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NEWTONIAN LORENTZ METRIC SPACES

ŞERBAN COSTEA AND MICHELE MIRANDA JR.

Abstract. This paper studies Newtonian Sobolev–Lorentz
spaces. We prove that these spaces are Banach. We also study

the global p, q-capacity and the p, q-modulus of families of rec-
tifiable curves. Under some additional assumptions (that is, X

carries a doubling measure and a weak Poincaré inequality), we

show that when 1 ≤ q < p the Lipschitz functions are dense in

those spaces; moreover, in the same setting we show that the

p, q-capacity is Choquet provided that q > 1. We also provide

a counterexample to the density result in the Euclidean setting
when 1< p≤ n and q =∞.

1. Introduction

In this paper, (X,d) is a complete metric space endowed with a nontrivial
Borel regular measure μ. We assume that μ is finite and nonzero on nonempty
bounded open sets. In particular, this implies that the measure μ is σ-finite.
Further restrictions on the space X and on the measure μ will be imposed
later.

The Sobolev–Lorentz relative p, q-capacity was studied in the Euclidean
setting by Costea [6] and Costea and Maz’ya [8]. The Sobolev p-capacity was
studied by Maz’ya [24] and Heinonen, Kilpeläinen and Martio [16] in Rn and
by Costea [7] and Kinnunen and Martio [21] and [22] in metric spaces. The
relative Sobolev p-capacity in metric spaces was introduced by J. Björn in [2]
when studying the boundary continuity properties of quasiminimizers.

After recalling the definition of p, q-Lorentz spaces, we study some useful
properties of the p, q-modulus of families of curves needed to give the notion of
p, q-weak upper gradients. Then, following the approach of Shanmugalingam
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in [27] and [28], we generalize the notion of Newtonian Sobolev spaces to the
Lorentz setting. There are several other definitions of Sobolev-type spaces in
the metric setting when p = q; see Haj�lasz [12], Heinonen and Koskela [17],
Cheeger [4], and Franchi, Haj�lasz and Koskela [11]. It has been shown that
under reasonable hypotheses, the majority of these definitions yields the same
space; see Franchi, Haj�lasz and Koskela [11] and Shanmugalingam [27].

We prove that these spaces are Banach. In order to do this, we develop a
theory of the Sobolev p, q-capacity. Some of the ideas used here when proving
the properties of the p, q-capacity follow Kinnunen and Martio [21] and [22]
and Costea [7]. We also use this theory to prove that, in the case 1≤ q < p,
Lipschitz functions are dense in the Newtonian Sobolev–Lorentz space if the
space X carries a doubling measure μ and a weak (1,Lp,q)-Poincaré inequality.
Newtonian Banach-valued Sobolev–Lorentz spaces were studied by Podbrdsky
in [26].

We prove that under certain restrictions (when 1 < q ≤ p and the space
(X,d) carries a doubling measure μ and a certain weak Poincaré inequality)
this capacity is a Choquet set function.

We recall the standard notation and definitions to be used throughout
this paper. We denote by B(x, r) = {y ∈X : d(x, y)< r} the open ball with
center x ∈ X and radius r > 0, while B(x, r) = {y ∈ X : d(x, y) ≤ r} is the
closed ball with center x ∈ X and radius r > 0. For a positive number λ,
λB(a, r) =B(a,λr) and λB(a, r) =B(a,λr).

Throughout this paper, C will denote a positive constant whose value is
not necessarily the same at each occurrence; it may vary even within a line.
C(a, b, . . .) is a constant that depends only on the parameters a, b, . . . . For
E ⊂X , the boundary, the closure, and the complement of E with respect to
X will be denoted by ∂E, E, and X \E, respectively; diamE is the diameter
of E with respect to the metric d.

2. Lorentz spaces

Let f : X → [−∞,∞] be a μ-measurable function. We define μ[f ], the
distribution function of f as follows (see Bennett and Sharpley [1, Definition
II.1.1]):

μ[f ](t) = μ
({

x ∈X :
∣∣f(x)∣∣> t

})
, t≥ 0.

