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NEWTONIAN LORENTZ METRIC SPACES

SERBAN COSTEA AND MICHELE MIRANDA JR.

ABSTRACT. This paper studies Newtonian Sobolev—Lorentz
spaces. We prove that these spaces are Banach. We also study
the global p, g-capacity and the p,g-modulus of families of rec-
tifiable curves. Under some additional assumptions (that is, X
carries a doubling measure and a weak Poincaré inequality), we
show that when 1 < ¢ < p the Lipschitz functions are dense in
those spaces; moreover, in the same setting we show that the
p, g-capacity is Choquet provided that ¢ > 1. We also provide
a counterexample to the density result in the Euclidean setting
when 1 <p<n and g= cc.

1. Introduction

In this paper, (X,d) is a complete metric space endowed with a nontrivial
Borel regular measure p. We assume that p is finite and nonzero on nonempty
bounded open sets. In particular, this implies that the measure y is o-finite.
Further restrictions on the space X and on the measure p will be imposed
later.

The Sobolev—Lorentz relative p, g-capacity was studied in the Euclidean
setting by Costea [6] and Costea and Maz’ya [8]. The Sobolev p-capacity was
studied by Maz’ya [24] and Heinonen, Kilpeldinen and Martio [16] in R™ and
by Costea [7] and Kinnunen and Martio [21] and [22] in metric spaces. The
relative Sobolev p-capacity in metric spaces was introduced by J. Bjorn in [2]
when studying the boundary continuity properties of quasiminimizers.

After recalling the definition of p, g-Lorentz spaces, we study some useful
properties of the p, g-modulus of families of curves needed to give the notion of
p,g-weak upper gradients. Then, following the approach of Shanmugalingam
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in [27] and [28], we generalize the notion of Newtonian Sobolev spaces to the
Lorentz setting. There are several other definitions of Sobolev-type spaces in
the metric setting when p = ¢; see Hajlasz [12], Heinonen and Koskela [17],
Cheeger [4], and Franchi, Hajlasz and Koskela [11]. It has been shown that
under reasonable hypotheses, the majority of these definitions yields the same
space; see Franchi, Hajtasz and Koskela [11] and Shanmugalingam [27].

We prove that these spaces are Banach. In order to do this, we develop a
theory of the Sobolev p, g-capacity. Some of the ideas used here when proving
the properties of the p, g-capacity follow Kinnunen and Martio [21] and [22]
and Costea [7]. We also use this theory to prove that, in the case 1 < ¢ < p,
Lipschitz functions are dense in the Newtonian Sobolev-Lorentz space if the
space X carries a doubling measure p and a weak (1, LP'9)-Poincaré inequality.
Newtonian Banach-valued Sobolev—Lorentz spaces were studied by Podbrdsky
in [26].

We prove that under certain restrictions (when 1 < ¢ < p and the space
(X,d) carries a doubling measure p and a certain weak Poincaré inequality)
this capacity is a Choquet set function.

We recall the standard notation and definitions to be used throughout
this paper. We denote by B(z,r) ={y € X : d(z,y) <r} the open ball with
center z € X and radius r > 0, while B(z,7) = {y € X : d(z,y) <r} is the
closed ball with center x € X and radius » > 0. For a positive number A,
AB(a,r) = B(a,\r) and AB(a,r) = B(a, \r).

Throughout this paper, C' will denote a positive constant whose value is
not necessarily the same at each occurrence; it may vary even within a line.
C(a,b,...) is a constant that depends only on the parameters a,b,.... For
FE C X, the boundary, the closure, and the complement of E with respect to
X will be denoted by OF, E, and X \ E, respectively; diam E is the diameter
of F/ with respect to the metric d.

2. Lorentz spaces

Let f: X — [~00,00] be a p-measurable function. We define ps), the
distribution function of f as follows (see Bennett and Sharpley [1, Definition
IL.1.1]):

ppnt)=p({reX:|f(x)]>t}), t=o0.
We define f*, the nonincreasing rearrangement of f by
fe(t) =inf{v: py(v) <t}, t=>0.

(See Bennett and Sharpley [1, Definition II.1.5].) We note that f and f* have
the same distribution function. For every positive «, we have

(1) = (/)"
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and if |g| <|f| p-almost everywhere on X, then ¢g* < f*. (See [1, Proposition
I1.1.7].) We also define f**, the maximal function of f* by

f**(t):mf*(t):%/of*(s)ds, t>0.

(See [1, Definition I1.3.1].)
Throughout the paper, we denote by p’ the Holder conjugate of p € [1, o).
The Lorentz space LP9(X, 1), 1 <p<oo, 1< q<o00,is defined as follows:

LPUX p)={f: X = [—00,00] : f is p-measurable, || f||Lr.o(x ) <0},

where
(Jo /P f(E))ag)e, 1<g<oo,
Ifllzeax,m) = 1 fllpa =
s thf) ()P =sup,oo 81/ f*(s), g =oc0.
(See Bennett and Sharpley [1, Definition IV.4.1] and Stein and Weiss [29, p.
191].)
If 1 <q<p, then ||| rra(x,.) represents a norm, but for p < ¢ < oo it

represents a quasinorm, equivalent to the norm || - || L. (x,,), Where

(o @ /P fe=(@)ad)t/e, 1<q<oo,
”fHL(M)(X,u) = ||f||(p,q) =
SUps ot/ £ (t), q = o0.
(See [1, Definition IV.4.4].) Namely, from [1, Lemma IV.4.5] we have that

I fllzeax,m) < N F e () <P IFlLeaxop

for every q € [1,00] and every p-measurable function f: X — [—o0, 0]

It is known that (LP9(X, u), || - ||r.a(x,u)) is @ Banach space for 1 < ¢ <p,
while (LP9(X, u), || [ L. (x,)) 18 @ Banach space for 1 <p < oo, 1 <g <oo.
In addition, if the measure p is nonatomic, the aforementioned Banach spaces
are reflexive when 1 < ¢ < co. (See Hunt [18, pp. 259-262] and Bennett and
Sharpley [1, Theorem IV.4.7 and Corollaries 1.4.3 and IV.4.8].) (A measure
u is called nonatomic if for every measurable set A of positive measure there
exists a measurable set B C A such that 0 < u(B) < u(A).)

DEFINITION 2.1 (See [1, Definition 1.3.1]). Let 1 <p < oo and 1 < g < oo.
Let Y = LP%(X, ). A function f in Y is said to have absolutely continuous
norm in Y if and only if || fxg, ||y — 0 for every sequence Ej, of p-measurable
sets satisfying Ey — 0 p-almost everywhere.

Let Y, be the subspace of Y consisting of functions of absolutely continuous
norm and let Y} be the closure in Y of the set of simple functions. It is known
that Y, =Y, whenever 1 < ¢ < oco. (See Bennett and Sharpley [1, Theorem
1.3.13].) Moreover, since (X, i) is a o-finite measure space, we have YV, =Y
whenever 1 < ¢ < co. (See Hunt [18, pp. 258-259].)
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We recall (see Costea [6]) that in the Euclidean setting (that is, when
= my, is the n-dimensional Lebesgue measure and d is the Euclidean distance
on R™) we have Y, #Y for Y = LP*°(X, m,,) whenever X is an open subset
of R™. Let X = B(0,2) \ {0}. As in Costea [6] we define u : X — R,

xTr o<z <1,
(1) u(@) = {0 if 1< 2] <2.

It is easy to see that u € LP*°(X,m,,) and moreover,

1/
X B(0,0) | 272 (X ,mn) = 10l Lo (X, = M (B(0,1)) 7
for every o > 0. This shows that u does not have absolutely continuous

weak LP-norm and therefore LP>*°(X,m,,) does not have absolutely continuous
norm.

REMARK 2.2. Tt is also known (see [1, Proposition IV.4.2]) that for every
p€(1,00) and 1 <r < s < oo there exists a constant C'(p,r,s) such that

(2) 2o x ) < Cpy 7 S ll Lo (x,0)

for all measurable functions f € LP"(X,u). In particular, the embedding
LP" (X, u) <= LP*(X, 1) holds.

REMARK 2.3. By using the results contained in Bennett and Sharpley [1,
Proposition II.1.7 and Definition IV.4.1] it is easy to see that for every p €
(1,00), g € [1,00] and 0 < o < min(p, q), we have

e} _ «
10000 = 10,2 2
for every nonnegative function f € LP1(X, u).

2.1. The subadditivity and superadditivity of the Lorentz quasi-
norms. We recall the known results and present new results concerning the
superadditivity and the subadditivity of the Lorentz p,g-quasinorm. For the
convenience of the reader, we will provide proofs for the new results and for
some of the known results.

The superadditivity of the Lorentz p,g-norm in the case 1 < ¢q < p was
stated in Chung, Hunt and Kurtz [5, Lemma 2.5].

PROPOSITION 2.4 (See [5, Lemma 2.5]). Let (X,u) be a measure space.
Suppose that 1 < q<p. Let {E;};i>1 be a collection of pairwise disjoint fi-
measurable subsets of X with Eo=\J,>, E; and let f € LP9(X, ). Then

Z HXE’iinP-,G(X7H) < ||XE0f||I£p,q(X7M)'
i>1
A similar result concerning the superadditivity was obtained in Costea and
Maz’ya [8, Proposition 2.4] for the case 1 < p < ¢ < oo when X = was an
open set in R™ and p was an arbitrary measure. That result is valid for a
general measure space (X, p).
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PROPOSITION 2.5. Let (X, ) be a measure space. Suppose that 1 <p <

g <oo. Let {E;};>1 be a collection of pairwise disjoint p-measurable subsets
of X with Eo =;>, Ei and let f € LP%(X, ). Then

Z HXEiquLp,q(X#) < ”XEof”%p,q(X“u)'
i>1

Proof. We mimic the proof of Proposition 2.4 from Costea and Maz’ya [8].
We replace Q2 with X. O

We have a similar result for the subadditivity of the Lorentz p, g-quasinorm.
When 1 < p < g < oo we obtain a result that generalizes Theorem 2.5 from
Costea [6].

PROPOSITION 2.6. Let (X, pn) be a measure space. Suppose that 1 < p <

q < oo. Suppose fi,i=1,2,..., is a sequence of functions in LP9(X ) and
let fo =sup;>q |fil. Then

”fO”Lp a(X,p) = < Z”.fZHLp a(X,u)"

Proof. Without loss of generality we can assume that all the functions

fi,i=1,2,... are nonnegative. We have to consider two cases, depending on
whether p < ¢ < co or ¢ = o0.
Let p(y,) be the distribution function of f; for i =0,1,2,.... It is easy to
see that
o0
(3) ifo](8) < Z,u[fi](s) for every s > 0.

