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ON 2-CLASS FIELD TOWERS OF SOME REAL QUADRATIC
NUMBER FIELDS WITH 2-CLASS GROUPS OF RANK 3

A. MOUHIB

ABSTRACT. We construct an infinite family of real quadratic num-
ber fields with class group of 2-rank = 3, 4-rank = 1 and finite
Hilbert 2-class field tower.

1. Introduction

Let k be a number field, and let C}, be the class group of k. Let k' be
the Hilbert 2-class field of k, that is, the maximal unramified (including the
infinite primes) abelian field extension of k whose degree over k is a power
of 2. Let k™ for n a non-negative integer, be defined inductively as k" = k
and k"1 = (k™)!; then

kcklck’®c---ck"c---

is called the Hilbert 2-class field tower of k. If n is the minimal integer such
that k™ = k"1, then n is called the length of the tower. If no such n exists,
then the tower is said to be of infinite length.

We define the 2-rank of Cj, denoted r3(k) as the dimension of the elemen-
tary Abelian 2-group C}/C? viewed as a vector space over Fa:

Tg(k) = dim]p2 (Ck/clz)a

where Fy is the finite field with two elements. We define the 4-rank of Cj,
denoted r4(k) by:
T4(k) = dimmz (C]%/C;Cl) .

Assume k is a real quadratic number field. It is well known that if ro(k) > 6,
then the Hilbert 2-class field tower of k is infinite [5], but it is not known how
far from best possible this bound is. In the case where rq(k) =2 or 3, there
are examples of fields k with finite Hilbert 2-class field tower. We mention
that in the case where C} contains a subgroup isomorphic to Z/47 x 7. /AZ x
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Z/AZ x 7./AZ, then k has infinite Hilbert 2-class field tower ([6], [7]). Also a
positive proportion of the fields k with ro(k) =5 and r4(k) =4 (with=0,1,2,
or 3) have infinite Hilbert 2-class field towers, and a positive proportion of
the fields k& with ro(k) =4 and ry(k) =4 (with ¢ =0,1,2, or 3) have infinite
Hilbert 2-class field towers [4].

The aim of this article is to construct an infinite family of real quadratic
number fields k such that ro(k) =3, r4(k) =1 and finite Hilbert 2-class field
tower. We mention that there are infinitely many imaginary quadratic number
fields k such that ro(k) =3, r4(k) = 0 and finite Hilbert 2-class field tower [9].

2. Preliminary results

Let p be a prime number and K/k be a Galois extension of number fields
with degree p. We define the genus field of the extension K /k denoted G(K/k)
as the maximal Abelian p-extension of k£, which is unramified over K at all
finite and infinite primes. Denote by Ej the unit group of k and ram(K/k)
the number of primes ramified in K/k. Denote by B(K/k) the elementary
Abelian p-group Ey/Ey N N (K*). We note that B(K/k) is a vector space
over IF,,, let d,(B(K/k)) be its dimension.

In the case where p =2 and the class number of k is odd, then by the
ambiguous class number formula we have (see, e.g., [1]):

(%) ro(K) =ram(K/k) — do (B(K/k)) — 1.

The value of r9(K) is related to determining whenever the units of k are
norms or not in K.

Now, let k be a quadratic number field of discriminant d. A factorization
of the discriminant d into relatively prime discriminants dy and ds : d = d;d>
is called a Cy-factorization if (Z—;) = (Z—f) =1 for all primes p;|d;. We shall
need the following result of Rédei and Reichardt on the 2-class group of real
quadratic number fields (see [13], [14] and for more information and results
see [10]).

PROPOSITION 2.1. Let k be a quadratic number field with discriminant d.

The 4-rank r4(k) of k equals the number of independent Cy-factorizations
of d.

In the following proposition, we give the rank of the class group of some
number fields.

PROPOSITION 2.2. Let p be a prime number and K/k be a ramified Galois
extension of number fields with degree p. Let k' be the Hilbert p-class field
of k. Suppose that the p-class group of k is cyclic and each ramified prime
in the extension Kk'/k' is inert in the extension k'/k. Then we have an
isomorphism induced by the norm map:

B(Kk'/k') — B(K/k)
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and we have
dy(B(Kk'/k')) = d,(B(K/k)).
In particular case, if p=2, then we have:
ro(Kk') =ram(K/k) — ds(B(K/k)) — 1.
Proof. Let the map induced by the norm in the extension k!/k:
¢: B(Kk'/k') — B(K/k).

Since, the p-class group of k is cyclic, then each unit of k£ is a norm of a unit
in k! (see [11]). Therefore the map ¢ is surjective, hence

(1) |B(KK"/E")| > |B(K/K)|.

