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ON 2-CLASS FIELD TOWERS OF SOME REAL QUADRATIC
NUMBER FIELDS WITH 2-CLASS GROUPS OF RANK 3

A. MOUHIB

Abstract. We construct an infinite family of real quadratic num-
ber fields with class group of 2-rank = 3, 4-rank = 1 and finite
Hilbert 2-class field tower.

1. Introduction

Let k be a number field, and let Ck be the class group of k. Let k1 be
the Hilbert 2-class field of k, that is, the maximal unramified (including the
infinite primes) abelian field extension of k whose degree over k is a power
of 2. Let kn for n a non-negative integer, be defined inductively as k0 = k
and kn+1 = (kn)1; then

k ⊂ k1 ⊂ k2 ⊂ · · · ⊂ kn ⊂ · · ·
is called the Hilbert 2-class field tower of k. If n is the minimal integer such
that kn = kn+1, then n is called the length of the tower. If no such n exists,
then the tower is said to be of infinite length.

We define the 2-rank of Ck, denoted r2(k) as the dimension of the elemen-
tary Abelian 2-group Ck/C

2
k viewed as a vector space over F2:

r2(k) = dimF2

(
Ck/C

2
k

)
,

where F2 is the finite field with two elements. We define the 4-rank of Ck,
denoted r4(k) by:

r4(k) = dimF2

(
C2

k/C
4
k

)
.

Assume k is a real quadratic number field. It is well known that if r2(k)≥ 6,
then the Hilbert 2-class field tower of k is infinite [5], but it is not known how
far from best possible this bound is. In the case where r2(k) = 2 or 3, there
are examples of fields k with finite Hilbert 2-class field tower. We mention
that in the case where Ck contains a subgroup isomorphic to Z/4Z×Z/4Z×
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Z/4Z× Z/4Z, then k has infinite Hilbert 2-class field tower ([6], [7]). Also a
positive proportion of the fields k with r2(k) = 5 and r4(k) = i (with i= 0,1,2,
or 3) have infinite Hilbert 2-class field towers, and a positive proportion of
the fields k with r2(k) = 4 and r4(k) = i (with i = 0,1,2, or 3) have infinite
Hilbert 2-class field towers [4].

The aim of this article is to construct an infinite family of real quadratic
number fields k such that r2(k) = 3, r4(k) = 1 and finite Hilbert 2-class field
tower. We mention that there are infinitely many imaginary quadratic number
fields k such that r2(k) = 3, r4(k) = 0 and finite Hilbert 2-class field tower [9].

2. Preliminary results

Let p be a prime number and K/k be a Galois extension of number fields
with degree p. We define the genus field of the extension K/k denoted G(K/k)
as the maximal Abelian p-extension of k, which is unramified over K at all
finite and infinite primes. Denote by Ek the unit group of k and ram(K/k)
the number of primes ramified in K/k. Denote by B(K/k) the elementary
Abelian p-group Ek/Ek ∩NK/k(K

∗). We note that B(K/k) is a vector space
over Fp, let dp(B(K/k)) be its dimension.

In the case where p = 2 and the class number of k is odd, then by the
ambiguous class number formula we have (see, e.g., [1]):

(∗) r2(K) = ram(K/k)− d2
(
B(K/k)

)
− 1.

The value of r2(K) is related to determining whenever the units of k are
norms or not in K.

Now, let k be a quadratic number field of discriminant d. A factorization
of the discriminant d into relatively prime discriminants d1 and d2 : d= d1d2
is called a C4-factorization if (d1

p2
) = (d2

p1
) = 1 for all primes pi|di. We shall

need the following result of Rédei and Reichardt on the 2-class group of real
quadratic number fields (see [13], [14] and for more information and results
see [10]).

Proposition 2.1. Let k be a quadratic number field with discriminant d.
The 4-rank r4(k) of k equals the number of independent C4-factorizations
of d.

In the following proposition, we give the rank of the class group of some
number fields.

Proposition 2.2. Let p be a prime number and K/k be a ramified Galois
extension of number fields with degree p. Let k1 be the Hilbert p-class field
of k. Suppose that the p-class group of k is cyclic and each ramified prime
in the extension Kk1/k1 is inert in the extension k1/k. Then we have an
isomorphism induced by the norm map:

B
(
Kk1/k1

)
−→B(K/k)
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and we have

dp
(
B

(
Kk1/k1

))
= dp

(
B(K/k)

)
.