Suppose that p < ¢ < co. We have (see Kauhanen, Koskela and Maly [20,
Proposition 2.1])

- :
@) nasso = (o s o) ds)

for i=0,1,2,.... From this and (3), we obtain

o Y 2
A O AT ds)

<Z< / si—1 N[ﬂ ) ZHfz”qu(Q w)

i>1 i>1

Now, suppose that ¢ = co. From (3), we obtain

5) < Z(s”u[m(s)) for every s >0,
i>1
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which implies
(5) () < S il for overy s> 0.
i>1
By taking the supremum over all s >0 in (5), we get the desired conclusion.
This finishes the proof. O

We recall a few results concerning Lorentz spaces.

THEOREM 2.7 (See [6, Theorem 2.6]). Suppose 1 <p < q<oo ande € (0,1).
Let f1, fo € LP9(X, ). We denote fs = f1+ fo. Then f3€ LP9(X, ) and

||f3H€P-,Q(X7H) < (1 - 6)7p||f1Hip,q(X7u) +€7p||f2||€p,q(x7u)'

Proof. The proof of Theorem 2.6 from Costea [6] carries verbatim. We
replace Q) with X. O

Theorem 2.7 has an useful corollary.

COROLLARY 2.8 (See [6, Corollary 2.7]). Suppose 1 <p<oo and 1 <q<
oo. Let fi be a sequence of functions in LP%(X, 1) converging to f with respect
to the p, q-quasinorm and pointwise p-almost everywhere in X. Then

A ([ fillzeace = [ llzeacx -

Proof. The proof of Corollary 2.7 from Costea [6] carries verbatim. We
replace 2 with X. O

3. p,qg-modulus of the path family

In this section, we establish some results about the p, g-modulus of families
of curves. Here (X,d, 1) is a metric measure space. We say that a curve v in
X is rectifiable if it has finite length. Whenever ~ is rectifiable, we use the
arc length parametrization v : [0,£(y)] — X, where £(vy) is the length of the
curve 1.

Let T'yect denote the family of all nonconstant rectifiable curves in X. It
may well be that I',.; = (), but we will be interested in metric spaces for which
Iiect is sufficiently large.

DEFINITION 3.1. For I C T'yect, let F(T') be the family of all Borel measur-
able functions p : X — [0, 00] such that

/pzl for every vy €T
.

Now for each 1 < p < oo and 1 < g < oo we define

_ P
Mod,, (') = pel}rlfr) ||P||Lp,q(x,u)~

The number Mod, 4(T") is called the p,q-modulus of the family I'.



NEWTONIAN LORENTZ METRIC SPACES 585

3.1. Basic properties of the p,g-modulus. Usually, a modulus is a mono-
tone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the p, g-modulus.

THEOREM 3.2. Suppose 1 <p < oo and 1 < q<oo. The set function I' —
Mod,, ('), T’ C Tyect, enjoys the following properties:

(1) Mod,4(0) = 0.
(ii) IfT'y C Ty, then Mod, 4(I'1) < Mod, 4(T'2).
(iii) Suppose 1 <q<p. Then

oo /P
Mod,, (U PZ-) <) Mod,, 4(I';) /7.
i=1

i=1

(iv) Suppose p < g <oo. Then

Modp’q<Ul—‘i> Z dy o

i=1

Proof. (i) Mod,, 4(0) =0 because p=0 € F(0).

(ii) If 'y CT'g, then F(I'y) C F(I'1) and hence Mod,, 4(I'1) < Mod,, 4(I'2).

(iii) Suppose that 1 < g <p. The case p = ¢ corresponds to the p-modulus
and the claim certainly holds in that case. (See, for instance, Hajlasz [13,
Theorem 5.2 (3)].) So we can look at the case 1 < ¢ <p.

We can assume without loss of generality that

ZModpq T,)?P < .

Let € > 0 be fixed. Take p; € F(T';) such that
||p1||LIJ a(X,u) < Modp q(r )q/p +e2° 1

Let p:= (352, p7)/9. We notice via Bennett-Sharpley [1, Proposition I1.1.7
and Definition IV.4.1] and Remark 2.3 applied with a = ¢ that

(6) ple L (X and 1tz =10l x

forevery i =1,2,.... By using (6) and Remark 2.3 together with the definition
of p and the fact that || - ||L§,1 is a norm when 1 < ¢ < p, it follows that

p€ F(T) and

(X,m)

Mod,, q( )q/p< ”pHLp,q(X,#) Z”p'L”LP (X, ) <ZMOdpq q/p_|_2€

Letting € — 0, we complete the proof when 1 <q <p.
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(iv) Suppose now that p < ¢ < co. We can assume without loss of generality
that

Z Mod,, 4(I';) < oo.
i=1

Let € > 0 be fixed. Take p; € F(I';) such that
||pi||zzp,q(x,u) < MOdp,q(Fi) + 52_i.

Let p:=sup;>; pi- Then p € F(T'). Moreover, from Proposition 2.6 it follows
that p € LP9(X, u) and

Moy () < 10020y < S0y < S Mody g (T7) + 2.
i=1 i=1

Letting € — 0, we complete the proof when p < ¢ < cc. O

So we proved that the modulus is a monotone function. Also, the shorter
the curves, the larger the modulus. More precisely, we have the following
lemma.

LEMMA 3.3. Let I'1,T'y C Tyect- If each curve v € 'y contains a subcurve
that belongs to I's, then Mod,, 4(T'1) < Mod,, 4(T'2).

Proof. F(I'y) < F(I'7). O
The following theorem provides an useful characterization of path families
that have p, g-modulus zero.

THEOREM 3.4. Let I' C T'ees. Then Mod, (') =0 if and only if there
exists a Borel measurable function 0 < p € LP4(X,u) such that pr =00 for
every ye .

Proof. Sufficiency. We notice that p/n € F(T') for every n and hence

Mod,,o(I) < lim_[|o/nl,.,(x 0 =0.
Necessity. There exists p; € F(T') such that ||p | . (x,,) <27 and fv pi >
1 for every v € I'. Then p:= 3", p; has the required properties. O

COROLLARY 3.5. Suppose 1 <p< oo and 1 <qg<oo are given. If 0 < g€
LP9(X, u) is Borel measurable, then fﬁyg < o0 for p,q-almost every v € I'yect.

The following theorem is also important.

THEOREM 3.6. Let uy, : X — R = [—00, 00| be a sequence of Borel functions

which converge to a Borel function u: X = R in LP%(X,u). Then there is a
subsequence (ug,); such that

/\ukjfu|%() as j — oo,
y

for p,q-almost every curve vy € Tject.
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Proof. We follow Hajlasz [13]. We take a subsequence (uy,); such that

(7) ||u;€j —UHLp,q(X“u) <2_2j.
Set gj = |ur, —u|, and let I' C I'reet be the family of curves such that
limsup/gj > 0.
j—oo Jay
We want to show that Mod, 4(I') = 0. Denote by I'; the family of curves in
T'iect for which fv g; > 273, Then 2jgj € F(T';) and hence Mod,, 4(T';) < 2-Pi

as a consequence of (7). We notice that

FCﬁGFJ‘.

i=1j=i
Thus,
Mod,,4(T)"/? < ZModp7q(Fj)1/P < Zz—j —ol—i
Jj=i j=1
for every integer ¢ > 1, which implies Mod,, ((I") = 0. O

3.2. Upper gradient.

DEFINITION 3.7. Let u: X — [—00, c0] be a Borel function. We say that a
Borel function g : X — [0,00] is an upper gradient of w if for every rectifiable
curve vy parametrized by arc length parametrization we have

(8) [u(7(0)) —u(v(€(7)))] S/g

v
whenever both u(v(0)) and u(y(¢(v))) are finite and f,yg = 0o otherwise. We
say that g is a p,g-weak upper gradient of u if (8) holds on p, g-almost every
curve 7y € [yect-

The weak upper gradients were introduced in the case p = ¢ by Heinonen
and Koskela in [17]. See also Heinonen [15] and Shanmugalingam [27] and
[28].

If g is an upper gradient of u and g = g, p-almost everywhere, is another
nonnegative Borel function, then it might happen that g is not an upper
gradient of u. However, we have the following result.

LEMMA 3.8. If g is a p,q-weak upper gradient of w and g is another nonneg-
ative Borel function such that g = g p-almost everywhere, then g is a p, q-weak
upper gradient of u.

Proof. Let I'1 C I'ject be the family of all nonconstant rectifiable curves
v: [0,4(v)] = X for which fw g — 9] > 0. The constant sequence g, =|g — g|
converges to 0 in L”9(X, i), so from Theorem 3.6 it follows that Mod,, 4(I'1) =
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0 and f,y |g — 9] =0 for every nonconstant rectifiable curve v : [0,4(7)] = X
that is not in I'y.

Let T'y C I'ieet be the family of all nonconstant rectifiable curves -y :
[0,£4()] = X for which the inequality

[u(1(0) ~u(r ()| < [ g

gl
is not satisfied. Then Mod,, 4(I'2) =0. Thus Mod, ,(I';y UT'3) =0. For every
¥ € I'iect not in I'y UT'y we have

[u(0) ~u(re))] < 9= [ 7
This finishes the proof. O

The next result shows that p,g-weak upper gradients can be nicely ap-
proximated by upper gradients. The case p = ¢ was proved by Koskela and
MacManus [23].

LEMMA 3.9. If g is a p,q-weak upper gradient of u which is finite p-almost
everywhere, then for every € >0 there exists an upper gradient g. of u such
that

ge >g everywhere on X and ||ge — gl pr.a(x,u) <€

Proof. Let ' C I'jeet be the family of all nonconstant rectifiable curves
~v:10,£(y)] = X for which the inequality

u(v(0)) — u(y(e))| < / g

¥
is not satisfied. Then Mod, 4(I') = 0 and hence, from Theorem 3.4 it follows
that there exists 0 < p € LP9(X, 11) such that f,yp = oo for every v € I'. Take
ge =g +ep/llpllrax,u)- Then g. is a nonnegative Borel function and

|u(1(0)) — u(x(€())| < / o

for every curve v € I'iocy. This finishes the proof. O

If A is a subset of X let I' 4 be the family of all curves in I'jee; that intersect
A and let FX be the family of all curves in I'yect such that the Hausdorff one-
dimensional measure H;(]y| N A) is positive. Here and throughout the paper
|v] is the image of the curve ~.

The following lemma will be useful later in this paper.