Accordingly, the ambiguous class number formula for the p-class groups in
the extension K/k reads:

_ AW
pIB(K/k)|’

where s is the number of primes ramified in the extension K/k. Also, since

the p-class group of k is cyclic, then the p-class number of k! is trivial. Con-

sequently, the ambiguous class number formula for the p-class groups in the
extension Kk'/k! reads:

|A(K) S EIB)| = [G(K k) : K|

Gal(KE' /Y p*

On other hand, since Kk'/k is Abelian and Kk'/K is unramified, then the
genus field G(K/k) of K/k contains Kk!. Also, since G(K/k)/k' is Abelian
and G(K/k)/Kk' is unramified, then G(K/k) is contained in the genus field
G(Kk!'/k') of Kk!/k'. Hence, one readily verifies that:

[G(K/k) : K] = [Kk': K|[G(K/k) : Kk'] = |A(k)|[G(K/k): KE']
<|AK)|[G(KE'/E) : KE'.
So we obtain,
(2) |B(KE'/E")| < |B(K/E)|.
Consequently, from (1) and (2), we have
|B(KK'/E")| = |B(K/K)|,

then ¢ is an isomorphism. Since B(K/k) and B(Kk'/k') are elementary
p-groups, so

dy(B(KK"/k")) =d,(B(K/k)).
In the case where p =2, the class number of k! is odd and by the formula (x)
of Section 2, we obtain

ro(Kk') =ram(K/k) — d2(B(K/k)) — 1. O
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In the following, we will study some family of real quadratic number fields
in which the 2-class group is of rank equal to 3 and finite Hilbert 2-class field
tower.

Let p1,p2,ps and ¢ be distinct prime numbers and k = Q(,/gp1p2p3) be a
quadratic number field such that the following conditions are satisfied:

(1) pp=p2=p3=—q=1 (mod 4),
(2) (p%>=(%)=(§;—j)=(§—2)=(i)=—(,%>=—1,

(3) (p%) = (p—Q) and Nq(/pip2)/Q(Epips) = 1, Where €, p, is the fundamental

unit of Q(y/p1p2)-

It’s clear by genus theory that the rank of the 2-class group of & is equal to 3.

LEMMA 2.3. Let k be the real quadratic number field defined above verifying
the conditions (1), (2) and (5). Then the 2-class group of k is isomorphic to
Z)27 X L)27 X Z.]2"Zyn > 2.

Proof. By the hypotheses above, we find that:

(2)-(2)-()2)-(39)-(2)-

then one can verify that there is only one Cy-factorization of the discrim-
inant d = 4gp1p2ps of k into relatively prime discriminants dy = pype and
dy = 4qps : d = dy.d2. Then by Proposition 2.1, there exists only one cyclic
extension over k of degree 4 which is unramified at all finite and infinite
primes. Consequently, we obtain the result. O

LEMMA 2.4. Let q, p1 and ps be distinct prime numbers such that py =
p2=—¢=1 (mod 4) and (;L)=(;L) = —1. Then the 2-class group of the
biquadratic number field L = Q(\/q,/P1p2) is cyclic non-trivial.

Proof. By genus theory, the genus field of L is exactly the triquadratic
number field Q(,/q,/p1,+/P2), then the 2-class group of L is non-trivial. It
remains to prove that the 2-class group of L is cyclic. Also by genus the-
ory the 2-class group of Q(/g) is trivial. Moreover, since (;1) = (L) = -1,
then the number of ramified primes in the extension L/Q(,/q) is equal to 2:
ram(L/Q(,/q)) = 2. Consequently by the formula (x) and the fact that the
2-class group of L is non-trivial, we find:

ra(L) =ram(L/Q(v4)) — d2(B(L/Q(v1))) —1=1. U

LEMMA 2.5. Let q, p1, p2 and p3 be distinct prime numbers such that p; =
p2=p3=—q=1 (mod 4) and (;})=(;L) =—1. Denote by L' the Hilbert
2-class field of L = Q(./q,+/P1pz2), then the class number of Ll(\/p_g) is even.
Proof. By Lemma 2.4, the extension L!/L is an unramified cyclic exten-

sion, so the extension L*(y/p3)/L(,/p3) is also an unramified cyclic extension.
On other hand, by [12, Theorem 3.3], the 2-rank of the class group of the
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multiquadratic number field Q(,/q, /P1, /P2, /P3) is greater than or equal to

two. Hence, since Q(+/q,/P1,+/P2,/P3)/L(y/P3) is an unramified quadratic
extension, then the 2-rank of the class group of L(,/p3) is greater than or equal

to two. Consequently, the fact that the cyclic extension L'(,/p3)/L(/ps) is
unramified shows that the class number of L*(,/p3) is even. O

