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ISOMETRIC DEFORMATIONS OF MINIMAL
SURFACES IN S

4

THEODOROS VLACHOS

Abstract. We provide an elementary proof of the fact that the
space of all isometric minimal immersions f : M → S

4 of a 2-
dimensional Riemannian manifold M into S

4 with the same nor-
mal curvature is, up to congruence, either finite or a circle. Fur-
thermore, we show that if M is compact and the Euler number

of the normal bundle of f is nonzero, then there exist at most

finitely many noncongruent isometric minimal immersions of M
into S

4 with the same normal curvature.

1. Introduction

A classical question about isometric immersions is to decide if given an
isometric immersion f : M →N , this is, up to ambient isometries, the unique
way of immerse isometrically the Riemannian manifold M into the Riemann-
ian manifold N . When f is a minimal immersion, one can ask if this is the
unique isometric minimal immersion of M into N . If this is the case, f is
called minimally rigid. The rigidity aspects of minimal hypersurfaces in space
forms have drawn several author’s attention. A conclusive result was given
Dajczer and Gromoll [5] for complete minimal hypersurfaces.

It is interesting to determine whether a given minimal surface can be de-
formed in a nontrivial way. Choi, Meeks and White [4] proved a rigidity
result for complete minimal surfaces in R

3. The case where the Euclidean
space is replaced by a sphere is more difficult. Barbosa [2] proved that mini-
mally immersed 2-spheres in a sphere are minimally rigid, while according to
Ramanathan [12] any compact minimal surface in S

3, allows at most finitely
many noncongruent isometric minimal surfaces.

We are interested in isometric deformations of oriented minimal surfaces
f : M → S

4 which preserve the normal curvature. If M is simply connected,
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then there exists a 2π-periodic one-parameter family fθ of isometric mini-
mal immersions preserving the normal curvature, the associated family. This
family is obtained by rotating the second fundamental form of f and then
integrate the system of Gauss, Codazzi and Ricci equations. It is trivial, in
the sense that each fθ is congruent to f , if f is superminimal (cf. [14]). Thus
the rigidity for simply connected minimal surfaces fails in a natural way, and
consequently the rigidity problem for minimal surfaces has a global nature.
The above procedure cannot be carried out if the fundamental group is non-
trivial. Inspired by a recent paper due to Smyth and Tinaglia [13], we provide
elementary proofs of the following results concerning the space of isometric
deformations of minimal surfaces in S

4.

Theorem 1. Let f : M → S
4 be an isometric minimal immersion of a

2-dimensional Riemannian manifold M into S
4 with normal curvature KN .

Then, up to congruence, the space of all isometric minimal immersions of M
into S

4 with normal curvature KN is either finite or a circle.

Theorem 2. Let f : M → S
4 be an isometric minimal immersion of a

compact oriented 2-dimensional Riemannian manifold M into S
4 with normal

curvature KN . If the Euler number of the normal bundle of f is nonzero, then
there exist at most finitely many noncongruent isometric minimal immersions
of M into S

4 with normal curvature KN .

The Euler number of the normal bundle of f is nonzero if and only if its
self-intersection number q is nonzero ([11, Cor. 3.2]). It is known (cf. [9]) that
for any compact nonsuperminimal surface of genus g we have |q| ≤ 2(g − 1).
Thus g ≥ 2 if the Euler number of its normal bundle is nonzero. All compact
superminimal surfaces in S

4, which are not totally geodesic, have normal
bundle with nonzero Euler number. For all these surfaces, the number N
of noncongruent isometric minimal immersions into S

4 is N = 1. We do not
know any examples with N ≥ 2.

An immediate application of Theorem 2 is the following.

Corollary 3. Let f : M → S
4 be compact minimal surface whose normal

bundle has nonzero Euler number. If M admits a one parameter group of
isometries ϕt, that preserve the normal curvature, then there exists a one
parameter group of isometries τt of S4 such that f ◦ϕt = τt ◦ f for all t ∈R.