LEMMA 3.10. Let u; : X = R, i > 1, be a sequence of Borel functions such
that g € LPY(X) is a p,q-weak upper gradient for every u;,i > 1. We define
u(z) =lim; oo us(x) and E={z € X : |u(x)| = co}. Suppose that p(E) =0
and that u is well-defined outside E. Then g is a p,q-weak upper gradient
for u.
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Proof. For every i > 1, we define I'; ; to be the set of all curves v € I'yect
for which

’WﬁwD—mh@w»ﬂ<L9

is not satisfied. Then Mod, 4(I'1;) = 0 and hence Mod, 4(I'1 o) = 0, where
o= Ufil T'1i. Let I'y CTect be the collection of all curves having a sub-
curve in I'y . Then F(T'1,9) C F(I'1) and hence Mod,, 4(T'1) < Mod,, 4(T'1,0) =
0.

Let T’y be the collection of all paths v € I'.ect such that f“/ g =o00. Then we
have via Theorem 3.4 that Mod,, 4(I'g) =0 since g € LP¢(X, u1).

Since pu(E) =0, it follows that Mod, ,(I'f;) = 0. Indeed, oo - xp € F(I'})
and [|oo - X g || pr.a(x,u) = 0. Therefore, Mod,, ,(Tg UL UT 1) =0.

For any path « in the family I'yect \ (Do UT L UT), by the fact that the path
is not in ', there exists a point y in || such that y is not in E, that is y € |7
and |u(y)| < co. For any point z € ||, we have (since v has no subcurves in
I'10)

|mmnfhmw|swxm—uxwt§/g<am

¥
Therefore,

Jus(2)] < Jui ()| +/g.

Taking limits on both sides and using the facts that |u(y)| < oo and that v is
not in ' UT'y, we see that

lim |ul(z)| < Zlgglo’uz(yn +/

1—00
v

g:W@H+/g<w

and therefore z is not in E. Thus 'y C Ty UT'f, UT'; and Mod,, ,(I'g) = 0.

Next, let v be a path in T'yeet \ ([oUI'5 UT';). The above argument showed
that |y| does not intersect E. If we denote by = and y the endpoints of +, we
have

(o) = uly)| = Jim ) ~ fim i) = i Jusa) ~ ws)| < [ .
1—> 00 1—> 00 71— 00 ~
Therefore, g is a p, g-weak upper gradient for u as well. O

The following proposition shows how the upper gradients behave under a
change of variable.

PROPOSITION 3.11. Let F: R =R be C' and let u: X — R be a Borel
function. If g € LP9(X,u) is a p,q-weak upper gradient for u, then |F'(u)|g
s a p,q-weak upper gradient for F ou.
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Proof. Let T'g to be the set of all curves v € '}t for which

[u(7(0)) — u((£(7))| < / g

Y

is not satisfied. Then Mod,, 4(I'g) =0. Let I'; C I'tect be the collection of all
curves having a subcurve in I'y. Then F'(I'y) C F(I'1) and hence Mod,, 4(T'1) <
MOdp,q (Fo) =0.

Let T'; be the set of curves v € I'yeet for which fv g =00. Then we have

via Theorem 3.4 that Mod,, 4(I'2) = 0 since g € LP¢(X, 1). Thus, Mod,, o(I'1 U
I';)=0.
The claim will follow immediately after we show that

) (o (0) - (Fou )] < [ N 1F (@) + alr(s)) ds

for all curves v € Tyect \ (I'1 UT2) and for every e > 0.

So fix € > 0 and choose a curve vy € T'yeet \ ([ UT'2). Let £ = £(y). We notice
immediately that u o~ is uniformly continuous on [0,¢] and F’ is uniformly
continuous on the compact interval I := (uo~)([0,£]). Let 6,5, > 0 be chosen
such that

[(F ouom)(t) — (F o won)(s)] + (wom)(#) — (wor)(s)| < &
for all ¢,s € [0,¢] with |t — s| < and such that
|F'(u) — F'(v)| <e for all u,v € I with |u—v| < é;.

Fix an integer n > 1/6 and put ¢; = (i¢)/n,i=0,...,n — 1. For every i =
0,...,n—1 we have

[(Fouon)(liv1) — (Fouoy)(ls)| = [F'(tiir1)||(woy)(lis1) — (wor)(6)]
Lit1
< |F'(tiig1)] /e g(7(s)) ds,

where ¢; ;41 € I; ;41 := (woy)((4i,i+1)). From the choice of ¢, it follows that

Lita
(Fowom(tian) ~ (Fouon)] < [ (F(ulr(s)| +2)gln(s) ds,
for every i =0,...,n— 1. If we sum over i, we obtain easily (9). This finishes
the proof. O

As a direct consequence of Proposition 3.11, we have the following corol-
laries.

COROLLARY 3.12. Let r € (1,00) be fized. Suppose u: X — R is a bounded
nonnegative Borel function. If g € LP9(X, ) is a p,q-weak upper gradient of
u, then ru”"1g is a p, q-weak upper gradient for u”.
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Proof. Let M >0 be such that 0 <wu(z) < M for all z € X. We apply
Proposition 3.11 to any C* function F : R — R satisfying F(t) =t",0 <t <
M. O

COROLLARY 3.13. Let r € (0,1) be fized. Suppose that u: X - R is a
nonnegative Borel function that has a p,q-weak upper gradient g € LP4(X, ).
Then r(u+¢e)""g is a p,q-weak upper gradient for (u+ )" for all € > 0.

Proof. Fix € > 0. We apply Proposition 3.11 to any C! function F: R -+ R
satisfying F(t) =t",e <t < o0. O

COROLLARY 3.14. Suppose 1 < qg<p<oo. Let uj,us be two nonnegative
bounded real-valued Borel functions defined on X. Suppose g; € LP1( X, 11),i =
1,2 are p,q-weak upper gradients for u;,i =1,2. Then LP9(X,p) 2 g:= (g1 +
gDV is a p, q-weak upper gradient for u = (u +ud)t/a,

Proof. The claim is obvious when ¢ =1, so we assume without loss of
generality that 1 < ¢ <p. We prove first that g € LP9(X, ). Indeed, via
Remark 2.3 it is enough to show that g? € Lg’l(X, w). But g9 =g{ + g3 and
gl e L@ (X, p) since g; € LP9(X, ;1). (See Remark 2.3.) This, the fact that
Il 21k is a norm whenever 1 < ¢ < p, and another appeal to Remark 2.3

yield g € LP9(X, ) with
T P O | ISR | SO

= ||gl||prq(X,p,) + ||92||Lp,q(X,u)'

For i =1,2let I'; ; be the family of nonconstant rectifiable curves 7 in I'yect

for which
Jus (4(0)) — i (v(¢()) | < / o

is not satisfied. Then Mod, 4(I';.1) =0 since g; is a p, g-weak upper gradient
for u;,i=1,2. Let I'g; be the family of nonconstant rectifiable curves ~y in
I'tect having a subcurve in 'y ; Uy ;. Then F(I'y 3 UT2;) C F(T'g,1) and
hence Mod,, ¢(I'o,1) < Mod, ¢(T'1,1 UT21) =0.

Let I'; » be the family of nonconstant rectifiable curves vy in I';ect for which
J, 9i =oc. Then for i=1,2 we have Mod, 4(I';2) = 0 via Theorem 3.4 be-
cause by hypothesis g; € LP%(X, p),i=1,2. Let Ty =T 1 UT'1 2 ULy 5. Then
MOdpﬁq (Fo) =0.

Fix ¢ > 0. By applying Corollary 3.12 with r =¢q, u=wu; and g = g,
i=1,2, we see that L»9(X,u) 2 q(u; +¢)? 'g; is a p, ¢-weak upper gradient
of (u; +¢€)? for i =1,2. Thus, via Hélder’s inequality it follows that G. is a
p, g-weak upper gradient for U., where

Ge :=q((ur +€)7 + (uz +€)1) "7 (g7 4+ 69) /" and
Ue = (ug + )7+ (uz +¢)4.
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We notice that G. € LP9(X, ). Indeed, G. = qUL Vg with U. nonnega-
tive a bounded and g € LP%(X, 1), so G. € LP1(X, ).

Now we apply Corollary 3.13 with r =1/q, u= U, and g = G. to obtain
that u. := Ugl/q has 1/qU5(1_q)/qG8 =g as a p,g-weak upper gradient that
belongs to LP4(X, ). In fact, by looking at the proof of Proposition 3.11, we
see that

PH%W*%WW@MS/Q

¥
for every curve 7y € I'}ec; that is not in I'y. Letting e — 0, we obtain the desired
conclusion. This finishes the proof of the corollary. O

LEMMA 3.15. If u;,i =1,2 are nonnegative real-valued Borel functions in
LP9(X, ) with corresponding p,q-weak upper gradients g; € LP9(X, 1), then
g :=max(g1,92) € LP1(X, ) is a p,q-weak upper gradient for u:= max(u,
ug) € LP (X, ).

Proof. Tt is easy to see that u,g € LP9(X,p). For i=1,2 let Ty ; C et
be the family of nonconstant rectifiable curves v for which f,y gi = 00. Then
we have via Theorem 3.4 that Mod,, ,(T'¢;) =0 because g; € LP9(X, ). Thus
Modp,q (Fo) =0, where I'g = ].—‘071 @] FO’Q.

For i=1,2let I'1 ; C T'ecty be the family of curves v € I'yeeq \ I'g for which

u60) =2 ()| < [ o

~
is not satisfied. Then Mod,, 4(I'1 ;) =0 since g; is a p,g-weak upper gradient
for u;, i=1,2. Thus, Mod, 4(I'1) =0, where I'y =Ty ; UT'1 5.

It is easy to see that
(10) |u(@) — u(y)| < max(Ju (@) —ui(y)], [uz(z) — u2(y)])-

On every curve 7 € I'yect \ (o UT'1) we have

VMWW—WWWwMSAWSLQ

This and (10) show that

wmm»fuw@wnﬂs/g

Y

on every curve 7y € Dyeet \ (I'g UT'1). This finishes the proof. O

LEMMA 3.16. Suppose g € LP9(X, ) is a p,q-weak upper gradient for a
nonnegative Borel function u € LP9(X,u). Let A >0 be fized. Then uy :=
min(u, \) € LP%(X, u) and g is a p,q-weak upper gradient for wy.