We define f∗, the nonincreasing rearrangement of f by

f∗(t) = inf
{
v : μ[f ](v)≤ t

}
, t≥ 0.

(See Bennett and Sharpley [1, Definition II.1.5].) We note that f and f∗ have
the same distribution function. For every positive α, we have(

|f |α
)∗

=
(
|f |∗

)α
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and if |g| ≤ |f | μ-almost everywhere on X , then g∗ ≤ f∗. (See [1, Proposition
II.1.7].) We also define f∗∗, the maximal function of f∗ by

f∗∗(t) =mf∗(t) =
1

t

∫ t

0

f∗(s)ds, t > 0.

(See [1, Definition II.3.1].)
Throughout the paper, we denote by p′ the Hölder conjugate of p ∈ [1,∞].
The Lorentz space Lp,q(X,μ), 1< p<∞, 1≤ q ≤∞, is defined as follows:

Lp,q(X,μ) =
{
f : X → [−∞,∞] : f is μ-measurable, ‖f‖Lp,q(X,μ) <∞

}
,

where

‖f‖Lp,q(X,μ) = ‖f‖p,q =

⎧⎨⎩
(
∫∞
0

(t1/pf∗(t))q dt
t )

1/q, 1≤ q <∞,

supt>0 tμ[f ](t)
1/p = sups>0 s

1/pf∗(s), q =∞.

(See Bennett and Sharpley [1, Definition IV.4.1] and Stein and Weiss [29, p.
191].)

If 1 ≤ q ≤ p, then ‖ · ‖Lp,q(X,μ) represents a norm, but for p < q ≤ ∞ it
represents a quasinorm, equivalent to the norm ‖ · ‖L(p,q)(X,μ), where

‖f‖L(p,q)(X,μ) = ‖f‖(p,q) =

⎧⎨⎩
(
∫∞
0

(t1/pf∗∗(t))q dt
t )

1/q, 1≤ q <∞,

supt>0 t
1/pf∗∗(t), q =∞.

(See [1, Definition IV.4.4].) Namely, from [1, Lemma IV.4.5] we have that

‖f‖Lp,q(X,μ) ≤ ‖f‖L(p,q)(X,μ) ≤ p′‖f‖Lp,q(X,μ)

for every q ∈ [1,∞] and every μ-measurable function f : X → [−∞,∞].
It is known that (Lp,q(X,μ),‖ · ‖Lp,q(X,μ)) is a Banach space for 1≤ q ≤ p,

while (Lp,q(X,μ),‖ · ‖L(p,q)(X,μ)) is a Banach space for 1< p<∞, 1≤ q ≤∞.
In addition, if the measure μ is nonatomic, the aforementioned Banach spaces
are reflexive when 1< q <∞. (See Hunt [18, pp. 259–262] and Bennett and
Sharpley [1, Theorem IV.4.7 and Corollaries I.4.3 and IV.4.8].) (A measure
μ is called nonatomic if for every measurable set A of positive measure there
exists a measurable set B ⊂A such that 0< μ(B)< μ(A).)

Definition 2.1 (See [1, Definition I.3.1]). Let 1< p <∞ and 1≤ q ≤∞.
Let Y = Lp,q(X,μ). A function f in Y is said to have absolutely continuous
norm in Y if and only if ‖fχEk

‖Y → 0 for every sequence Ek of μ-measurable
sets satisfying Ek →∅ μ-almost everywhere.

Let Ya be the subspace of Y consisting of functions of absolutely continuous
norm and let Yb be the closure in Y of the set of simple functions. It is known
that Ya = Yb whenever 1 ≤ q ≤∞. (See Bennett and Sharpley [1, Theorem
I.3.13].) Moreover, since (X,μ) is a σ-finite measure space, we have Yb = Y
whenever 1≤ q <∞. (See Hunt [18, pp. 258–259].)
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We recall (see Costea [6]) that in the Euclidean setting (that is, when
μ=mn is the n-dimensional Lebesgue measure and d is the Euclidean distance
on R

n) we have Ya 
= Y for Y = Lp,∞(X,mn) whenever X is an open subset
of Rn. Let X =B(0,2) \ {0}. As in Costea [6] we define u : X →R,

u(x) =

{
|x|−n

p if 0< |x|< 1,
0 if 1≤ |x| ≤ 2.