2. Preliminaries

Let f : M → S
4 be a minimal surface, that is, an isometric minimal im-

mersion of a connected oriented 2-dimensional Riemannian manifold M , with
normal bundle Nf and second fundamental form B. We view M as a Rie-
mann surface with complex structure determined by the metric and the ori-
entation. The complexified tangent bundle TM ⊗ C is decomposed into the
eigenspaces of the complex structure J , called T ′M and T ′′M , corresponding
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to the eigenvalues i and −i. The second fundamental form can be complex
linearly extended to TM ⊗C with values in the complexified bundle Nf ⊗C

and then decomposed into its (p, q)-components, p+ q = 2, which are tensor
products of p many 1-forms vanishing on T ′′M and q many 1-forms vanishing
on T ′M . Since f is minimal, for any local complex coordinate z = u+ iv, we
have

B =B(2,0) +B(0,2),

where

B(2,0) =B

(
∂

∂z
,
∂

∂z

)
dz2, B(0,2) =B(2,0) and

∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
.

The Hopf differential is the differential form of type (4,0)

Φ :=
〈
B(2,0),B(2,0)

〉
.

For any local orthonormal frame field {ej} along f , such that {e1, e2} are
tangent with dual coframe {ω1, ω2}, we put

Hα =
〈
B(e1, e1), eα

〉
+ i

〈
B(e1, e2), eα

〉
, α= 3,4 and ϕ= ω1 + iω2.

We easily obtain

Φ =
1

4

(
H

2

3 +H
2

4

)
ϕ4.

The curvature ellipse of f at x ∈M , is

E(x) =
{
B(X,X) : X ∈ TxM, |X|= 1

}
.

The zeros of Φ are precisely the points where the curvature ellipse is a circle.
A minimal surface is called superminimal if Φ ≡ 0. The Codazzi equation
implies that Φ is holomorphic (cf. [3]). Thus either f is superminimal, or the
points where the curvature ellipse is a circle are isolated.

The normal curvature KN (cf. [1]) is given by

dω34 =−KNω1 ∧ ω2,

or equivalently,

(1) KN = i(H3H4 −H3H4).

We note that |KN |= 2κμ, where κ≥ μ≥ 0 are the length of the semi-axes of
the curvature ellipse. The length of the second fundamental form satisfies

(2) ‖B‖2 = 2
(
|H3|2 + |H4|2

)
.

Using the null frame field η = e3 + ie4, η̄ = e3 − ie4 of the complexified
bundle Nf ⊗C, we have〈

B(2,0),B(2,0)
〉
=

〈
B(2,0), η

〉〈
B(2,0), η̄

〉
.

Therefore, we obtain

Φ =
1

4

(
H

2

3 +H
2

4

)
ϕ4 =

1

4
k+k−ϕ

4,
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where k± :=H3 ± iH4. The functions a± := |k±| determine the geometry of
the curvature ellipse. Indeed, since the Gaussian curvature K of M is given
by K = 1−‖B‖2/2, from (1) and (2) we deduce that a± = (1−K±KN )1/2 =
κ± εμ, where ε=±1, depending on the sign of KN .

3. Isometric deformations of minimal surfaces in S
4

3.1. Associated family of simply connected minimal surfaces. Let
f : M → S

4 be a simply connected minimal surface. For each θ ∈ S
1 =R/2πZ,

we consider the orthogonal and parallel tensor field

Jθ = cosθI + sinθJ,

where I is the identity map and J is the complex structure. The symmetric
section Γθ of the homomorphism bundle Hom(TM × TM,Nf) given by

Γθ(X,Y ) :=B(JθX,Y ), X,Y ∈ TM

satisfies the Gauss, Codazzi and Ricci equations with respect to the normal
connection ∇⊥ of f (cf. [14], [5], [6]). Hence there exists an isometric minimal
immersion fθ : M → S

4 with second fundamental form

Bfθ(X,Y ) = Tθ ◦B(JθX,Y ),

where Tθ : Nf →Nfθ is a parallel and orthogonal vector bundle isomorphism.
The 2π-periodic family fθ is the associated family of f . It is trivial, in the
sense that each fθ is congruent to f , if f is superminimal (cf. [14]).