NEWTONIAN LORENTZ METRIC SPACES 593

Proof. Obviously 0 <wuy <wu on X, so it follows via Bennett and Sharpley
[1, Proposition 1.1.7] and Kauhanen, Koskela and Maly [20, Proposition 2.1]
that uy € LP9(X, p) with [lux|lzr.a(x,u) < ||l zr.a(x,u). The second claim fol-
lows immediately since |uy(z) — ux(y)| < |u(z) — u(y)| for every z,y € X. O

4. Newtonian LP'? spaces

We denote by NL"* (X, 11) the space of all Borel functions u € LP4(X, 1)
that have a p, g-weak upper gradient g € LP-9(X, 11). We note that the space
NLL’”"’(X, 1) is a vector space, since if o, € R and wuj,ugs € J\Nfl’Lp’q(X7 )
with respective p, g-weak upper gradients g1, g2 € LP*9(X, 1), then |a|g1 +|8|g2
is a p,g-weak upper gradient of au; + Bus.

DEFINITION 4.1. If u is a function in N22" (X, 1), let

ullzr. o = { (el oo x gy + 105 N9 (x )% 1< a<p,
Nl,Lqu -

(HUHZ[),PYQ(X,H) + infy ”g”ip,q(xﬂ))l/p? p < q S 00,

where the infimum is taken over all p, g-integrable p, g-weak upper gradients
of u.
Similarly, let

(T p— (|‘U||i<p,q>(x,ﬂ) + infy ||9||%<p,q)(x,#))1/qa 1<q¢<p,
p,q .
NtE (HUHZ(P,«Z)(X,N) + 1nfg ||g||i(qu)(X7u))1/pa p<gq S oo,

where the infimum is taken over all p, g-integrable p, g-weak upper gradients
of u.

If u,v are functions in NVE""(X, ), let w~ v if |lu — v]| 500 = 0. Tt
is easy to see that ~ is an equivalence relation that partitions N 1’LM(X )

into equivalence classes. We define the space NI (X, 1) as the quotient
N (X, 1)/~ and

”uHvaLp’q = ||u||ﬁ1,LP*‘1 and ||uHN1,L(Pv‘1) = HU‘HZVVLL(P%I)

REMARK 4.2. Via Lemma 3.9 and Corollary 2.8, it is easy to see that the
infima in Definition 4.1 could as well be taken over all p, g-integrable upper
gradients of . We also notice (see the discussion before Definition 2.1) that
II- ||N1,L(p.q) is a norm whenever 1 < p < oo and 1 < ¢ < oo, while || || y1,zr.e is a
norm when 1 < ¢ <p < 0o. Moreover (see the discussion before Definition 2.1),

[ulljreea <l i oo <Plluflyieea
for every 1 < p < oo, 1 <g<ooand ue N (X, ).

DEFINITION 4.3. Let u: X — [—00,00] be a given function. We say that
(i) u is absolutely continuous along a rectifiable curve v if u o~y is absolutely
continuous on [0,4(7)].
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(ii) w is absolutely continuous on p, g-almost every curve (has ACC,, , prop-
erty) if for p, g-almost every v € I'yect, w07y is absolutely continuous.

. - . 7 P,q .
PROPOSITION 4.4. If u is a function in NY1"" (X, n), then u is ACC,,,.

Proof. We follow Shanmugalingam [27]. By the definition of NLLP (X, 1),
u has a p,g-weak upper gradient g € L»%(X, ). Let Ty be the collection of
all curves in I';¢.t for which

[u(7(0)) — u(3(£(7))| < / g

~
is not satisfied. Then by the definition of p, g-weak upper gradients, we have
that Mod,, 4(I'0) =0. Let I'; be the collection of all curves in I'ye; that have
a subcurve in I'g. Then Mod,, 4(I'1) <Mod,, 4(Tg) =0.

Let T's be the collection of all curves in I'.oe; such that fv g=o0. Then
Mod,, 4(T'2) = 0 because g € L»9(X, 11). Hence, Mod,, ,(I'1 UT'2) =0. If v is a
curve in Tieet \ (I'y UT2), then 7 has no subcurves in Ty, and hence

B
lu(1(8)) — u(+()] < / g(v(®)) dt, provided [a, 8]  [0.6(~)].

[0

This implies the absolute continuity of w oy as a consequence of the absolute
continuity of the integral. Therefore, u is absolutely continuous on every curve
~yin Tieet \ (T UTS). O

LEMMA 4.5. Suppose u € NYE"" (X, 1) is such that lull £p.a(x,) = 0. Then
the family

I = {7 €Trect : u(z) #0 for some x € |y}

has zero p,q-modulus.

Proof. We follow Shanmugalingam [27]. Since ||ul|zr.a(x ) =0, the set E =
{z € X : u(x) # 0} has measure zero. With the notation introduced earlier,
we have

[=Tp=T}U (FE\FJLC)
We can disregard the family I'},, since

Mod,, 4 (I5) < llo0 - X8 [1%ax 1y = O

where yg is the characteristic function of the set E. The curves v in I'g \ '},
intersect E only on a set of linear measure zero, and hence with respect to the
linear measure almost everywhere on v the function w is equal to zero. Since
v also intersects E, it follows that w is not absolutely continuous on 7. By
Proposition 4.4, we have Mod,, ,(I'z \ T'};) = 0, yielding Mod,, ,(I') = 0. This
finishes the proof. O
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LEMMA 4.6. Let F be a closed subset of X. Suppose that u : X — [—00, 0]
is a Borel ACC, , function that is constant p-almost everywhere on F. If
g € LP9(X, ) is a p,q-weak upper gradient of u, then gxx\r is a p,q-weak
upper gradient of u.

Proof. We can assume without loss of generality that u =0 p-almost ev-
erywhere on F. Let E={z € F: u(z) # 0}. Then by assumption u(E) =0.
Hence, Mod,, ,(I'f) = 0 because oo - g € F(T'L).

Let T'g C I'yect be the family of curves on which wu is not absolutely contin-

uous or on which
[u(:0) w6 ()| < [ 9

is not satisfied. Then Mod,, 4(T'g) =0. Let I'y C I'yecy, be the family of curves
that have a subcurve in I'g. Then F(I'y) C F(I'1) and thus Mod, ,(T'1) <
MOdZD’q (FQ) =0.

Let T's C I'reet be the family of curves on which f7 g = oo. Then via Theo-
rem 3.4 we have Mod,, ;(I'2) =0 because g € L”9(X, ).

Let v: [0,4(v)] = X be a curve in Tyeet \ (I UT2 UTE) connecting = and
y. We show that

() — u(y)| < / ax\F

for every such curve 7.
The cases |y| C F\ E and |y| C (X \ F)UE are trivial. So is the case when
both x and y are in F'\ E. Let K := (uo~)~1({0}). Then K is a compact
subset of [0, £()] because w o+ is continuous on [0,£4(v)]. Hence, K contains
its lower bound ¢ and its upper bound d. Let z; =~(c) and y; =~(d).
Suppose that both = and y are in (X \ F')U E. Then we see that [c,d] C
0.£0)) 2090 (L) < (X F) U E

Moreover, since « is not in I‘1 and u(z u(y1), we have

u(@) = u(y)| < |ul@) = ul1)] + |uly) — u(y)]

/ o | s [or
([o, C] ([d.()])

because the subcurves 7v|j,) and v[(4.¢(y)) intersect £ on a set of Hausdorff
1-measure zero.

Suppose now by symmetry that x € (X \ F)UFE and y € F\ E. This
means in terms of our notation that ¢ >0 and d = {(y). We notice that
7([0,¢)) C (X \ F)UE and u(z1) = u(y) and thus

) —ut)] = o) —we| < [ 9% [ovne

because the subcurve [ ) intersects £ on a set of Hausdorff 1-measure zero.
This finishes the proof of the lemma. O
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LEMMA 4.7. Assume that uw € NY*"" (X, 1), and that g,h € LP9(X, 1) are
P, q-weak upper gradients of u. If I C X is a closed set, then

p=gxr +hxx\r

is a p, q-weak upper gradient of u as well.

Proof. We follow Hajtasz [13]. Let I'y C I'ioet be the family of curves on
which fw (9 + h) =00. Then via Theorem 3.4 it follows that Mod, 4(I'1) =0

because g+ h € LP1(X, p1).

Let I's C ['yeet be the family of curves on which u is not absolutely contin-
uous. Then via Proposition 4.4 we see that Mod,, 4(I's) = 0.

Let Ty C T'reet, be the family of curves on which

www»—umww»MSmm(A%Lh)

is not satisfied. Let I's C I'yect be the family of curves which contain subcurves
belonging to I'y. Since F(I';) C F(I's), we have Mod,, 4(I'3) <Mod, 4(I'5) = 0.
Now it remains to show that

www»—umww»»<gp

for all 4 € Tyeet \ (I UT2UT's). If |y| C F or |y| € X \ F, then the inequality is
obvious. Thus, we can assume that the image |y| has a nonempty intersection
both with F' and with X \ F.

The set v~1(X \ F) is open and hence it consists of a countable (or fi-
nite) number of open and disjoint intervals. Assume without loss of general-
ity that there are countably many such intervals. Denote these intervals by
((ti,54))721- Let 75 =7l,,s,). We have

[u(7(0)) = u(v(¢)))] < [u(v(0)) = u(y(t1))| + [u(y(t1)) —ul(y(s1))]
+]u(v(s1)) —u(v(€(7))]

S/ g+/ h,
Y\711 V1

where v\ 71 denotes the two curves obtained from v by removing the interior
part 71, that is the curves 7|, and v|(s, 5. Similarly, we can remove a
larger number of subcurves of . This yields

) ~utee < [ g [

for each positive integer n. By applying Lebesgue dominated convergence
theorem to the curve integral on v, we obtain

[u((0)) = u(y(¢()))] S[ngF—FLhXX\F:/Yp. -
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Next we show that when 1 < p < oo and 1 < ¢ < oo, every function u €
NLLM(X, u) has a ‘smallest’ p, g-weak upper gradient. For the case p = g,
see Kallunki and Shanmugalingam [19] and Shanmugalingam [28].

THEOREM 4.8. Suppose that 1 <p < oo and 1 < g < oo. For every u €
NV (X, 1), there exists the least p,q-weak upper gradient g, € LP9(X, )
of u. It is smallest in the sense that if g € LP9(X, ) is another p,q-weak
upper gradient of u, then g > g, p-almost everywhere.