3. The tower of 2-Hilbert class field of £ is finite
of length at most three

In this section, we give an infinite family of real quadratic number fields
with 2-class group isomorphic with Z/2Z x Z/27Z x Z/2"Z,n > 2 and with
finite Hilbert 2-class field of length at most three. The objective is to prove
the following theorem:

THEOREM 3.1. Let p1,p2,p3 and q be distinct prime numbers such that
Pi=pa=ps=—q=1 (mod 4), (L) = (L) = ()= (2)=(2)=—(L) =
-1, (p%) = (p%) and NQ(/pip5)/Q(Epipo) = 1. Then the Hilbert 2-class field
tower of k = Q(\/qp1paps) is finite of length at most three.

Before proving our main theorem, we establish the following lemma on
units. We denote, for every integer m, &, the fundamental unit of Q(y/m).

LEMMA 3.2. Let q, p1 and ps be distinct prime numbers such that py =

p2=—q=1 (mod 4), (;})=(L)=-1 and No(/mps)/Q(Epip.) =1. Then
the biquadratic number field L = Q(\/q,/p1p2) contains one of the following

UNits \/€q€qpipayr /Ep1p2€apips O \/€q€pipsEapips-

Proof. For every positive integer m such that Nq(, m) /Q(am) =1, we have
by Hilbert’s theorem 90, €, = == where o is the non-trivial automorphism
of Q(yv/m) and « is an element of Q(y/m). Moreover, since o acts trivially
on Q, then we can choose a such that it becomes an integer in Q(y/m) not
divisible by any rational integer. Let P be a prime ideal of Q(y/m) dividing
the ideal (a) generated by a. It is clear that P? divides («), so under the
hypothesis « is not divisible by any rational number, the prime ideal P must
lies above than a prime number / ramified in Q(y/m). Then, aa” = Ng,q(a)
divides the discriminant of Q(y/m) and since €,,aa® = o2, then there exists
an integer m’ := o't dividing the discriminant of Q(y/m) such that m/ is a
norm in the extension Q(yv/m)/Q and m’e,, is a square in Q(y/m).

On other hand, the discriminant of Q(,/p1pz) is equal to pips, then there
exists an integer m’|pip2 such that \/m/e, ,, € Q(\/P1p2). Since €., is the
fundamental unit of Q(/p1p2), then m’ must be contained in {p1,p2}. Either
way, we can conclude that:

(3) VP1Epip, € Q(v/P1D2)-
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The discriminant of Q(,/q) is equal to 4¢, then there exists an integer m'|2q
such that \/m’e, € Q(,/q). Since g is the fundamental unit of Q(,/g), then
m’ must be contained in {2,2¢}. Either way, we can conclude that:

(4) V22, € Q(VA)

Also, since the discriminant of Q(\/gpip2) is equal to 4gpips, then there

exists an integer m’|2gpip2 such that /m/egp,,, € Q(\/gp1p2) and m’ is a
norm in the extension Q(,/gp1pz)/Q. Since e4p,p, is the fundamental unit

of Q(\/qp1pz2), then m’ ¢ {1,gp1p2}. On other hand, since (pil) = (p%) =1,

then ¢ is not a norm in the extension Q(,/qp1p2)/Q, so m’' & {q,p1p2} and
we have:

) VM €qpip, € Q(v/qP1p2) such that m'|2gp1pe and m' ¢ {1,q,p1p2, qp1p2}.

Consequently, using (3), (4) and (5), we obtain that one of the units \/Z,€qp;pa »
VEpip2Capipa OF \/EqEpipaEapips 15 contained in L. O

Proof of Theorem 3.1. By Lemma 2.4, the 2-class group of the biquadratic
field L = Q(,/q, v/P1p2) is cyclic non-trivial. Denote by L' the Hilbert 2-class
field of L, then the class number of L! is odd. By formula (x) of Section 2,
we have

ra (L' (v/p3)) = ram (L (v/p3) /L") = da (B (L (v/p) /L)) -

It is clear that the ps-adic places of L' are the unique ramified places in
L*(\/p3)/L*. Since (;5)=—(2)=—(2) =1, then ps is totally decomposed
in L and the ps-adic places of L are inert in the triquadratic extension L(,/p1).
Moreover, the cyclicity of the 2-class group of L implies that the ps-adic
places of L are inert in L'. Since ram(L(,/ps)/L) =4, then by Proposi-
tion 2.2, we conclude rg(Ll(\/_)) =3 — d2(B(L(y/p3)/L)). Next, we prove
that da(B(L(y/p3)/L)) =