(1)

It is easy to see that u ∈ Lp,∞(X,mn) and moreover,

‖uχB(0,α)‖Lp,∞(X,mn) = ‖u‖Lp,∞(X,mn) =mn

(
B(0,1)

)1/p
for every α > 0. This shows that u does not have absolutely continuous
weak Lp-norm and therefore Lp,∞(X,mn) does not have absolutely continuous
norm.

Remark 2.2. It is also known (see [1, Proposition IV.4.2]) that for every
p ∈ (1,∞) and 1≤ r < s≤∞ there exists a constant C(p, r, s) such that

(2) ‖f‖Lp,s(X,μ) ≤C(p, r, s)‖f‖Lp,r(X,μ)

for all measurable functions f ∈ Lp,r(X,μ). In particular, the embedding
Lp,r(X,μ) ↪→ Lp,s(X,μ) holds.

Remark 2.3. By using the results contained in Bennett and Sharpley [1,
Proposition II.1.7 and Definition IV.4.1] it is easy to see that for every p ∈
(1,∞), q ∈ [1,∞] and 0<α≤min(p, q), we have

‖f‖αLp,q(X,μ) = ‖fα‖
L

p
α

,
q
α (X,μ)

for every nonnegative function f ∈ Lp,q(X,μ).

2.1. The subadditivity and superadditivity of the Lorentz quasi-
norms. We recall the known results and present new results concerning the
superadditivity and the subadditivity of the Lorentz p, q-quasinorm. For the
convenience of the reader, we will provide proofs for the new results and for
some of the known results.

The superadditivity of the Lorentz p, q-norm in the case 1 ≤ q ≤ p was
stated in Chung, Hunt and Kurtz [5, Lemma 2.5].

Proposition 2.4 (See [5, Lemma 2.5]). Let (X,μ) be a measure space.
Suppose that 1 ≤ q ≤ p. Let {Ei}i≥1 be a collection of pairwise disjoint μ-
measurable subsets of X with E0 =

⋃
i≥1Ei and let f ∈ Lp,q(X,μ). Then∑

i≥1

‖χEif‖
p
Lp,q(X,μ) ≤ ‖χE0f‖

p
Lp,q(X,μ).

A similar result concerning the superadditivity was obtained in Costea and
Maz’ya [8, Proposition 2.4] for the case 1 < p < q <∞ when X = Ω was an
open set in R

n and μ was an arbitrary measure. That result is valid for a
general measure space (X,μ).
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Proposition 2.5. Let (X,μ) be a measure space. Suppose that 1 < p <
q <∞. Let {Ei}i≥1 be a collection of pairwise disjoint μ-measurable subsets
of X with E0 =

⋃
i≥1Ei and let f ∈ Lp,q(X,μ). Then∑
i≥1

‖χEif‖
q
Lp,q(X,μ) ≤ ‖χE0f‖

q
Lp,q(X,μ).

Proof. We mimic the proof of Proposition 2.4 from Costea and Maz’ya [8].
We replace Ω with X . �

We have a similar result for the subadditivity of the Lorentz p, q-quasinorm.
When 1 < p < q ≤∞ we obtain a result that generalizes Theorem 2.5 from
Costea [6].

Proposition 2.6. Let (X,μ) be a measure space. Suppose that 1 < p <
q ≤∞. Suppose fi, i = 1,2, . . . , is a sequence of functions in Lp,q(X,μ) and
let f0 = supi≥1 |fi|. Then

‖f0‖pLp,q(X,μ) ≤
∞∑
i=1

‖fi‖pLp,q(X,μ).

Proof. Without loss of generality we can assume that all the functions
fi, i= 1,2, . . . are nonnegative. We have to consider two cases, depending on
whether p < q <∞ or q =∞.