It is obvious that f and fθ have the same normal curvature. Eschenburg
and Tribuzy [9, Th. 2] proved that any other minimal immersion of M into
S
4 with normal curvature KN is congruent to some fθ.

3.2. Deformations of nonsimply connected minimal surfaces. Let
f : M → S

4 be a nonsimply connected minimal surface with normal curvature
KN . Since superminimal surfaces are rigid among superminimal surfaces (cf.
[15]), we may assume hereafter that f is not superminimal. Let g : M → S

4 be
another immersed minimal surface with normal curvature KN . We consider
the covering map p : M̃ →M , M̃ being the universal cover of M equipped
with the metric and the orientation that makes p an orientation preserving
local isometry. Corresponding objects on M̃ are denoted with tilde. The
minimal surfaces f̃ := f ◦p and g̃ := g ◦p have normal curvature K̃N =KN ◦p.
According to [9], g̃ is congruent to some f̃θ in the associated family of f̃ .
Thus, the space of all isometric minimal immersions of M into S

4 with normal
curvature KN is the set

S(f) :=
{
θ ∈ [0,2π] : there exists fθ : M → S

4 so that f̃θ = fθ ◦ p
}
.

Clearly 0 ∈ S(f) and, for each θ ∈ S(f), the normal curvature of fθ is KN .

Lemma 4. For any σ in the group D of deck transformations of the covering
map p : M̃ →M , the minimal surfaces f̃θ and f̃θ ◦ σ are congruent.
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Proof. It is enough to prove the existence of an orthogonal and parallel
isomorphism between the normal bundles of f̃θ and f̃θ ◦ σ that preserves the
second fundamental forms. If Tθ is the isomorphism between the normal
bundles of f̃ and f̃θ, then we define the bundle isomorphism

Σθ : Nf̃θ →N(f̃θ ◦ σ)
so that Σθ|x̃ : Nx̃f̃θ →Nx̃(f̃θ ◦ σ) is given at any point x̃ ∈ M̃ by

Σθ|x̃(ξ) := Tθ|σ(x̃)
(
T−1
θ |x̃(ξ)

)
, ξ ∈Nx̃f̃θ.

The second fundamental forms of f̃θ ◦ σ and f̃θ are related by

Bf̃θ◦σ|x̃(ṽ, w̃) = Tθ ◦Bf̃ |σ(x̃)
(
J̃θ ◦ dσx̃(ṽ), dσx̃(w̃)

)
, ṽ, w̃ ∈ Tx̃M̃,

where J̃θ = cosθĨ + sinθJ̃ . Since σ is a deck transformation, it follows that

Bf̃θ◦σ|x̃(ṽ, w̃) =Σθ ◦Bf̃θ |x̃(ṽ, w̃).
Let ξ = Tθ(η), where η is a section of Nf̃ . Since Σθ(ξ) = Tθ(η ◦ σ−1) ◦ σ,

for any X̃ tangent to M̃ , we have(
∇⊥

X̃
Σθ

)
ξ =∇⊥

X̃

(
Tθ

(
η ◦ σ−1

)
◦ σ

)
− Tθ

(
∇⊥

X̃

(
η ◦ σ−1

))
◦ σ

=
(
∇⊥

dσ(X̃)
Tθ

(
η ◦ σ−1

))
◦ σ− Tθ

(
∇⊥

X̃

(
η ◦ σ−1

))
◦ σ

= Tθ

(
∇⊥

dσ(X̃)

(
η ◦ σ−1

)
−∇⊥

X̃

(
η ◦ σ−1

))
◦ σ,

where, by abuse of notation, ∇⊥ stands for the normal connection of both f̃θ
and f̃θ ◦ σ. Let δ be a local section of Nf such that η ◦ σ−1 = δ ◦ p. Now
observe that

∇⊥
dσ(X̃)

(
η ◦ σ−1

)
−∇⊥

X̃

(
η ◦ σ−1

)
=∇⊥

dp◦dσ(X̃)
δ−∇⊥

dp(X̃)
δ = 0.