Proof. We follow Hajlasz [13]. Let m = inf, || g||zr.a(x ), Where the in-
fimum is taken over the set of all p,g-weak upper gradients of w. It suf-
fices to show that there exists a p,g-weak upper gradient g, of u such that
lgullLr-a(x,) = m. Indeed, if we suppose that g € LP9(X, ) is another p,g-
weak upper gradient of w such that the set {g < g, } has positive measure,
then by the inner regularity of the measure p there exists a closed set F' C
{g < gu} such that pu(F) > 0. Via Lemma 4.7 it follows that the function
p = gxXF +guXx\F IS a p,q-weak upper gradient. Via Kauhanen, Koskela and
Maly [20, Proposition 2.1] that would give ||p||Lr.a(x,u) < |gullLra(x,0) = M,
in contradiction with the minimality of [|gu|lLr.a(x,u)-

Thus, it remains to prove the existence of a p,g-weak upper gradient g,
such that [|gullzr.a(x,) =m. Let (g:){2; be a sequence of p,g-weak upper
gradients of u such that [ g;||Lr.e(x,,) <m +27% We will show that it is
possible to modify the sequence (g;) in such a way that we will obtain a new
sequence of p,g-weak upper gradients (p;) of u satisfying

| pill oo (x,0) <M+ 2171 p1 > po > p3>--- p-almost everywhere.

The sequence (p;)2; will be defined by induction. We set p; = g1. Suppose
the p, g¢-weak upper gradients p1, p2, ..., p; have already been chosen. We will
now define p;11. Since p; € LP9(X, 1), the measure p is inner regular and
the (p,¢)-norm has the absolute continuity property whenever 1 < p < co and
1< g < oo (see the discussion after Definition 2.1), there exists a closed set
FC {gi+1 < pz} such that

—im1
HpiX{gi+1<m}\FHLM(X,M) <2
Now, we set pi+1 = gi+1XF + pixx\r. Then

pi+1 < pi and  pip1 < GitIXFUL{gis1>pi) T PiX{gip1<pi}\F-

We show that m < ||pi+1]|Lea(x,u) <m—+ 27" Suppose first that 1 < g <p.
Since || - || zr.a(x,) s a norm, we see that

lpit1llLracx ) < Ngie1XFugisa=pitllracxm) + 10X g1 <pp\FllLrax
<m+27 g7 =y 270,
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Suppose now that p < ¢ < co. Then we have via Proposition 2.6

Hm+1H’£p,q(X,#) < Hgi+1XFu{gi+12pi}||1£p,q(x,#) =+ ||PiX{gi+1 <Pi}\F||iP»q(X7#)
< (m+2771)P 42770 < (2707
The sequence of p,g-weak upper gradients (p;)$2; converges pointwise to a

function p. The absolute continuity of the (p, ¢)-norm (see Bennett and Sharp-
ley [1, Proposition 1.3.6] and the discussion after Definition 2.1) yields

zlggo lpi = pllLr.a(x,u) =0

Obviously ||p||zr.a(x,u) =m. The proof will be finished as soon as we show
that p is a p, g-weak upper gradient for u.

By taking a subsequence if necessary, we can assume that || p; — p|| r.a (x,u) <
2721 for every i > 1.

Let I'y C T'yect be the family of curves on which fﬁ/ (p + pi) = oo for some
i >1. Then via Theorem 3.4 and the subadditivity of Mod, ,(-)'/? we see
that Mod,, ,(I'1) =0 since p+ p; € LP9(X, 1) for every ¢ > 1.

For any integer ¢ > 1 let I'y ; C I'vect be the family of curves for which

lu(1(0)) = u(r(¢(1)))] < / P

is not satisfied. Then Mod,, 4(I'2,;) = 0 because p; is a p, g-weak upper gradient
for u. Let FQ = U;)il FQ,Z'.
Let I's C I'yect be the family of curves for which limsup,_, . fﬂ/ lpi — p| > 0.

Then it follows via Theorem 3.6 that Mod, 4(I'3) = 0.
Let v be a curve in T'yeet \ (I'1 UT2 UT'3). On any such curve we have (since
v is not in I'y ;)

lu(v(0)) —u(y(¢(7)))] < /pi for every i > 1.

By letting i — 0o, we obtain (since « is not in 'y UT'3)

|u('y(0)) u(y(C(y |< hm /p7 /p<oo
This finishes the proof of the theorem. U

5. Sobolev p, g-capacity

In this section, we establish a general theory of the Sobolev—Lorentz p, g-
capacity in metric measure spaces. If (X, d, 1) is a metric measure space, then
the Sobolev p, g-capacity of a set F C X is

Cappyq(E) = lnf{ Hu”?\]l,an Tue .A(E)},

where
AE)={ue N (X p):w>1 on E}.
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We call A(FE) the set of admissible functions for E. If A(E) =0, then
Cap, ,(E) = oc.

REMARK 5.1. It is easy to see that we can consider only admissible func-
tions u for which 0 <wu < 1. Indeed, for u € A(E), let v:=min(u4,1), where
uy = max(u,0). We notice that |v(z) —v(y)| < |u(z) — u(y)| for every x,y in
X, which implies that every p, g-weak upper gradient for u is also a p, g-weak
upper gradient for v. This implies that v € A(F) and ||v|| y1,2p.¢ < ||u]| y1,20:9.

5.1. Basic properties of the Sobolev p,¢-capacity. A capacity is a
monotone, subadditive set function. The following theorem expresses, among
other things, that this is true for the Sobolev p, g-capacity.

THEOREM 5.2. Suppose that 1 <p < oo and 1 < q < oco. Suppose also that
(X,d, ) is a complete metric measure space. The set function E — Cap, ,(E),
E C X, enjoys the following properties:

(i) If Ey C Es, then Cap, ,(E1) < Cap,, ,(Es).
(ii) Suppose that u is nonatomic. Suppose that 1 <q<p. If By CEyC---C
E=J,E; CX, then

Capp,q (E) = zli},go Ca’pp,q(E’L') .

(iii) Suppose that p<q<oo. If E=J;=, E; C X, then
Capp)q(E) < ZCapp’q(Ei).
i=1
(iv) Suppose that 1 <q<p. If E=J;2, E; C X, then

o0
Cap,, ,(E)¥? < " Cap, ,(Ei)*/".
i=1
Proof. Property (i) is an immediate consequence of the definition.
(ii) Monotonicity yields

= li i) < ’
L zlggo Capy 4 (Ei) < Capy o(E)

To prove the opposite inequality, we may assume without loss of generality
that L < co. The reflexivity of L?9(X, ) (guaranteed by the nonatomicity of
i whenever 1 < ¢ <p < 0o) will be used here in order to prove the opposite
inequality.

Let € > 0 be fixed. For every i =1,2,... we choose u; € A(F;), 0 <wu; <1
and a corresponding upper gradient g; such that

(11) ||ui||(]1\/'1,LP,q <Capp?q(Ei)q/p+5§LQ/P+€.

We notice that u; is a bounded sequence in N2 (X, 11). Hence there exists
a subsequence, which we denote again by u; and functions u,g € LP9(X, )
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such that u; — u weakly in LP4(X, ) and g; — g weakly in LP4(X, ). Tt is
easy to see that

u >0 p-almost everywhere and ¢>0 p-almost everywhere.

Indeed, since u; converges weakly to u in LP9(X, pu) which is the dual of
LP9' (X, 1) (see Hunt [18, p. 262]), we have

lim [ w(e)p(e) du(e) = /X u(@)p (@) d(z)

1—00 X

for all ¢ € LP9 (X, ;1). For nonnegative functions ¢ € L?+4 (X, 1), this yields
0< lim uz'(x)@(l‘)du(ﬂf)=/ u(z)p(x) dpu(z),
71— 00 X X
which easily implies u > 0 p-almost everywhere on X. Similarly, we have
g > 0 p-almost everywhere on X.

From the weak-* lower semicontinuity of the p,¢-norm (see Bennett and
Sharpley [1, Proposition 11.4.2; Definition IV.4.1 and Theorem IV.4.3] and
Hunt [18, p. 262]), it follows that
(12 l[ulloax,u) < 1Tg£f||ui“mq(x,#) and
191l oo (x ) < Hmink {|gifl oo . )-

Using Mazur’s lemma simultaneously for u; and g;, we obtain sequences
v; with correspondent upper gradients g; such that v; € A(E;), v; — u in
LP%(X, ) and p-almost everywhere and g; — g in LP9(X, ) and p-almost
everywhere. These sequences can be found in the following way. Let iy be
fixed. Since every subsequence of (u;,g;) converges to (u,g) weakly in the
reflexive space LP9(X,pu) x LP9(X, 1), we may use the Mazur lemma (see
Yosida [30, p. 120]) for the subsequence (u;, g;),% > io.

We obtain finite convex combinations v;, and g;, of the functions u; and g;,
i >1p as close as we want in LP9(X, 1) to u and g, respectively. For every ¢ =
i0,%0+1,..., we see that u; =1 in E; D E;,. The intersection of finitely many
supersets of E;, contains E;,. Therefore, v;, equals 1 on F; . It is easy to
see that g;, is an upper gradient for v;,. Passing to subsequences if necessary,
we may assume that v; converges to u pointwise pu-almost everywhere, that g;
converges to g pointwise p-almost everywhere and that for every i =1,2,...
we have

(13) Vit = vill ooy + 1Gir = Gill ooy <275
Since v; converges to w in LP9(X, ) and pointwise p-almost everywhere

on X while g; converges to g in LP?(X, 1) and pointwise p-almost everywhere
on X it follows via Corollary 2.8 that

(14) Jim (Jvill oo ) = lullracx,ny  and
I 115l 2o x, ) = Nl zrnx,)-
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This, (11) and (12) yield
(15) sy + 191 E . = Hm il R e < 9P +e.
For j=1,2,... we set

w; =supv; and g =supg;.
> >
It is easy to see that w; =1 on E. We claim that g; is a p,g-weak upper
gradient for w;. Indeed, for every k> j, let
Wj = Sup v;.

k>i>j
Via Lemma 3.15 and finite induction, it follows easily that g; is a p, g-weak
upper gradient for every w;; whenever k> j. It is easy to see that w; =
limy,_, o0 wj 1 pointwise in X. This and Lemma 3.10 imply that g; is indeed a
p,g-weak upper gradient for w;.