In particular case, if p= 2, then we have:

r2
(
Kk1

)
= ram(K/k)− d2

(
B(K/k)

)
− 1.

Proof. Let the map induced by the norm in the extension k1/k:

φ : B
(
Kk1/k1

)
−→B(K/k).

Since, the p-class group of k is cyclic, then each unit of k is a norm of a unit
in k1 (see [11]). Therefore the map φ is surjective, hence∣∣B(

Kk1/k1
)∣∣ ≥ ∣∣B(K/k)

∣∣.(1)

Accordingly, the ambiguous class number formula for the p-class groups in
the extension K/k reads:

∣∣A(K)Gal(K/k)
∣∣ = [

G(K/k) : K
]
=

|A(k)|ps
p|B(K/k)| ,

where s is the number of primes ramified in the extension K/k. Also, since
the p-class group of k is cyclic, then the p-class number of k1 is trivial. Con-
sequently, the ambiguous class number formula for the p-class groups in the
extension Kk1/k1 reads:

∣∣A(
Kk1

)Gal(Kk1/k1)∣∣ = [
G

(
Kk1/k1

)
: Kk1

]
=

ps

p|B(Kk1/k1)| .

On other hand, since Kk1/k is Abelian and Kk1/K is unramified, then the
genus field G(K/k) of K/k contains Kk1. Also, since G(K/k)/k1 is Abelian
and G(K/k)/Kk1 is unramified, then G(K/k) is contained in the genus field
G(Kk1/k1) of Kk1/k1. Hence, one readily verifies that:[

G(K/k) : K
]
=

[
Kk1 : K

][
G(K/k) : Kk1

]
=

∣∣A(k)
∣∣[G(K/k) : Kk1

]
≤

∣∣A(k)
∣∣[G(

Kk1/k1
)
: Kk1

]
.

So we obtain, ∣∣B(
Kk1/k1

)∣∣ ≤ ∣∣B(K/k)
∣∣.(2)

Consequently, from (1) and (2), we have∣∣B(
Kk1/k1

)∣∣ = ∣∣B(K/k)
∣∣,

then φ is an isomorphism. Since B(K/k) and B(Kk1/k1) are elementary
p-groups, so

dp
(
B

(
Kk1/k1

))
= dp

(
B(K/k)

)
.

In the case where p= 2, the class number of k1 is odd and by the formula (∗)
of Section 2, we obtain

r2
(
Kk1

)
= ram(K/k)− d2

(
B(K/k)

)
− 1. �
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In the following, we will study some family of real quadratic number fields
in which the 2-class group is of rank equal to 3 and finite Hilbert 2-class field
tower.

Let p1, p2, p3 and q be distinct prime numbers and k =Q(
√
qp1p2p3) be a

quadratic number field such that the following conditions are satisfied:

(1) p1 ≡ p2 ≡ p3 ≡−q ≡ 1 (mod 4),
(2) ( q

p1
) = ( q

p2
) = (p3

p1
) = (p3

p2
) = ( 2

p3
) =−( q

p3
) =−1,

(3) ( 2
p1
) = ( 2

p2
) and NQ(

√
p1p2)/Q(εp1p2) = 1, where εp1p2 is the fundamental

unit of Q(
√
p1p2).

It’s clear by genus theory that the rank of the 2-class group of k is equal to 3.

Lemma 2.3. Let k be the real quadratic number field defined above verifying
the conditions (1), (2) and (5). Then the 2-class group of k is isomorphic to
Z/2Z×Z/2Z×Z/2nZ, n≥ 2.

Proof. By the hypotheses above, we find that:(
p1p2
p3

)
=

(
p1p2
q

)
=

(
2

p1

)(
2

p2

)
=

(
p3q

p1

)
=

(
p3q

p2

)
= 1,

then one can verify that there is only one C4-factorization of the discrim-
inant d = 4qp1p2p3 of k into relatively prime discriminants d1 = p1p2 and
d2 = 4qp3 : d = d1.d2. Then by Proposition 2.1, there exists only one cyclic
extension over k of degree 4 which is unramified at all finite and infinite
primes. Consequently, we obtain the result. �

Lemma 2.4. Let q, p1 and p2 be distinct prime numbers such that p1 ≡
p2 ≡ −q ≡ 1 (mod 4) and ( q

p1
) = ( q

p2
) = −1. Then the 2-class group of the

biquadratic number field L=Q(
√
q,
√
p1p2) is cyclic non-trivial.