Let μ[fi] be the distribution function of fi for i= 0,1,2, . . . . It is easy to
see that

(3) μ[f0](s)≤
∞∑
i=1

μ[fi](s) for every s≥ 0.

Suppose that p < q <∞. We have (see Kauhanen, Koskela and Malý [20,
Proposition 2.1])

(4) ‖fi‖pLp,q(X,μ) =

(
p

∫ ∞

0

sq−1μ[fi](s)
q
p ds

) p
q

for i= 0,1,2, . . . . From this and (3), we obtain

‖f0‖pLp,q(Ω,μ) =

(
p

∫ ∞

0

sq−1μ[f0](s)
q
p ds

) p
q

≤
∑
i≥1

(
p

∫ ∞

0

sq−1μ[fi](s)
q
p ds

) p
q

=
∑
i≥1

‖fi‖pLp,q(Ω,μ).

Now, suppose that q =∞. From (3), we obtain

spμ[f0](s)≤
∑
i≥1

(
spμ[fi](s)

)
for every s > 0,
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which implies

(5) spμ[f0](s)≤
∑
i≥1

‖fi‖pLp,∞(X,μ) for every s > 0.

By taking the supremum over all s > 0 in (5), we get the desired conclusion.
This finishes the proof. �

We recall a few results concerning Lorentz spaces.

Theorem 2.7 (See [6, Theorem 2.6]). Suppose 1< p< q ≤∞ and ε ∈ (0,1).
Let f1, f2 ∈ Lp,q(X,μ). We denote f3 = f1 + f2. Then f3 ∈ Lp,q(X,μ) and

‖f3‖pLp,q(X,μ) ≤ (1− ε)−p‖f1‖pLp,q(X,μ) + ε−p‖f2‖pLp,q(X,μ).

Proof. The proof of Theorem 2.6 from Costea [6] carries verbatim. We
replace Ω with X . �

Theorem 2.7 has an useful corollary.

Corollary 2.8 (See [6, Corollary 2.7]). Suppose 1< p <∞ and 1≤ q ≤
∞. Let fk be a sequence of functions in Lp,q(X,μ) converging to f with respect
to the p, q-quasinorm and pointwise μ-almost everywhere in X . Then

lim
k→∞

‖fk‖Lp,q(X,μ) = ‖f‖Lp,q(X,μ).

Proof. The proof of Corollary 2.7 from Costea [6] carries verbatim. We
replace Ω with X . �

3. p, q-modulus of the path family

In this section, we establish some results about the p, q-modulus of families
of curves. Here (X,d,μ) is a metric measure space. We say that a curve γ in
X is rectifiable if it has finite length. Whenever γ is rectifiable, we use the
arc length parametrization γ : [0, 
(γ)]→X , where 
(γ) is the length of the
curve γ.

Let Γrect denote the family of all nonconstant rectifiable curves in X . It
may well be that Γrect = ∅, but we will be interested in metric spaces for which
Γrect is sufficiently large.

Definition 3.1. For Γ⊂ Γrect, let F (Γ) be the family of all Borel measur-
able functions ρ : X → [0,∞] such that∫

γ

ρ≥ 1 for every γ ∈ Γ.

Now for each 1< p<∞ and 1≤ q ≤∞ we define

Modp,q(Γ) = inf
ρ∈F (Γ)

‖ρ‖pLp,q(X,μ).

The number Modp,q(Γ) is called the p,q-modulus of the family Γ.
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3.1. Basic properties of the p, q-modulus. Usually, a modulus is a mono-
tone and subadditive set function. The following theorem will show, among
other things, that this is true in the case of the p, q-modulus.

Theorem 3.2. Suppose 1< p <∞ and 1≤ q ≤∞. The set function Γ→
Modp,q(Γ), Γ⊂ Γrect, enjoys the following properties:

(i) Modp,q(∅) = 0.
(ii) If Γ1 ⊂ Γ2, then Modp,q(Γ1)≤Modp,q(Γ2).
(iii) Suppose 1≤ q ≤ p. Then

Modp,q

( ∞⋃
i=1

Γi

)q/p

≤
∞∑
i=1

Modp,q(Γi)
q/p.