Therefore Σθ is parallel, and this completes the proof. �

Proof of Theorem 1. Lemma 4 allows us to define a homomorphism
Φθ : D→ Isom(S4) for each θ ∈ [0,2π], such that

f̃θ ◦ σ = Φθ(σ) ◦ f̃θ, σ ∈D.

We observe that θ ∈ S(f) if and only if Φθ(D) = {I}. Assume that S(f)
is infinite. Then there exists a sequence {θm} in S(f) which converges to
some θ0 ∈ [0,2π]. From Φθm(D) = {I} for all m ∈ N, we immediately obtain
Φθ0(D) = {I}. Let σ ∈ D. By applying the Mean Value Theorem to each
entry (Φθ(σ))jk of the corresponding matrix, we have

d

dθ

(
Φθ(σ)

)
jk
(θ̊m) = 0

for some θ̊m which lies between θ0 and θm. By continuity, we obtain

d

dθ

(
Φθ(σ)

)
jk
(θ0) = 0.
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Applying repeatedly the Mean Value Theorem, we conclude that

dn

dθn
(
Φθ(σ)

)
jk
(θ0) = 0

any integer n≥ 1. Since Φθ(σ) is an analytic curve (cf. [8]) in Isom(S4), we
infer that Φθ(σ) = I for each σ ∈D, and so S(f) = [0,2π]. �

4. Isometric deformations of compact minimal surfaces

For the proof of Theorem 2, we need some auxiliary lemmas.

Lemma 5. Let f : M → S
4 be a minimal surface which is not contained in

any totally geodesic S3. For any θ ∈ S(f) there exists a parallel and orthogonal
bundle isomorphism Tθ : Nf →Nfθ such that the second fundamental forms
of f and fθ are related by

Bfθ(X,Y ) = Tθ ◦Bf (JθX,Y ), X,Y ∈ TM.

Proof. Since f and fθ have the same normal curvature, for any simply
connected subset U of M there exists a parallel and orthogonal bundle iso-
morphism TU

θ : Nf |U → Nfθ|U such that the second fundamental forms of
f |U and fθ|U are related by

Bfθ|U (X,Y ) = TU
θ ◦Bf |U (JθX,Y ), X,Y ∈ TM.

Let U,V be simply connected subsets of M with U ∩ V 
=∅. Then we have
TU
θ = TV

θ on U ∩ V \M0, where M0 is the set of points where the normal
curvature vanishes. Since M \M0 is dense in M , by continuity, we see that
TU
θ = TV

θ on U ∩ V . Thus TU
θ is globally well-defined. �

Lemma 6 ([15]). Assume that f : M → S
4 is not superminimal and let M1

be the zero set of Φ. Around each point in M \M1, there exist a local complex
coordinate (U,z), U ⊂ M \ M1 and orthonormal frames {e1, e2} in TM |U ,
{e3, e4} in Nf |U which agree with the given orientations such that

(i) the Riemannian metric of M is given by

ds2 =
|dz|2

(κ2
1 − μ2

1)
1/2

and
∂

∂z
=

e1 − ie2
2(κ2

1 − μ2
1)

1/4
,

(ii) e3 and e4 give respectively the directions of the major and the minor axes
of the curvature ellipse, and

(iii) H3 = κ1,H4 = iμ1, where κ1 and μ1 are smooth real functions with
κ= |κ1|, μ= |μ1|. Moreover, the connection and the normal connection
forms, with respect to this frame, are given respectively, by