Moreover,
I~ k-1
(16) wy <vj+ Y fvipr— v and G <G+ Y [Girr — Gil-
i=j i=j
Thus,
o
lw;ll Lo (x < il eaew + D Ivie = vill oo
i=j
<lvjllpragx,y +277
and

oo
1951 oo x) < NG5l ooy + D NG = Gill oo
i=j
<1l Loa(x ) + 277,

which implies that w;, g; € L?9(X, u). Thus, w; € A(E) with p, g-weak upper
gradient g;. We notice that 0 < g =inf;>1g; p-almost everywhere on X
and 0 < v =inf;>; w; p-almost everywhere on X. Since w; and g; are in
LP9(X, i), the absolute continuity of the p, g-norm (see Bennett and Sharpley
[1, Proposition 1.3.6] and the discussion after Definition 2.1) yields

(A7) Jim ooy —ullrace, =0 and - lim [1g; = gllLeacxm =0.
By using (15), (17), and Corollary 2.8, we see that
Cap,, ,(E)"/” < Jim [l [ §s.era = el 0 + 190 E000x ) < Lalv ..

By letting € — 0, we get the converse inequality so (ii) is proved.
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(iii) We can assume without loss of generality that

ZCappq q/p<oo

For i=1,2,... let u; € A(F;) with upper gradient g; such that
0<u; <1 and [uil|%, 1oa < Cap,  (E:)P + 27"

Let u:= (350, uf)/7 and g:= (352, ¢7)'/9. We notice that u > 1 on E.
By repeating the argument from the proof of Theorem 3.2 (iii), we see that
u,g € LP9(X, p) and

oo
”uH%p,q(X’p,) + HgH%p,q(x,#) < Z(”ui”qu,q(X’ﬂ) + ”gi”%p,q(xuu))
=1

o0
<2+ Z Capnq(E,;)‘J/”.

i=1
We are done with the case 1 < ¢ < p as soon as we show that u € A(FE) and that
g is a p, g-weak upper gradient for u. It follows easily via Corollary 3.14 and
finite induction that g is a p, g-weak upper gradient for u,, := (Zl<2<n NHt/a
for every m > 1. Since u(z) = lim;_, u;(x) < 0o on X \ F, where F = {.13 €
X : u(z) = oo} it follows from Lemma 3.10 combined with the fact that u €
LP9(X, 1) that g is in fact a p, g-weak upper gradient for u. This finishes the
proof for the case 1 < ¢ <p.

(iv) We can assume without loss of generality that

oo
D Cap, (B
i=1

For i=1,2,... let u; € A(E;) with upper gradients g; such that
0<u; <1 and |jui||%1 r.a < Cap, ,(E;) + g2t
Let u:=sup,;>; u; and g :=sup,;~, g;- We notice that u=1on E. Moreover,

via Proposition 2.6 it follows that u,g € LP7(X, 1) with

oo

||u“ip,q(x,u) + Hng[)lp-,q(X#) S Z(HulHLp q 7H) + ||gi||lzpqq(X,M))
=1

o0
<2+ Z Cap,, ,(E;).
i=1
We are done with the case p < ¢ < oo as soon as we show that u € A(E)
and that g is a p,¢-weak upper gradient for u. Via Lemma 3.15 and finite
induction, it follows that g is a p, g-weak upper gradient for u,, := max;<;<n u;
for every m > 1. Since u(x) = lim; o u;(z) pointwise on X, it follows via
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Lemma 3.10 that g is in fact a p,g-weak upper gradient for u. This finishes
the proof for the case p < ¢ < cc. O

REMARK 5.3. We make a few remarks.

(i) Suppose p is nonatomic and 1 < g < co. By mimicking the proof of
Theorem 5.2 (ii) and working with the (p, ¢)-norm and the (p, q)-capacity, we
can also show that

}3& Cap(p,q) (Ei) = Capp ) (E)
whenever By CE,C---CE=J, E;C X.

(ii) Moreover, if Cap,, , is an outer capacity then it follows immediately

that
lim Cap, ,(K;) = Cap, ,(K)

1—00
whenever (K;)2, is a decreasing sequence of compact sets whose intersection
set is K. We say that Cap, , is an outer capacity if for every 2 C X we have

Cap,, ,(E) =inf{Cap, ,(U) : ECU C X,U open}.

(iii) Any outer capacity satisfying properties (i) and (ii) of Theorem 5.2 is
called a Choquet capacity. (See Appendix IT in Doob [9].)

We recall that if A C X, then I'4 is the family of curves in I'ject that
intersect A and FX is the family of all curves in 'y such that the Hausdorff
one-dimensional measure H1 (|| N A) is positive. The following lemma will be
useful later in this paper.

LEMMA 5.4. If F C X is such that Cap,, ,(F) =0, then Mod,, ,(T'r) = 0.

Proof. We follow Shanmugalingam [27]. We can assume without loss of gen-
erality that ¢ # p. Since Cap,, ,(F') =0, for each positive integer i there exists
a function v; € A(F) such that 0 <wv; <1 and such that ||vi||N1YL(p,q) <277,

», . .
Let u, := > v;. Then u, € NH" K (X, ) for each n, u,(z) is increasing
for each = € X, and for every m > n we have

n
||un - um”NLL(Pﬂ) < Z ”viHNLL(p,q) <27 0, asm—o0.
1=m-+1

Therefore, the sequence {u,}5°; is a Cauchy sequence in NLLE® (X, ).

Since {uy,}52,; Cauchy in NLL®? (X,p), it follows that it is Cauchy in
LP%(X, ). Hence by passing to a subsequence if necessary, there is a function
win LP9(X, u) to which the subsequence converges both pointwise p-almost
everywhere and in the L(®% norm. By choosing a further subsequence, again
denoted by {u;}2, for simplicity, we can assume that

[wi =@l Lo (x0) + 1901 | Lo () <277,
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where g; ; is an upper gradient of u; —u; for i < j. If g; is an upper gradient
of uy, then us = uy + (uz2 — u1) has an upper gradient g = g1 + g12. In general,
i—1
U; =up + Z(Uk-H —uy)
k=1
has an upper gradient
i—1
9i =91+ ng,kﬂ
k=1
for every ¢ > 2. For j <1 we have
i—1 i—1
—2k
g = g5l v (x ) < Z gk k11l v (x,) < 22 2
k=j k=3
<2172 50 asj— oo

Therefore, {g;}32, is also a Cauchy sequence in L9 (X, ), and hence
converges in the L®% norm to a nonnegative Borel function g. Moreover, we

have

ng - g”L(p,q)(XM) < 21-2

for every j > 1.

We define u by u(z) = lim;_, o u;(z) wherever the definition makes sense.
Since u; — © p-almost everywhere, it follows that v = u p-almost everywhere
and thus u € LP9(X, u). Let

E= {x €X: lim u;(x) = oo}.

11— 00

The function u is well defined outside of E. In order for the function w to
be in the space NL.L"* (X, i), the function u has to be defined on almost all
paths by Proposition 4.4. To this end, it is shown that the p,g-modulus of
the family I'g is zero. Let I'y be the collection of all paths from I'iet such
that fyg = 00. Then we have via Theorem 3.4 that Mod, ,(I'1) = 0 since
g€ LPI(X, ).

Let I's be the family of all curves from I'yect such that limsup;_, f,y lg; —
g] > 0. Since ||g; — g Lr.a (X, ) <2172 for all j > 1, it follows via Theorem 3.6
that Mod,, ,(T'2) =0.

Since u € LP4(X, ) and E = {z € X : u(x) = oo}, it follows that u(E)=0
and thus Modp+ = 0. Therefore, Mod, ,(I'1 UT2 UT'L) =0. For any path,

7 in the family Tyect \ (I't UT2 UT), by the fact that + is not in T'L, there
exists a point y in |y|\ E. For any point z in |y|, since g; is an upper gradient
of u;, it follows that

i) — ui(y) < Jui(x) — ()| < / o

~
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Therefore,
@) i) + [ g

¥
Taking limits on both sides and using the fact that  is not in I'y U Ty, it
follows that

lim w;(z) < lim wu;(y) +/g =u(y) +/g < 00,
71— 00 71— 00 ~ Y

and therefore z is not in £. Thus ' cT'; UT'y U FJEC and Mod, ,(T'g) = 0.
Therefore, g is a p, g-weak upper gradient of u, and hence v € NV (X, ).
For each x not in E, we can write u(x) = lunz_)ooul( )<oo. If F\E is
nonempty, then

ulp\B > Un|p\ B = ZW|F\E =n
i=1
for arbitrarily large n, yielding that u|p\ g = co. But this impossible, since z

is not in the set E. Therefore F' C F, and hence I'r C I'g. This finishes the
proof of the lemma. O

Next, we prove that (N2 (X, ), || - | y1.2.0 ) is a Banach space.

THEOREM 5.5. Suppose 1 <p< oo and 1 < q<oo. Then (NLLM(X7 1),
Il HNLL(p,q)) is a Banach space.

Proof. We follow Shanmugalingam [27]. We can assume Without loss of
generality that ¢ # p. Let {u;}22, be a Cauchy sequence in N7 (X, ).
To show that this sequence is convergent in N2 (X, ), it suffices to show
that some subsequence is convergent in N1"" (X, ). Passing to a further
subsequence if necessary, it can be assumed that

igr = will Lo (x,0) + 19041l Lo (x,0) <27,

where g; ; is an upper gradient of u; —u; for ¢ < j. Let
Ej={zeX: |uji(z) —uj(z)| >277}.
Then 27|uj1 — u;| € A(E;) and hence
Cap,, (E )1/p < Vlujpr =yl jyrera <27 7.

Let Fj = UpZ; Ex. Then
Cap,, ,( 1/7[’<ZCap (Fk) Up < 9l=7,

Let F = ﬂoo F;. We notice that Capp F)=0. If z is a point in X \ F,
there exists j > 1 such that z is not in F}; = U,c . Fr. Hence for all k> j, = is
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not in Ey. Thus, |ugr1(x) — ug(z)| <27F for all k > j. Therefore, whenever
Il >k > j we have that
lur(2) — w(z)| < 21k,

Thus, the sequence {ug(x)}72, is Cauchy for every x € X \ F. For every
x€X\F, let u(x) =1lim;_ o u;(x). For k< m,

m—1

Uy, = U, + Z (Un+1 — Up)-
n=~k

Therefore for each z in X \ F,
(18) u(r) = () + Z i () — un(2).
Noting by Lemma 5.4 that Mod, ,(I'r) =0 and that for each path v in

[iect \I'r equation (18) holds pointwise on ||, we conclude that Zzozk Inon+1
is a p,g-weak upper gradient of u — ug. Therefore,

LS
”u - uk)”Nl,L(qu) < ||u - Uk”L(Pﬁq)(X’#) + Z ||gn,n+1||[,(p»q)(x,p,)
n=~k
o0
< lu— Ulc”L(nq)(xyﬂ) + Z 92
n=~k
1-2k
<l —ukllpwo xu +2 —0 as k— o0.