We have ¢, and &,,,, are units of L. Since ,/pig,,p, € Q(/P1p2) (see
(3) in the proof of Lemma 3.2) and /2¢, € Q(\/q) (see (4) in the proof of

Lemma 3.2), we have for each ps-adic place P of L:

o))
0 ()()- ()

Then ¢, and €,,,,, are not norms in the extension L(,/p3)/L, but the product
€¢Epip, 15 @ morm in L(y/p3)/L. Therefore, d2(B(L(\/p3)/L)) > 1. We are
going in the next to determine a new unit v in L such that u and ue;, [ €
{g,p1p2} are not norms in the extension L(,/p3)/L.
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From Lemma 3.2, one of the units | /4€p, pys /Ep1p2Eapips OF \/Eq€p1paEapipe
is contained in L.
In the case where w is a unit of L such that u is one of the units /E,€4p,ps

O \/E¢€p1paapripss let 0 be the non-trivial Q(,/q)-isomorphism of L. Then
for each ps-adic place P of L, we have:

(u,p3> <u7p3> _ (NL/Q(\/E)(U)»]%) _ ( +eq,03 )
P J\o(P) Nrjawm(P) Niraya(P)
Using equality (6), we obtain:

o () ()

P a(P) p3
and
9) <\/5q5p1p25qp1pgap3> (\/5q5p1p25qp1p2»103> _ (3) _ 4
P a(P) p3 '

In the case where u = /€, p2€qppas let T be the non-trivial Q(\/p1p2)-
isomorphism of L. Then for each pz-adic place P of L, we have:

(\/5p1p25qp1p27p3> (\/5p1p25qp1p27p3) _ (NL/Q(\/Zsz)(\/5p1p25qp1pz)ap3)
P 7(P) Nijq(ymmm) (P)

— ( :tgplpzapii >
Nr/a(ypim) (P)
Using equality (7), we obtain:
(10) (\/ Ep1p2€qpips 7p3> (\/ Ep1p2&apip2s P3 > _ <Z£> -1
P 7(P) D3

Consequently, for u € {\/€¢€qp1ps»\/Epip2Capipzs /Eaempabapipa ) and 1 € {g,
p1p2}, u and ue; are not norms in the extension L(,/p3)/L. Then, we have

(BT 22
By Lemma 2.5, the class number of L'(,/p3) is even, then
ro(L'(v/p3)) =3 — da(B(L(y/p3)/L)) = 1.

Hence the Hilbert 2-class field tower of Ll(\/p_g ) is of length 1. Consequently,
the Hilbert 2-class field tower of k is finite. O

Next, we give the length of the Hilbert 2-class field tower of k. Denote by
L(k) the maximal unramified 2-extension of k. We need the following lemma.

LEMMA 3.3. Let p1, ps and q be distinct prime numbers such that p1 =
ps=—q=1 (mod 4) and (;L)=—(E)=—-(L)= —(2)=1. Then the class

p_l p3

number of the triquadratic number field Q(\/q,/P1,/P3) is odd.
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Proof. Since (;L)=—(B) =—(.L) = —(p%) =1, then one can verify that
there is no Cy-factorization of the discriminant of the quadratic number field
Q(y/qp1ps) into relatively prime discriminants, so by Proposition 2.1, the
2-class group of Q(,/gp1ps) is isomorphic to Z/27Z x Z./27Z (see also [3]). Con-
sequently, since Q(/q,/P1,+/P3)/Q(y/qp1p3) is an unramified Abelian exten-
sion, then Q(./q,+/P1,+/P3) is the Hilbert 2-class field of Q(,/gp1p3). Hence,
by [2], Q(\/q,+/P1,/P3) is exactly the maximal unramified 2-extension of

Q(y/qp1ps), finally the class number of Q(,/q,/p1,/P3) is odd. O

We have the following theorem.

THEOREM 3.4. We keep the hypotheses of Theorem 3.1, then the Hilbert
2-class field tower of k is of length two.