(3) ω12 =−1

4
∗ d log

(
κ2
1 − μ2

1

)
, ω34 = ∗κ1dμ1 − μ1dκ1

κ2
1 − μ2

1

,

where ∗ stands for the Hodge operator.
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Let f : M → S
4 be a minimal surface which is not contained in any totally

geodesic S3. Assume hereafter that f is not superminimal. For each point x ∈
M \M1, we consider an orthonormal frame {e1, e2, e3, e4} on a neighborhood
Ux ⊂M \M1 of x as in Lemma 6. We note that ω34 cannot vanish on any
open subset of M \M1. For any θ ∈ S(f), {e1, e2, Tθe3, Tθe4} is a frame along
fθ, where Tθ : Nf →Nfθ is the bundle isomorphism of Lemma 5. We observe
that H3,H4 and the corresponding functions Hθ

3 ,H
θ
4 for fθ, associated to the

frame {e1, e2, Tθe3, Tθe4}, satisfy
(4) Hθ

3 = exp(−iθ)H3 and Hθ
4 = exp(−iθ)H4.

Using (4) and the Weingarten formula for fθ, we obtain

∇̃E(Tθe3) = −κ1 exp(iθ)dfθ(E) + ω34(E)Tθe4,(5)

∇̃E(Tθe4) = iμ1 exp(iθ)dfθ(E)− ω34(E)Tθe3,(6)

where E = e1 − ie2 and ∇̃ stands for the usual connection in the induced
bundle (i1 ◦ f)∗(TR5), i1 : S

4 →R
5 being the inclusion map.

Lemma 7. Assume that for θj ∈ S(f), j = 1, . . . , n, there exist vectors vj ∈
R

5, such that

(7)
n∑

j=1

〈fθj , vj〉= 0 on Ux.

Then the following hold:
n∑

j=1

exp(iθj)
(
κ1〈Tθe3, vj〉 − iμ1〈Tθe4, vj〉

)
= 0,(8)

κ1

n∑
j=1

exp(2iθj)〈fθj , vj〉= L
n∑

j=1

exp(iθj)〈Tθe4, vj〉(9)

away from the zeros of ω34, where L=−E(ω34(E))− 3iω12(E)ω34(E), and

(10) E

(
n∑

j=1

exp(iθj)〈Tθe4, vj〉
)
=−ω34(E)

n∑
j=1

exp(iθj)〈Tθe3, vj〉.

Proof. Our assumption implies that

(11)
n∑

j=1

〈dfθj , vj〉= 0.

Differentiating, using the Gauss formula, (4) and (7), we see that
n∑

j=1

exp(iθj)
(
H3〈Tθe3, vj〉+H4〈Tθe4, vj〉

)
= 0.

Since H3 = κ1,H4 = iμ1, the above immediately implies (8).
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Equations (3) yield

E(κ1) = −2iκ1ω12(E) + iμ1ω34(E),(12)

E(μ1) = −2iμ1ω12(E) + iκ1ω34(E).(13)

Differentiating (8) with respect to E, using (5), (6), (12) and (13), we
obtain

n∑
j=1

exp(iθj)
(
r〈Tθe3, vj〉 − s〈Tθe4, vj〉

)

=
1

2

(
κ2
1 − μ2

1

) n∑
j=1

exp(2iθj)
〈
dfθj (E), vj

〉
,

where r =−iκ1ω12(E) + iμ1ω34(E) and s= μ1ω12(E)− κ1ω34(E). Using (8),
we have

(14)

n∑
j=1

exp(iθj)〈Tθe4, vj〉=
κ1

2ω34(E)

n∑
j=1

exp(2iθj)
〈
dfθj (E), vj

〉
.

Differentiating (14) with respect to E, using (6), (8), the Gauss formula and
(14), we find(

E

(
κ1

ω34(E)

)
− iκ1ω12(E)

ω34(E)
− iμ1

) n∑
j=1

exp(2iθj)
〈
dfθj (E), vj

〉

=
2κ1

ω34(E)

n∑
j=1

exp(2iθj)〈fθj , vj〉.