Proof. By genus theory, the genus field of L is exactly the triquadratic
number field Q(

√
q,
√
p1,

√
p2), then the 2-class group of L is non-trivial. It

remains to prove that the 2-class group of L is cyclic. Also by genus the-
ory the 2-class group of Q(

√
q) is trivial. Moreover, since ( q

p1
) = ( q

p2
) =−1,

then the number of ramified primes in the extension L/Q(
√
q) is equal to 2:

ram(L/Q(
√
q)) = 2. Consequently by the formula (∗) and the fact that the

2-class group of L is non-trivial, we find:

r2(L) = ram
(
L/Q(

√
q)

)
− d2

(
B

(
L/Q(

√
q)

))
− 1 = 1. �

Lemma 2.5. Let q, p1, p2 and p3 be distinct prime numbers such that p1 ≡
p2 ≡ p3 ≡ −q ≡ 1 (mod 4) and ( q

p1
) = ( q

p2
) = −1. Denote by L1 the Hilbert

2-class field of L=Q(
√
q,
√
p1p2), then the class number of L1(

√
p3) is even.

Proof. By Lemma 2.4, the extension L1/L is an unramified cyclic exten-
sion, so the extension L1(

√
p3)/L(

√
p3) is also an unramified cyclic extension.

On other hand, by [12, Theorem 3.3], the 2-rank of the class group of the
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multiquadratic number field Q(
√
q,
√
p1,

√
p2,

√
p3) is greater than or equal to

two. Hence, since Q(
√
q,
√
p1,

√
p2,

√
p3)/L(

√
p3) is an unramified quadratic

extension, then the 2-rank of the class group of L(
√
p3) is greater than or equal

to two. Consequently, the fact that the cyclic extension L1(
√
p3)/L(

√
p3) is

unramified shows that the class number of L1(
√
p3) is even. �

3. The tower of 2-Hilbert class field of k is finite
of length at most three

In this section, we give an infinite family of real quadratic number fields
with 2-class group isomorphic with Z/2Z × Z/2Z × Z/2nZ, n ≥ 2 and with
finite Hilbert 2-class field of length at most three. The objective is to prove
the following theorem:

Theorem 3.1. Let p1, p2, p3 and q be distinct prime numbers such that
p1 ≡ p2 ≡ p3 ≡ −q ≡ 1 (mod 4), ( q

p1
) = ( q

p2
) = (p3

p1
) = (p3

p2
) = ( 2

p3
) = −( q

p3
) =

−1, ( 2
p1
) = ( 2

p2
) and NQ(

√
p1p2)/Q(εp1p2) = 1. Then the Hilbert 2-class field

tower of k =Q(
√
qp1p2p3) is finite of length at most three.

Before proving our main theorem, we establish the following lemma on
units. We denote, for every integer m, εm the fundamental unit of Q(

√
m).

Lemma 3.2. Let q, p1 and p2 be distinct prime numbers such that p1 ≡
p2 ≡ −q ≡ 1 (mod 4), ( q

p1
) = ( q

p2
) = −1 and NQ(

√
p1p2)/Q(εp1p2) = 1. Then

the biquadratic number field L=Q(
√
q,
√
p1p2) contains one of the following

units
√
εqεqp1p2 ,

√
εp1p2εqp1p2 or

√
εqεp1p2εqp1p2 .

Proof. For every positive integer m such that NQ(
√
m)/Q(εm) = 1, we have

by Hilbert’s theorem 90, εm = α
ασ where σ is the non-trivial automorphism

of Q(
√
m) and α is an element of Q(

√
m). Moreover, since σ acts trivially

on Q, then we can choose α such that it becomes an integer in Q(
√
m) not

divisible by any rational integer. Let P be a prime ideal of Q(
√
m) dividing

the ideal (α) generated by α. It is clear that Pσ divides (α), so under the
hypothesis α is not divisible by any rational number, the prime ideal P must
lies above than a prime number l ramified in Q(

√
m). Then, αασ =NK/Q(α)

divides the discriminant of Q(
√
m) and since εmαασ = α2, then there exists

an integer m′ := α1+σ dividing the discriminant of Q(
√
m) such that m′ is a

norm in the extension Q(
√
m)/Q and m′εm is a square in Q(

√
m).