Proof. Note that since the 2-class group of k is of rank 3, then L(k)/k
can never be Abelian (see [2, Corollary 2]). Denote F' = Q(\/q,/P3),
= Q(\/(_]’ \/p_lv \/p_S)v = Q(\/@ \/]9_27 \/p_3)7 F3 = Q(\/@ \/P1P2a\/P_3) and
let k* = Q(\/q,/P1,+/P2,+/P3) the genus field of k. It is clear that Fy, F»
and F3 are the sub-extensions of the biquadratic extension k*/F. Let o and

T respectively the generator of the Galois group Gal(k*/F}) and Gal(k*/Fy),
so Gal(k*/Fs) is generated by or. By Lemma 3.3, F; and Fy have odd class
number, so ¢ and 7 act on each class C of the 2-class group of k* as C~1,
therefore o7 acts trivially on the 2-class group of k*. Hence, since k*/Fj5 is
an unramified quadratic extension, then the fields F3 and k* have the some
Hilbert 2-class field. On other hand, from the proof of Theorem 3.1, the 2-
class groups of L = Q(,/q,/p1pz) and L*(,/p3) are cyclic. This yields, that
Gal(L(k)/F3) is metacyclic, so by Burnside’s basic theorem, the 2-class group
of F3 is of rank 2. Consequently, by [2, Proposition 7], £(k) is exactly the
Hilbert 2-class field of F3 and k*. O

REMARK 3.5. For each number field M, let h(M) (resp. Ejs) denote the
2-part of the class number of M (resp. the unit group of M).

We keep the notations and hypotheses of Theorem 3.1. We have
| Gal(L(k)/k)| = 22h(F3), where h(F3) is the 2-part of the class number

of F3 = Q(\/q,/P1P2,+/P3). By Kuroda’s class number formula of a muti-
quadratic number field [8], we have:

Qr [Tizt h(ks)
h(F?)) = . 291 ’
where Qp, is the unit index: Qp, = [ER, HZIE;%] and k;,i € {1,2,...,7}
are the distinct quadratic number fields contained in Fj.

By genus theory, we have h(Q(/p3)) = h(Q(\/q)) =1 and h(Q(/p1p2)) is
even. From Lemma 2.3, we have h(Q(\/qp1pzp3)) = 2" 2, where n > 2. Also,
by genus theory and Proposition 2.1, one can verify that:

h(Q(\/@)) =2, h(Q(\/plp2p3)) =4 and h(Q(\/PH?QQ)) =4.



CLASS FIELD TOWER 1017

This yields that
(11) |Gal(L(k)/k)| = 2°h(Fs) =2"Qr,h(p1p2).

The computation of the unit index Qp, is not easy. In the following, we
give a refined lower bound of Qp,. By Lemma 3.2, there exist a unit u €
Q(y/q,/P1P2), such that u is one of the following units:

(12) U € {\/24€qp1p2» VEp1p2Eap1p2> V/EaEp1p2Capipa }-

Also, from the proof of Lemma 3.2, if NQ(m)/Q(am) =1, then there exist
a positive integer m’ dividing the discriminant of Q(y/m) such that m’ is a
norm in the extension Q(v/m)/Q and m’e,, is a square in Q(y/m). Then
using the some thechniques in the proof of Lemma 3.2, we prove that there
exist a unit v = /Z4p, such that:

(13) Vv € Q(Vaps),

and using (3) and (4) in the proof of Lemma 3.2, we find a unit w € F3 such
that w is one of the following units:

(14)  w € {VEupipaps> VEaCap1paps» VEP1P2Eap1papss V/EaEp1p2Capipaps ) -

Hence, by (12), (13) and (14), we have three independent units w,v,w of Fj
such that for g, jo, ko € {0,1}:

=7
w0 pIo ko ¢ H Ey,.
i=1

Then, we have 22 divides Qp, and from (11), we conclude 2" 3h(p;ps) divides
| Gal(L£(k)/k)|. The order of the group | Gal(L(k)/k)| increases, whenever the
2-part of the class number of Q(,/p1p2) increases.

EXAMPLE. Let p1 = 13, p2 = 29 and p3 = 37. We have Nq(,/5152)/Q (Epip) =
1 and

()= G = Go)= ()= ()=

It remains to determine an infinite family of prime numbers ¢ such that ¢ =

~1 (mod 4) and (2%):(]%):_(1%):_1.
()-()--)--

We know that there are infinitely many prime numbers in an arithmetic pro-
gession:

We have

g=11 (mod 4-13-29-37).
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Consequently, we construct an infinite family of real quadratic number fields
k verifying the conditions of Theorem 3.1 with 2-class group isomorphic with
Z]2Z X LJ2Z x Z/2"Z (n > 2) and finite Hilbert 2-class field tower.

We remark that the value of the integer n may increase:

For ¢ = 11, the 2-class group of k is isomorphic with Z /27 x Z/27Z x 7./ 2°7Z.

For ¢q =47, one can verify that ({5) = (55) = —(35) = —1 and the 2-class
group of k is isomorphic with Z/27 x Z/27 x 7./]2*7.
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