By virtue of (12) and since κ2
1 > μ2

1 on Ux, the above is written as

(15) 2ω34(E)

n∑
j=1

exp(2iθj)〈fθj , vj〉= L

n∑
j=1

exp(2iθj)
〈
dfθj (E), vj

〉
,

where L = −E(ω34(E)) − 3iω12(E)ω34(E). Now (9) follows from (14) and
(15). Moreover, we obtain using (6) that

E

(
n∑

j=1

exp(iθj)〈Tθe4, vj〉
)

= −iμ1

n∑
j=1

〈
dfθj (E), vj

〉

− ω34(E)

n∑
j=1

exp(iθj)〈Tθe3, vj〉,

which in view of (11) immediately yields (10). �
We need the topological restrictions for minimal surfaces in S

4 obtained by
Eschenburg and Tribuzy [9]. To state their result, we recall that a nonzero
function a : M → [0,+∞) is called of absolute value type [7], [9] if locally
a = a0|h|, where a0 is smooth and positive and h is holomorphic. The zero
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set of such a function is isolated, and outside its zeros the function is smooth.
The order k ≥ 1 of any x ∈ M with a(x) = 0 is the order of h at x. Let
N(a) be the sum of all orders for all zeros of a. Then Δloga is bounded on
M \ {a= 0} and its integral satisfies∫

M

ΔlogadA=−2πN(a).

Lemma 8 ([9]). Let f : M → S
4 be a compact minimal nonsuperminimal

surface with Gaussian curvature K and normal curvature KN . Then the
functions a± = (1 − K ± KN )1/2 are of absolute value type and the Euler
numbers χ(M), χ(Nf) of the tangent and the normal bundle satisfy

2χ(M)± χ(Nf) =−N(a∓).

Proof of Theorem 2. We assume that f is not superminimal. According
to Theorem 1, either S(f) is finite or S(f) = [0,2π]. Suppose to the con-
trary that S(f) = [0,2π]. We claim that the coordinate functions of the mini-
mal surfaces fθ, θ ∈ [0, π), are linearly independent. Since these functions are
eigenfunctions of the Laplace operator of M with corresponding eigenvalue
2, this contradicts the fact the eigenspaces of the Laplace operator are finite
dimensional. To show that the coordinate functions are linearly independent,
it is enough to prove that if

(16)
n∑

j=1

〈fθj , vj〉= 0,

for 0< θ1 < · · ·< θn < π, then vj = 0 for all 1≤ j ≤ n.
Assume to the contrary that vj 
= 0 for all 1≤ j ≤ n. Let M1 = {x1, . . . , xk}

be the zero set of Φ. Around each point x ∈M \M1, we choose local complex
coordinate (Ux, z) and an orthonormal frame {e1, e2, e3, e4} on Ux ⊂M \M1

as in Lemma 6. We consider the complex valued function

ψ :=

(
n∑

j=1

exp(iθj)〈Tθje4, vj〉
)2

,

where Tθj : Nf →Nfθj is the bundle isomorphism of Lemma 5. Obviously ψ
is well-defined on M \M1. The second equation of (3) yields

ω34(E) =
i

κ2
1 − μ2

1

(
κ1E(μ1)− μ1E(κ1)

)
.

Then (8) and (10) imply that E(ψ(1 − μ2/κ2)) = 0. Hence, the function
ψ(1− μ2/κ2) : M \M1 →C is holomorphic. Since Ψ is bounded, its isolated
singularities are removable and consequently there exists a constant c such
that

(17) ψ
(
κ2 − μ2

)
= cκ2 on M \M1.
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We claim that c= 0. Indeed, if κ(xl) = μ(xl)> 0, for some l, then taking
the limit in (17) along a sequence of points in M \M1 which converges to xl,
we deduce that c= 0.