On other hand, the discriminant of Q(
√
p1p2) is equal to p1p2, then there

exists an integer m′|p1p2 such that
√
m′εp1p2 ∈Q(

√
p1p2). Since εp1p2 is the

fundamental unit of Q(
√
p1p2), then m′ must be contained in {p1, p2}. Either

way, we can conclude that:

√
p1εp1p2 ∈Q(

√
p1p2).(3)



1014 A. MOUHIB

The discriminant of Q(
√
q) is equal to 4q, then there exists an integer m′|2q

such that
√

m′εq ∈Q(
√
q). Since εq is the fundamental unit of Q(

√
q), then

m′ must be contained in {2,2q}. Either way, we can conclude that:√
2εq ∈Q(

√
q).(4)

Also, since the discriminant of Q(
√
qp1p2) is equal to 4qp1p2, then there

exists an integer m′|2qp1p2 such that
√
m′εqp1p2 ∈ Q(

√
qp1p2) and m′ is a

norm in the extension Q(
√
qp1p2)/Q. Since εqp1p2 is the fundamental unit

of Q(
√
qp1p2), then m′ /∈ {1, qp1p2}. On other hand, since ( q

p1
) = ( q

p2
) =−1,

then q is not a norm in the extension Q(
√
qp1p2)/Q, so m′ /∈ {q, p1p2} and

we have:√
m′εqp1p2 ∈Q(

√
qp1p2) such that m′|2qp1p2 and m′ /∈ {1, q, p1p2, qp1p2}.(5)

Consequently, using (3), (4) and (5), we obtain that one of the units
√
εqεqp1p2 ,√

εp1p2εqp1p2 or
√
εqεp1p2εqp1p2 is contained in L. �

Proof of Theorem 3.1. By Lemma 2.4, the 2-class group of the biquadratic
field L=Q(

√
q,
√
p1p2) is cyclic non-trivial. Denote by L1 the Hilbert 2-class

field of L, then the class number of L1 is odd. By formula (∗) of Section 2,
we have

r2
(
L1(

√
p3)

)
= ram

(
L1(

√
p3)/L

1
)
− d2

(
B

(
L1(

√
p3)/L

1
))

− 1.

It is clear that the p3-adic places of L1 are the unique ramified places in
L1(

√
p3)/L

1. Since ( q
p3
) =−(p1

p3
) =−(p2

p3
) = 1, then p3 is totally decomposed

in L and the p3-adic places of L are inert in the triquadratic extension L(
√
p1).

Moreover, the cyclicity of the 2-class group of L implies that the p3-adic
places of L are inert in L1. Since ram(L(

√
p3)/L) = 4, then by Proposi-

tion 2.2, we conclude r2(L
1(
√
p3)) = 3− d2(B(L(

√
p3)/L)). Next, we prove

that d2(B(L(
√
p3)/L)) = 2.

We have εq and εp1p2 are units of L. Since
√
p1εp1p2 ∈ Q(

√
p1p2) (see

(3) in the proof of Lemma 3.2) and
√

2εq ∈Q(
√
q) (see (4) in the proof of

Lemma 3.2), we have for each p3-adic place P of L:(
εq, p3
P

)
=

(
2, p3
P

)
=

(
2

p3

)
=−1(6)

and (
εp1p2 , p3

P

)
=

(
p1, p3
P

)
=

(
p1
p3

)
=−1.(7)

Then εq and εp1p2 are not norms in the extension L(
√
p3)/L, but the product

εqεp1p2 is a norm in L(
√
p3)/L. Therefore, d2(B(L(

√
p3)/L)) ≥ 1. We are

going in the next to determine a new unit u in L such that u and uεl, l ∈
{q, p1p2} are not norms in the extension L(

√
p3)/L.
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From Lemma 3.2, one of the units
√
εqεqp1p2 ,

√
εp1p2εqp1p2 or

√
εqεp1p2εqp1p2

is contained in L.
In the case where u is a unit of L such that u is one of the units

√
εqεqp1p2

or
√
εqεp1p2εqp1p2 , let σ be the non-trivial Q(

√
q)-isomorphism of L. Then

for each p3-adic place P of L, we have:(
u, p3
P

)(
u, p3
σ(P)

)
=

(
NL/Q(

√
q)(u), p3

NL/Q(
√
q)(P)

)
=

(
±εq, p3

NL/Q(
√
q)(P)

)
.