Therefore, the subsequence converges in the norm of N»*"*(X, 1) to u. This
completes the proof of the theorem. O

6. Density of Lipschitz functions in NV1"" (X, )

6.1. Poincaré inequality. Now we define the weak (1,L??)-Poincaré in-
equality. Podbrdsky in [26] introduced a stronger Poincaré inequality in the
case of Banach-valued Newtonian Lorentz spaces.

DEFINITION 6.1. The space (X,d, ) is said to support a weak (1,LP?)-
Poincaré inequality if there exist constants C' > 0 and ¢ > 1 such that for
all balls B with radius r, all gy-measurable functions v on X and all upper
gradients g of u we have

llgxosllLea(x,u
1 — < L
(19) /Iu Bldu < Cr 0B

Here

ug = ﬁ/Bu(x) du(x)

whenever u is a locally p-integrable function on X.
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In the above definition, we can equivalently assume via Lemma 3.9 and
Corollary 2.8 that g is a p, ¢g-weak upper gradient of u. When p = ¢, we have
the weak (1,p)-Poincaré inequality. For more about the Poincaré inequality
in the case p = ¢, see Hajlasz and Koskela [14] and [17].

A measure p is said to be doubling if there exists a constant C' > 1 such
that

1(2B) < Cp(B)

for every ball B = B(z,r) in X. A metric measure space (X,d,u) is called
doubling if the measure p is doubling. Under the assumption that the measure
u is doubling, it is known that (X, d, ) is proper (that is, closed bounded
subsets of X are compact) if and only if it is complete.

Now we prove that if 1 < g <p, the measure p is doubling, and the space
(X,d, ) carries a weak (1,LP7)-Poincaré inequality, the Lipschitz functions
are dense in NUVL"" (X, ).

In order to prove that we need a few definitions and lemmas.

DEFINITION 6.2. Suppose (X,d) is a metric space that carries a doubling
measure u. For 1 < p < oo and 1 < ¢ < oo, we define the noncentered maximal
function operator by

luxB|l Lra(x,um)
M, ju(z) =sup —————=,
p,q ( ) B5% ‘u(B)l/p

where u € LP1(X, ).

LEMMA 6.3. Suppose (X,d) is a metric space that carries a doubling mea-
sure p. If 1 <q<p, then M, , maps L?9(X, ) to LP*°(X, ) boundedly and
moreover,

lim Nu({z€ X : My u(x)>\})=0.

A—o0

Proof. We can assume without loss of generality that 1 < g <p. For ev-
ery R >0 let Mﬁq be the restricted maximal function operator defined on
LP9(X, 1) by

luxsllzea(x,p)
ME u(z)= sup e
P Boadiam(B)<r  f(B)1/P

Denote Gy ={z € X : My qu(z) > A} and G¥ ={z € X : M u(x) > A\}. It
is easy to see that Gfl C sz HO0< Ry < Ry <oo and Gf’%GA as R — oo.

Fix R > 0. For every x € G, X\ >0, there exists a ball B(y,,r,) with
diameter at most R such that x € B(y,,r,) and such that

||UXB(yz,rz) ||I[),p,q(X,u) > )‘pM(B(ywa rw)) .

We notice that B(y;,7,) C GE. The set GI is covered by such balls and
then by Heinonen [15, Theorem 1.2] it follows that there exists a countable
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disjoint subcollection {B(z;,7;)}$2; such that the collection {B(z;,5r;)}2,
covers GL. Hence,

(6) <3 uBto50) <0 o)

=1
C oo
< ﬁ (Z ||UXB(zi,ri)

C
I[),P,q(X,u)> S ﬁ ||UXG§\2 ”ip,q(}g,”‘
i=1
The last inequality in the sequence was obtained by applying Proposition 2.4.
(See also Chung, Hunt and Kurtz [5, Lemma 2.5].)

Thus, c c
N(Gf) < VHUXGQHZ[)}),Q(X,N) < VHUXGA ||1[),PMI(X7#)

for every R > 0. Since Gy =Jp.(GY, we obtain (by taking the limit as
R — )

C
N(G)\) < EHUXGA Hip»q(x’#)‘
The absolute continuity of the p,¢g-norm (see the discussion after Defini-

tion 2.1), the p,g-integrability of u and the fact that Gy — () p-almost ev-
erywhere as A — oo yield the desired conclusion. O

QUESTION 6.4. Is Lemma 6.3 true when p < q¢ < co?
The following proposition is necessary in the sequel.

PROPOSITION 6.5. Suppose 1 <p < oo and1 < q < oo. Ifu is a nonnegative
function in NVE"" (X, ), then the sequence of functions uy = min(u, k), k €
N, converges in the norm of N“E"" (X, u) to u as k — oco.

Proof. We notice (see Lemma 3.16) that uy € LP9(X, 1). That lemma also
yields easily u € N2 (X, 1) and moreover ||ug||y1.zea < ||ul|y1.ze-a for all
k>1.

Let By ={x € X : u(x) > k}. Since p is a Borel regular measure, there
exists an open set Oy, such that Ey C Oy and u(Oy) < u(Ex) +27%. In fact
the sequence (Of)?2; can be chosen such that Ogy1 C Oy, for all k> 1. Since
w(Ey) < %Hu”p it follows that

= Lra(X,p)?

C(p.q)
kP
Thus, limg_,e0 #4(O) = 0. We notice that u =wuy on X \ Oy. Thus, 2gx0, is
a p,g-weak upper gradient of u — u; whenever g is an upper gradient for u
and ug. See Lemma 4.6. The fact that Oy — @) u-almost everywhere and the
absolute continuity of the (p,¢)-norm yield

1(Or) < u(Ey) +27% <

el o + 275
(X,p)

limsup [[u — ugl| y1, o0
k—o00

< 211?8up(||u><0k e (x,0) + lgxoull Lo (x,0)) =0 0
—00
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COUNTEREXAMPLE 6.6. For g = oo, Proposition 6.5 is not true. Indeed,
let n > 2 be an integer and let 1 < p <n be fixed. Let X = B(0,1)\ {0} C R",
endowed with the Euclidean metric and the Lebesgue measure.

Suppose first that 1 <p <n. Let u, and g, be defined on X by

up(x) = \x|1_% —1 and gp(z)= (% - 1) |1’|_%.

It is easy to see that wu,,g, € LP°>°(X,m,). Moreover (see, for instance,
Hajlasz [13, Proposition 6.4]), g, is the minimal upper gradient for u,. Thus
u, € NV (X, m,,). For every integer k > 1, we define u, ) and g, on X
by

() = k if 0<|z| < (k+1)77,
Pk ZF =1 i (k+ 1) <z <1

and

oo Dx|™F if0<|z]<(k+1)77,
ap () = (3 =Dl ! el < (ke +1)
0 if (k+1)p—= <|z| < 1.

We notice that u, ; € NM2"7 (X, m,) for all k > 1. Moreover, via [13, Propo-
sition 6.4] and Lemma 4.6, we see that g, is the minimal upper gradi-
ent for u, — up for every k> 1. Since gpr 0 on X as k — oo and
N9p. |l roe (x,mn) = I9pll Lo (x,mn) = C(n,p) >0 for all k> 1, it follows that
up, 1, does not converge to u, in NV (X, m,) as k — oco.

Suppose now that p =n. Let u, and g, be defined on X by

1 1
=In— d =—.
Un(x) n ‘-/El an gn(x) |l‘|
It is easy to see that w,,g, € LP*>°(X,m,). Moreover (see, for instance,
Hajtasz [13, Proposition 6.4]), g, is the minimal upper gradient for w,,. Thus,
u, € NYL"7(X,m,). For every integer k > 1 we define Un i and gpk on X
by
Int ifeF<|z[<1

||

k if 0 < |z|<e” ¥,
un,k( ) =

and
Loifo< |z <e®
Tl ! ’
I (@) {0 if e <2 < 1.
We notice that wy,j € NLL"’OO(X,mn) for all k> 1. Moreover, via [13,
Proposition 6.4] and Lemma 4.6 we see that g, ; is the minimal upper gra-
dient for u, — u, for every k> 1. Since g, \ 0 on X as k — oo and
lgn,kllLrooe (x,mn) = llgnllLrooe (x,m,) = C(n) >0 for all k> 1, it follows that
Un, i does not converge to u, in NLLn’m(X, my) as k — oo.

The following lemma will be used in the paper.
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LEMMA 6.7. Let fi € NYY"" (X, ) be a bounded Borel function with p,q-
weak upper gradient g € LP9(X, p) and let fo be a bounded Borel function with
p, q-weak upper gradient go € LP4(X, ). Then f3:= fifo € NY" (X, 1) and
93 :=|filg2 + 2|91 is a p,q-weak upper gradient of f3.

Proof. Tt is easy to see that f3 and g3 are in LP9(X, u). Let T'g C Tyect be
the family of curves on which fv (g1+9g2) = 0o. Then it follows via Theorem 3.4

that Mod,, ,(T'g) =0 because g1 + g2 € LP1(X, ).
Let I'1 ; CT'vect, 2 = 1,2 be the family of curves for which

1£:(4(0)) = £ (4(e())| < L o

is mot satisfied. Then Modr, , = 0,i =1,2. Let I't C I'tect be the family
of curves that have a subcurve in I'; ; Ul 3. Then F(I'y; UTq2) C F(I'y)
and thus Mod,, 4(I'1) < Mod, 4(I'1,1 UT'1 2) = 0. We notice immediately that
MOdp,q (FO @] Fl) =0.

Fix ¢ > 0. By using the argument from Lemma 1.7 in Cheeger [4], we see
that

|£5(+(0)) = S5 (v (£(1))|
g/o " (11 (v()) [ +2)g2(v(9)) + (|£2(v(5) | + €)1 (v(5)) ds

for every curve v in I'yeet \ (o UT'1). Letting € — 0 we obtain the desired
claim. O

Fix x¢ € X. For each integer j > 1 we consider the function

1 if d(£07£)§]_1a
ni(z) =< j—d(wo,x) if j—1<d(wo,z) <7,
0 if d(xzo,x) > j.

LEMMA 6.8. Suppose 1 < q < oo. Let u be a bounded function in the
space NV (X ). Then the function v; = un; is also in NV (X, )
where n; is defined as above. Furthermore, the sequence v; converges to u
in NVEU (X, ).

