(N) +Qh,

where Qh is s.o.t.-quasinilpotent.
(ii) If 0 /∈ suppνT (so that N is invertible), then

T =N
(
I +N−1Q

)
and N−1Q is s.o.t.-quasinilpotent.

The key result for the proof is Lemma 22 of [2], which allows us to reduce
to the case when N and Q commute. Before using this, we require a few easy
results about s.o.t.-quasinilpotent operators on Hilbert space.

Lemma 2. Let A be a unital algebra and let N,Q ∈ A, T = N + Q and
suppose that both N and T are invertible. Then

T−1 =N−1 − T−1QN−1.

Proof. We have

T−1 −N−1 = T−1(N − T )N−1 =−T−1QN−1. �
Lemma 3. Let A and Q be bounded operators on a Hilbert space H such

that AQ = QA and suppose Q is s.o.t.-quasinilpotent. Then AQ is s.o.t.-
quasinilpotent.

Proof. We have (AQ)n =AnQn and(
(AQ)∗

)n
(AQ)n =

(
Q∗)n(

A∗)nAnQn ≤ ‖A‖2n
(
Q∗)nQn.

By Loewner’s theorem, for n≥ 2 the function t �→ t2/n is operator monotone
and we have ((

(AQ)∗
)n

(AQ)n
)2/n ≤ ‖A‖4

((
Q∗)nQn

)2/n
.

Thus, for ξ ∈H, we have∥∥((
(AQ)∗

)n
(AQ)n

)1/n
ξ
∥∥2

=
〈((

(AQ)∗
)n

(AQ)n
)2/n

ξ, ξ
〉

≤ ‖A‖4
〈((

Q∗)nQn
)2/n

ξ, ξ
〉

= ‖A‖4
∥∥((

Q∗)nQn
)1/n

ξ
∥∥2

.

Since Q is s.o.t.-quasinilpotent, this tends to zero as n→∞. �
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Proposition 4. Let N and Q be bounded operators on a Hilbert space and
suppose NQ=QN and Q is s.o.t.-quasinilpotent. Let T =N +Q. Let h be a
function that is holomorphic on a neighborhood of the union σ(T ) ∪ σ(N) of
the spectra of T and N . Then h(T ) and h(N) commute, and h(T )− h(N) is
s.o.t.-quasinilpotent.

Proof. If λ is outside of σ(T )∪ σ(N), then by Lemma 2,

(1) (T − λ)−1 = (N − λ)−1 − (T − λ)−1Q(N − λ)−1.

Let C be a contour in the domain of the complement σ(T ) ∪ σ(N), with
winding number 1 around each point in σ(T )∪ σ(N). Then

h(T ) =
1

2πi

∫
C

h(λ)(λ− T )−1 dλ,

h(N) =
1

2πi

∫
C

h(λ)(λ−N)−1 dλ.

For any complex numbers λ1 and λ2 outside of σ(T ) ∪ σ(N), the operators
(λ1−T )−1, (λ2−N)−1 and Q commute; thus, h(T ) and h(N) commute with
each other. Using (1), we have

h(T )− h(N) =
1

2πi

∫
C

h(λ)(λ− T )−1Q(λ−N)−1 dλ=AQ,

where

A=
1

2πi

∫
C

h(λ)(λ− T )−1(λ−N)−1 dλ.

We have AQ=QA. By Lemma 3, AQ is s.o.t.-quasinilpotent. �

For the remainder of this note, M will be a finite von Neumann algebra
with specified normal, faithful, tracial state τ .

Lemma 5. Let T ∈ M. Suppose p ∈ M is a T -invariant projection with
p /∈ {0,1}.
(i) If T is invertible, then p is T−1-invariant. Moreover, we have

T−1p= (pTp)−1,

(1− p)T−1 =
(
(1− p)T (1− p)

)−1
,

where the inverses on the right-hand-sides are in pMp and (1−p)M(1−
p), respectively.

(ii) The union of the spectra of pTp and (1 − p)T (1 − p) (in pMp and
(1− p)M(1− p), respectively) equals the spectrum of T .

(iii) If h is a function that is holomorphic on a neighborhood of σ(T ), then p
is h(T )-invariant. Moreover, h(T )p= h(pTp).
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Proof. For (i), a key fact is that one-sided invertible elements of M are
always invertible. Thus, writing T = ( a b

0 c ) with respect to the projections p
and (1− p) (so that a= pTp, b= pT (1− p) and c= (1− p)T (1− p)) writing
T−1 = ( x y

w z ) and multiplying, we easily see that a and c must be invertible
and

(2) T−1 =

(
a−1 −a−1bc−1

0 c−1

)
.

Thus, p is T−1-invariant.
For (ii) we use (i) and the fact that the formula (2) shows that T is invertible

whenever pTp and (1− p)T (1− p) are invertible.
For (iii), writing

(3) h(T ) =
1

2πi

∫
C

h(λ)(λ− T )−1 dλ

for a suitable contour C, where this is a Riemann integral that converges in
norm, the result follows by applying part (i). �

For a von Neumann subalgebra D of M, let ExpD and ExpD′ , respectively
denote the τ -preserving conditional expectations onto D and, respectively, the
relative commutant of D in M.