Using equality (6), we obtain:(√
εqεqp1p2 , p3

P

)(√
εqεqp1p2 , p3

σ(P)

)
=

(
2

p3

)
=−1(8)

and (√
εqεp1p2εqp1p2 , p3

P

)(√
εqεp1p2εqp1p2 , p3

σ(P)

)
=

(
2

p3

)
=−1.(9)

In the case where u =
√
εp1p2εqp1p2 , let τ be the non-trivial Q(

√
p1p2)-

isomorphism of L. Then for each p3-adic place P of L, we have:(√
εp1p2εqp1p2 , p3

P

)(√
εp1p2εqp1p2 , p3

τ(P)

)
=

(
NL/Q(

√
p1p2)(

√
εp1p2εqp1p2), p3

NL/Q(
√
p1p2)(P)

)

=

(
±εp1p2 , p3

NL/Q(
√
p1p2)(P)

)
.

Using equality (7), we obtain:(√
εp1p2εqp1p2 , p3

P

)(√
εp1p2εqp1p2 , p3

τ(P)

)
=

(
p1
p3

)
=−1.(10)

Consequently, for u ∈ {√εqεqp1p2 ,
√
εp1p2εqp1p2 ,

√
εqεp1p2εqp1p2} and l ∈ {q,

p1p2}, u and uεl are not norms in the extension L(
√
p3)/L. Then, we have

d2
(
B

(
L(

√
p3)/L

))
≥ 2.

By Lemma 2.5, the class number of L1(
√
p3) is even, then

r2
(
L1(

√
p3)

)
= 3− d2

(
B

(
L(

√
p3)/L

))
= 1.

Hence the Hilbert 2-class field tower of L1(
√
p3) is of length 1. Consequently,

the Hilbert 2-class field tower of k is finite. �

Next, we give the length of the Hilbert 2-class field tower of k. Denote by
L(k) the maximal unramified 2-extension of k. We need the following lemma.

Lemma 3.3. Let p1, p3 and q be distinct prime numbers such that p1 ≡
p3 ≡−q ≡ 1 (mod 4) and ( q

p3
) =−(p1

p3
) =−( q

p1
) =−( 2

p3
) = 1. Then the class

number of the triquadratic number field Q(
√
q,
√
p1,

√
p3) is odd.
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Proof. Since ( q
p3
) = −(p1

p3
) = −( q

p1
) = −( 2

p3
) = 1, then one can verify that

there is no C4-factorization of the discriminant of the quadratic number field
Q(

√
qp1p3) into relatively prime discriminants, so by Proposition 2.1, the

2-class group of Q(
√
qp1p3) is isomorphic to Z/2Z×Z/2Z (see also [3]). Con-

sequently, since Q(
√
q,
√
p1,

√
p3)/Q(

√
qp1p3) is an unramified Abelian exten-

sion, then Q(
√
q,
√
p1,

√
p3) is the Hilbert 2-class field of Q(

√
qp1p3). Hence,

by [2], Q(
√
q,
√
p1,

√
p3) is exactly the maximal unramified 2-extension of

Q(
√
qp1p3), finally the class number of Q(

√
q,
√
p1,

√
p3) is odd. �

We have the following theorem.

Theorem 3.4. We keep the hypotheses of Theorem 3.1, then the Hilbert
2-class field tower of k is of length two.

Proof. Note that since the 2-class group of k is of rank 3, then L(k)/k
can never be Abelian (see [2, Corollary 2]). Denote F = Q(

√
q,
√
p3),

F1 =Q(
√
q,
√
p1,

√
p3), F2 =Q(

√
q,
√
p2,

√
p3), F3 =Q(

√
q,
√
p1p2,

√
p3) and

let k∗ = Q(
√
q,
√
p1,

√
p2,

√
p3) the genus field of k. It is clear that F1, F2

and F3 are the sub-extensions of the biquadratic extension k∗/F . Let σ and
τ respectively the generator of the Galois group Gal(k∗/F1) and Gal(k∗/F2),
so Gal(k∗/F3) is generated by στ . By Lemma 3.3, F1 and F2 have odd class
number, so σ and τ act on each class C of the 2-class group of k∗ as C−1,
therefore στ acts trivially on the 2-class group of k∗. Hence, since k∗/F3 is
an unramified quadratic extension, then the fields F3 and k∗ have the some
Hilbert 2-class field. On other hand, from the proof of Theorem 3.1, the 2-
class groups of L=Q(

√
q,
√
p1p2) and L1(

√
p3) are cyclic. This yields, that

Gal(L(k)/F3) is metacyclic, so by Burnside’s basic theorem, the 2-class group
of F3 is of rank 2. Consequently, by [2, Proposition 7], L(k) is exactly the
Hilbert 2-class field of F3 and k∗. �

Remark 3.5. For each number field M , let h(M) (resp. EM ) denote the
2-part of the class number of M (resp. the unit group of M ).