Proof. If X is bounded, the claims of the lemma are trivial. Thus, we
can assume without loss of generality that X is unbounded. Moreover, we
can also assume without loss of generality that w > 0. Let g € LP9(X, u)
be an upper gradient for u. It is easy to see by invoking Lemma 4.6 that
hj = XB(20.j)\B(xo,j—1) 18 & P,q-weak upper gradient for n; and for 1 —n;.
By using Lemma 6.7, we see that v; € NUE""(X, 1) and that g; == uhj + gn;
is a p,g-weak upper gradient for v;. By using Lemma 6.7, we notice that
Ej :=uh; +g(1—mn;) is a p,g-weak upper gradient for v —v;. We have in fact

(20)  0<u—v; Suxx\Boj-1) and hy; < (u+g)Xx\Blagj-1)
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for every j > 1. The absolute continuity of the (p,q)-norm when 1 < ¢ < oo
(see the discussion after Definition 2.1) together with the p, g-integrability of
u,g and (20) yield the desired claim. (]

Now we prove the density of the Lipschitz functions in N2 (X, 1) when
1 < ¢ < p. The case ¢ = p was proved by Shanmugalingam. (See [27] and [28].)

THEOREM 6.9. Let 1 < g <p<oo. Suppose that (X,d,pn) is a doubling
melric measure space that carries a weak (1, LP?)-Poincaré inequality. Then
the Lipschitz functions are dense in NV (X, ).

Proof. We can consider only the case 1 < g < p because the case ¢ =p was
proved by Shanmugalingam in [27] and [28]. We can assume without loss of
generality that u is nonnegative. Moreover, via Lemmas 6.5 and 6.7 we can
assume without loss of generality that u is bounded and has compact support
in X. Choose M >0 such that 0 <u <M on X. Let g € LP9(X, 1) be a
p,q-weak upper gradient for u. Let o > 1 be the constant from the weak
(1, LP9)-Poincaré inequality.

Let Gy :=={z € X : M, q9(x) > A}. If z is a point in the closed set X \ G,
then for all » > 0 one has that

1 / ||gXB(m or) ||LP7‘1(X n)
i U—UB(z,m|du < Cr y :
#(B(@,7)) JB(ar) = p | w(B(z,or))H/P
< CrMp qa9(x) < CAr.

Hence, for s € [r/2,r] one has that

1
‘uBz,s _uBz,r|§7/ |u_uB:r,r|d:U/
() 7 TEEDN= W(B(w,9)) Ja,s) )
W(Ba,r) 1

< U—UB(z.|du < CAr
W(B(w.s) B /B@,m' Ba)|

whenever z is in X \ G. For a fixed s € (0,7/2) there exists an integer k > 1
such that 27%r < 2s < 27Ftlp Then

k—1
|7-"B(x,s) - uB(x,r)‘ < |uB(ac,s) - uB(m,Z*’“r)| + Z |UB(w,2—i—1r) - uB(ac,Z”’r)'
=0
k
<CA <Z 2_1r> < CAr.
=0

For any sequence 7; \, 0 we notice that (up(s,r,))i2; is a Cauchy sequence for
every point z in X \ G. Thus, on X \ G we can define the function

up(x) = }ig%uB(m’r).

We notice that uy(x) =u(x) for every Lebesgue point z in X \ Gj.
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For every z,y in X \ G we consider the chain of balls {B;}7° where

B; = B(z,2'"d(z,y)), i<0 and B;=B(y,2' 'd(z,y)), i>0.

For every two such points = and y, we have that they are Lebesgue points for
u) by construction and hence

’UA(I) - u)\(y)| S Z |U’Bi - UBi+1| < C)\d(l’,y),
where C depends only on the data on X. Thus, uy is CA-Lipschitz on X \ G,.
By construction it follows that 0 <wuy <M on X \ G. Extend uy as a C\-
Lipschitz function on X (see McShane [25]) and denote the extension by vy.
Then vy >0 on X since uy >0 on X \ Gy. Let wy :=min(vy, M). We notice
that wy is a nonnegative C'A-Lipschitz function on X since vy is. Moreover,
wy =v) =uy on X \ G whenever A > M.
Since u = w) p-almost everywhere on X \ G, whenever A > M, we have

llu = wrlloacx,n = [[(w = w)XGx || oo (x )

< Nluxe, llzracx ) + C 0, ) A(GA) P

whenever A > M. The absolute continuity of the p,g-norm when 1 <q¢<p
together with Lemma 6.3 imply that

Ahjgo [l = wxll oo (x,0) = 0-

Since u — wy = 0 p-almost everywhere on the closed set G, it follows via
Lemma 4.6 that (CA + g)x¢a, is a p,¢-weak upper gradient for u —wy. By
using the absolute continuity of the p,g-norm when 1 < g < p together with
Lemma 6.3, we see that

Jim || CA+g)xa, =0.

||LP (X, )

This finishes the proof of the theorem. U
Theorem 6.9 yields the following result.

PROPOSITION 6.10. Let 1 < g <p < oco. Suppose that (X,d, ) satisfies the
hypotheses of Theorem 6.9. Then Cap, , is an ouler capacity.

In order to prove Proposition 6.10, we need to state and prove the fol-
lowing proposition, thus generalizing Proposition 1.4 from Bjorn, Bjorn and
Shanmugalingam [3].

PROPOSITION 6.11 (See [3, Proposition 1.4]). Let 1<p<oo and 1 <¢<
oo. Suppose that (X,d,u) is a proper metric measure space. Let E C X be
such that Cap,, ,(E) =0. Then for every e >0 there exists an open set U D E
with Cap,, ,(U) <e.
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Proof. We adjust the proof of Proposition 1.4 in Bjorn, Bjérn and Shan-
mugalingam [3] to the Lorentz setting with some modifications. It is enough
to consider the case when ¢ # p. Due to the countable subadditivity of
Capp,q(-)l/ P we can assume without loss of generality that F is bounded.
Moreover, we can also assume that E is Borel. Since Cap, ,(E) =0, we
have xg € NV (X, ) and ||xg| yr.ra = 0. Let € € (0,1) be arbitrary. Via
Lemma 3.9 and Corollary 2.8, there exists g € LP9(X, ) such that g is an
upper gradient for xg and ||g||zr.a(x,.) <e. By adapting the proof of the
Vitali-Carathéodory theorem to the Lorentz setting (see Folland [10, Propo-
sition 7.14]) we can find a lower semicontinuous function p € LP4(X, ) such
that p > g and [|p — gl|Lr.a(x,u) < €. Since Cap,, ,(E) =0, it follows immedi-
ately that p(FE)=0. By using the outer regularity of the measure y and the
absolute continuity of the (p,¢)-norm, there exists a bounded open set V O E
such that

9]
v llzeacem + 1[0+ DXV || ooy < 3

u(z) = min{l,irwlf/ﬁ/(p—i- 1)},

where the infimum is taken over all the rectifiable (including constant) curves
connecting x to the closed set X \ V. We notice immediately that 0 <« <1 on
X and u=0o0n X\ V. By Bjorn, Bjorn and Shanmugalingam [3, Lemma 3.3]
it follows that u is lower semicontinuous on X and thus the set U = {z €
X : u(z) > 3} is open. We notice that for z € E and every curve connecting
x to some y € X \ V, we have

/<p+1>z/p2xE<x>—xE<y>=1.

Thus, u=1on E and ECU CV. From [3, Lemmas 3.1 and 3.2] it follows
that (p+ 1)xv is an upper gradient of uw. Since 0 < u < yy and u is lower
semicontinuous, it follows that u € NY"* (X, u). Moreover, 2u € A(U) and
thus

Capp,q(U)l/p < 2luf| yrzra < Q(HUHL%‘I(X,N) + H(p"' 1)XVHLp,q(X_#))

<2(lIxvllze o + [0+ DXV | g ) <&

Let

This finishes the proof of Proposition 6.11. O
Now we prove Proposition 6.10.

Proof. We start the proof of Proposition 6.10 by showing that every func-
tion u in NME""(X, 1) is continuous outside open sets of arbitrarily small
p,g-capacity. (Such a function is called p, g-quasicontinuous.) Indeed, let u
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be a function in NM*"*(X, ). From Theorem 6.9 there exists a sequence
{u;}32, of Lipschitz functions on X such that

|wj — ul| y1,2ra <272 for every integer j > 1.
For every integer j > 1 let
Ej={zeX: |ujp(x)—u;(z)|>277}.
Then all the sets E; are open because the all functions u; are Lipschitz. By
letting F = (72, Uy—, Ex and applying the argument from Theorem 5.5 to the
sequence {uy,}%2, which is Cauchy in N1E"%(X, ), we see that Cap,, ,(F) =
0 and the sequence {ug} converges in N“I""(X,u) to a function @ whose
restriction on X \ F' is continuous. Thus, ||u — @||y1,.r.« =0 and hence if we
let E={z € X : u(r) #u(z)}, we have Cap,, ,(E)=0. Therefi)re Cap,, ,(E'U
F) =0 and hence, via Proposition 6.11 we have that u = @ outside open
supersets of £ U F' of arbitrarily small p, g-capacity. This shows that u is
quasicontinuous.
Now we fix £ C X and we show that
Cap,, ,(E) = inf{Cappﬂ(U),E cUcCX,U open}.
For a fixed € € (0,1) we choose u € A(F) such that 0 <« <1 on X and such
that
]| 1,200 < Cap,, ,(E)/P +e.
We have that u is p, g-quasicontinuous and hence there is an open set V' such
that Cappﬂ(V)l/ P < and such that u|x\y is continuous. Thus, there exists
an open set U such that U\ V={ze X :u(x)>1—-c}\VDOE\V. We

see that UUV = (U \ V)UV is an open set containing FUV = (E\V)UV.
Therefore,

Cap, ,(E)"/? < Cap,, ,(UUV)'? < Cap, ,(U\ V)/? + Cap,, ,(V)'/?

<

——lull s ems + Cap, (V)77

1
= 1—¢ (Capp,q(E)l/p +e) +e.
Letting € — 0 finishes the proof of Proposition 6.10. O

Theorems 5.2 and 6.9 together with Proposition 6.10 and Remark 5.3 yield
immediately the following capacitability result. (See also Appendix II in Doob

[9].)

THEOREM 6.12. Let 1 < g <p<oo. Suppose that (X,d,p) satisfies the
hypotheses of Theorem 6.9. The set function E ~ Cap, ,(FE) is a Choquet
capacity. In particular, all Borel subsets (in fact, all analytic subsets) E of X
are capacitable, that is

Cap, ,(E) = Sup{Capp’q(K) :KCFE K compact}
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enever E C X is Borel (or analytic).

REMARK 6.13. Counterexample 6.6 can be used to construct a counterex-

ample to the density result for NY2”™ in the Euclidean setting for 1 <p<n
and g = oo.
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