Suppose now that κ(xl) = μ(xl) = 0 for all 1≤ l ≤ k. Let (V, z) be a local
complex coordinate around xl with z(xl) = 0. It is a well-known consequence
of the Codazzi equation that

B(2,0) =B

(
∂

∂z
,
∂

∂z

)
dz2

is holomorphic as a Nf ⊗C-valued tensor field (cf. [10]). Since B(2,0) is not
identically zero and B|xl

= 0, we may write

(18) B(2,0) = zmlB̃(2,0) on V,

where ml is a positive integer and B̃(2,0) is a tensor field of type (2,0) with

B̃(2,0)|xl

= 0. We define the Nf -valued tensor field B̃ := B̃(2,0)+ B̃(2,0). Since

its (1,1)-part vanishes, it follows easily that B̃ maps the unit circle on each
tangent plane into an ellipse, on the corresponding normal space, whose length
of the semi-axes are denoted by κ̃≥ μ̃≥ 0. We also consider the differential
form of type (4,0)

Φ̃ :=
〈
B̃(2,0), B̃(2,0)

〉
which, in view of (18), is related to the Hopf differential of f by Φ = z2mlΦ̃.

We split Φ and Φ̃, with respect to arbitrary orthonormal frames {ξ1, ξ2} and
{ξ3, ξ4} of TM |V and Nf |V , respectively as

Φ =
1

4

(
H

2

3 +H
2

4

)
ϕ4 =

1

4
k+k−ϕ

4,

Φ̃ =
1

4

(
H̃

2

3 + H̃
2

4

)
ϕ4 =

1

4
k̃+k̃−ϕ

4,

where

k± =H3 ± iH4, k̃± = H̃3 ± iH̃4,

Hα =
〈
B(ξ1, ξ1), ξα

〉
+ i

〈
B(ξ1, ξ2), ξα

〉
,

H̃α =
〈
B̃(ξ1, ξ1), ξα

〉
+ i

〈
B̃(ξ1, ξ2), ξα

〉
, α= 3,4.

From (18), we obtain Hα = zmlH̃α, or equivalently, k± = zml k̃±. Hence

(19) κ= |z|ml κ̃, μ= |z|ml μ̃.

Now (17) yields

(20) ψ
(
κ̃2 − μ̃2

)
= cκ̃2 on V \ {xl}.

If κ̃(xl)> μ̃(xl) for all 1≤ l≤ k, then (19) implies that N(a+) =
∑k

l=1ml =
N(a−). Hence, Lemma 8 yields χ(Nf) = 0, which contradicts our assumption.
Thus, κ̃(xl) = μ̃(xl) for some 1 ≤ l ≤ k. Taking the limit in (20), along a



ISOMETRIC DEFORMATIONS OF MINIMAL SURFACES IN S
4 379

sequence of points in V \ {xl} which converges to xl, we obtain cκ̃2(xl) = 0.

Since B̃|xl

= 0, we infer that c= 0.

From (17), we obtain ψ = 0 on M \M1. Hence, (9) implies

n∑
j=1

exp(2iθj)〈fθj , vj〉= 0.

Combining this with (16), we have

n∑
j=2

〈fθj ,wj〉= 0,

where wj := λjvj 
= 0, j = 2, . . . , n, and λj = cos2θn− cos2θ1 or λj = sin2θn −
sin2θ1. By induction, we finally conclude that 〈fθn ,w〉= 0, for some nonzero
vector w. So fθn lies in a totally geodesic S

3, contradiction. This concludes
the proof of the theorem. �

Proof of Corollary 3. Let fθj , j = 1, . . . , n,0 = θ0 < θ1 < · · · < θn ≤ 2π is

the maximal family of noncongruent minimal surfaces in S
4 which are isomet-

ric to f and have the same normal curvature. Since the second fundamental
form of the minimal surfaces ft := f ◦ϕt depends continuously on the param-
eter, we deduce that ft is congruent to exactly one of fθj for all t. Since
f ◦ϕ0 = f , we conclude that ft is congruent to f for all t. �
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