Lemma 6. Let T ∈M.

(i) Suppose 0 = p0 ≤ p1 ≤ · · · ≤ pn = 1 are T -invariant projections and let
D = span{p1, . . . , pn}. Then the spectra of T and of ExpD′(T ) agree. If
T is invertible, then ExpD′(T−1) = ExpD′(T )−1.

(ii) Suppose (pt)0≤t≤1 is an increasing family of T -invariant projections in
M with p0 = 0 and p1 = 1, that is right-continuous with respect to strong
operator topology. Let D be the von Neumann algebra generated by the
set of all pt. If T is invertible, then so is ExpD′(T ) and ExpD′(T−1) =
ExpD′(T )−1.

Proof. For (i), we have

ExpD′(T ) =

n∑
j=1

(pj − pj−1)T (pj − pj−1).

The assertions now follow from repeated application of Lemma 5.
For (ii), using the right-continuity of pt it is easy to choose an increas-

ing family of finite dimensional subalgebras Dn of D whose union is strong
operator topology dense in D. Then ExpD′

n
(T ) and ExpD′

n
(T−1) converge

in strong operator topology to ExpD′(T ) and ExpD′(T−1), respectively, and
both sequences are bounded. From (i), we have the equality

ExpD′
n
(T )ExpD′

n

(
T−1

)
= I,

and taking the limit as n→∞ yields the desired result. �
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Lemma 7. Let T ∈M and let pt and D be as in either part (i) or part (ii)
of Lemma 6. Suppose a function h is holomorphic on a neighborhood of the
spectrum of T . Then ExpD′(h(T )) = h(ExpD′(T )).

Proof. Using that the Riemann integral (3) converges in norm, that ExpD′

is norm continuous and applying Lemma 6, we get

ExpD′
(
h(T )

)
=

1

2πi

∫
C

h(λ)ExpD′
(
(λ− T )−1

)
dλ

=
1

2πi

∫
C

h(λ)
(
λ−ExpD′(T )

)−1
dλ= h

(
ExpD′(T )

)
. �

For convenience, here is the statement of Lemma 22 of [2] and an immediate
consequence.

Lemma 8. Let T ∈ M. For any increasing, right-continuous family of
T -invariant projections (qt)0≤t≤1 with q0 = 0 and q1 = 1, letting D be the
von Neumann algebra generated by the set of all the qt, the Fuglede–Kadison
determinants of T and ExpD′(T ) agree. Since the same is true for T −λ and
ExpD′(T )− λ for all complex numbers λ, we have that the Brown measures
of T and ExpD′(T ) agree.

Now we have all the ingredients to prove our main result.

Proof of Theorem 1. In Theorem 6 of [2] the decomposition T =N +Q is
constructed by considering an increasing, right-continuous family (pt)0≤t≤1 of
Haagerup–Schultz projections, with p0 = 0 and p1 = 1, that are T -invariant,
letting D be the von Neumann algebra generated by the set of projections
in this family and taking N = ExpD(T ). In particular, each pt is also Q-
invariant.

For (i), we need to show that the Brown measure of h(T )−h(N) is the Dirac
mass at 0. By Lemma 5(iii), each pt is h(T )-invariant. So by Lemma 8, the
Brown measures of h(T )−h(N) and ExpD′(h(T )−h(N)) agree. Since h(N) ∈
D, we have ExpD′(h(N)) = h(N) and by Lemma 7, we have ExpD′(h(T )) =
h(ExpD′(T )). Combining these facts we get

(4) νh(T )−h(N) = νh(ExpD′ (T ))−h(N).

We have

ExpD′(T ) =N +ExpD′(Q)

and ExpD′(Q) is s.o.t.-quasinilpotent. This last statement follows formally
from Lemma 8 and the fact that Q is s.o.t.-quasinilpotent. However, we
should mention that the fact that ExpD′(Q) is s.o.t.-quasinilpotent was actu-
ally proved directly in [2] as a step in the proof that Q is s.o.t.-quasinilpotent.
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In any case, since N and ExpD′(T ) commute and ExpD′(Q) is s.o.t.-
quasinilpotent, by Proposition 4 it follows that h(ExpD′(T ))− h(N) is s.o.t.-
quasinilpotent. Using (4), we get that h(T )−h(N) is s.o.t.-quasinilpotent, as
desired.

For (ii), the projections pt form a right-continuous family, each of which
is invariant under N−1Q. By Lemma 8, the Brown measure of N−1Q equals
the Brown measure of

(5) ExpD′
(
N−1Q

)
=N−1ExpD′(Q).

But since N−1 and ExpD′(Q) commute and since the latter is s.o.t.-
quasinilpotent, by Lemma 3, their product (5) is s.o.t.-quasinilpotent. �
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