We keep the notations and hypotheses of Theorem 3.1. We have
|Gal(L(k)/k)| = 22h(F3), where h(F3) is the 2-part of the class number
of F3 = Q(

√
q,
√
p1p2,

√
p3). By Kuroda’s class number formula of a muti-

quadratic number field [8], we have:

h(F3) =
QF3

∏i=7
i=1 h(ki)

29
,

where QF3 is the unit index: QF3 = [EF3 :
∏i=7

i=1Eki ] and ki, i ∈ {1,2, . . . ,7}
are the distinct quadratic number fields contained in F3.

By genus theory, we have h(Q(
√
p3)) = h(Q(

√
q)) = 1 and h(Q(

√
p1p2)) is

even. From Lemma 2.3, we have h(Q(
√
qp1p2p3)) = 2n+2, where n≥ 2. Also,

by genus theory and Proposition 2.1, one can verify that:

h
(
Q(

√
qp3)

)
= 2, h

(
Q(

√
p1p2p3)

)
= 4 and h

(
Q(

√
p1p2q)

)
= 4.
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This yields that ∣∣Gal
(
L(k)/k

)∣∣= 22h(F3) = 2nQF3h(p1p2).(11)

The computation of the unit index QF3 is not easy. In the following, we
give a refined lower bound of QF3 . By Lemma 3.2, there exist a unit u ∈
Q(

√
q,
√
p1p2), such that u is one of the following units:

u ∈ {√εqεqp1p2 ,
√
εp1p2εqp1p2 ,

√
εqεp1p2εqp1p2}.(12)

Also, from the proof of Lemma 3.2, if NQ(
√
m)/Q(εm) = 1, then there exist

a positive integer m′ dividing the discriminant of Q(
√
m) such that m′ is a

norm in the extension Q(
√
m)/Q and m′εm is a square in Q(

√
m). Then

using the some thechniques in the proof of Lemma 3.2, we prove that there
exist a unit v =

√
εqp3 such that:

√
qv ∈Q(

√
qp3),(13)

and using (3) and (4) in the proof of Lemma 3.2, we find a unit w ∈ F3 such
that w is one of the following units:

u ∈ {√εqp1p2p3 ,
√
εqεqp1p2p3 ,

√
εp1p2εqp1p2p3 ,

√
εqεp1p2εqp1p2p3}.(14)

Hence, by (12), (13) and (14), we have three independent units u, v,w of F3

such that for i0, j0, k0 ∈ {0,1}:

ui0vj0wk0 /∈
i=7∏
i=1

Eki .

Then, we have 23 divides QF3 and from (11), we conclude 2n+3h(p1p2) divides
|Gal(L(k)/k)|. The order of the group |Gal(L(k)/k)| increases, whenever the
2-part of the class number of Q(

√
p1p2) increases.

Example. Let p1 = 13, p2 = 29 and p3 = 37.We haveNQ(
√
p1p2)/Q(εp1p2) =

1 and (
2

p1

)
=

(
2

p2

)
=

(
2

p3

)
=

(
p3
p1

)
=

(
p3
p2

)
=−1.

It remains to determine an infinite family of prime numbers q such that q ≡
−1 (mod 4) and (

q

p1

)
=

(
q

p2

)
=−

(
q

p3

)
=−1.

We have (
11

p1

)
=

(
11

p2

)
=−

(
11

p3

)
=−1.

We know that there are infinitely many prime numbers in an arithmetic pro-
gession:

q ≡ 11 (mod 4 · 13 · 29 · 37).
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Consequently, we construct an infinite family of real quadratic number fields
k verifying the conditions of Theorem 3.1 with 2-class group isomorphic with
Z/2Z×Z/2Z×Z/2nZ (n≥ 2) and finite Hilbert 2-class field tower.

We remark that the value of the integer n may increase:
For q = 11, the 2-class group of k is isomorphic with Z/2Z×Z/2Z×Z/22Z.
For q = 47, one can verify that ( q

13 ) = ( q
29 ) = −( q

37 ) = −1 and the 2-class

group of k is isomorphic with Z/2Z×Z/2Z×Z/24Z.
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[13] L. Rédei, Die Anzahl der durch 4 teilbaren Invarienten der Klassengruppe eines be-
liebigen quadratischen Zahlkörpers, Math. Naturwiss. Anz. Ungar. Akad. d. Wiss. 49

(1932), 338–363.
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