(iv) Suppose p < q ≤∞. Then

Modp,q

( ∞⋃
i=1

Γi

)
≤

∞∑
i=1

Modp,q(Γi).

Proof. (i) Modp,q(∅) = 0 because ρ≡ 0 ∈ F (∅).
(ii) If Γ1 ⊂ Γ2, then F (Γ2)⊂ F (Γ1) and hence Modp,q(Γ1)≤Modp,q(Γ2).
(iii) Suppose that 1≤ q ≤ p. The case p= q corresponds to the p-modulus

and the claim certainly holds in that case. (See, for instance, Haj�lasz [13,
Theorem 5.2 (3)].) So we can look at the case 1≤ q < p.

We can assume without loss of generality that

∞∑
i=1

Modp,q(Γi)
q/p <∞.

Let ε > 0 be fixed. Take ρi ∈ F (Γi) such that

‖ρi‖qLp,q(X,μ) <Modp,q(Γi)
q/p + ε2−i.

Let ρ := (
∑∞

i=1 ρ
q
i )

1/q . We notice via Bennett-Sharpley [1, Proposition II.1.7
and Definition IV.4.1] and Remark 2.3 applied with α= q that

(6) ρqi ∈ L
p
q ,1(X,μ) and ‖ρqi ‖L p

q
,1
(X,μ)

= ‖ρi‖qLp,q(X,μ).

for every i= 1,2, . . . . By using (6) and Remark 2.3 together with the definition
of ρ and the fact that ‖ · ‖

L
p
q
,1
(X,μ)

is a norm when 1≤ q ≤ p, it follows that

ρ ∈ F (Γ) and

Modp,q(Γi)
q/p ≤ ‖ρ‖qLp,q(X,μ) ≤

∞∑
i=1

‖ρi‖qLp,q(X,μ) <

∞∑
i=1

Modp,q(Γi)
q/p + 2ε.

Letting ε→ 0, we complete the proof when 1≤ q ≤ p.
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(iv) Suppose now that p < q ≤∞. We can assume without loss of generality
that ∞∑

i=1

Modp,q(Γi)<∞.

Let ε > 0 be fixed. Take ρi ∈ F (Γi) such that

‖ρi‖pLp,q(X,μ) <Modp,q(Γi) + ε2−i.

Let ρ := supi≥1 ρi. Then ρ ∈ F (Γ). Moreover, from Proposition 2.6 it follows
that ρ ∈ Lp,q(X,μ) and

Modp,q(Γ)≤ ‖ρ‖pLp,q(X,μ) ≤
∞∑
i=1

‖ρi‖pLp,q(X,μ) <
∞∑
i=1

Modp,q(Γi) + 2ε.

Letting ε→ 0, we complete the proof when p < q ≤∞. �
So we proved that the modulus is a monotone function. Also, the shorter

the curves, the larger the modulus. More precisely, we have the following
lemma.

Lemma 3.3. Let Γ1,Γ2 ⊂ Γrect. If each curve γ ∈ Γ1 contains a subcurve
that belongs to Γ2, then Modp,q(Γ1)≤Modp,q(Γ2).

Proof. F (Γ2)≤ F (Γ1). �
The following theorem provides an useful characterization of path families

that have p, q-modulus zero.

Theorem 3.4. Let Γ ⊂ Γrect. Then Modp,q(Γ) = 0 if and only if there
exists a Borel measurable function 0≤ ρ ∈ Lp,q(X,μ) such that

∫
γ
ρ=∞ for

every γ ∈ Γ.

Proof. Sufficiency. We notice that ρ/n ∈ F (Γ) for every n and hence

Modp,q(Γ)≤ lim
n→∞

‖ρ/n‖pLp,q(X,μ) = 0.

Necessity. There exists ρi ∈ F (Γ) such that ‖ρi‖L(p,q)(X,μ) < 2−i and
∫
γ
ρi ≥

1 for every γ ∈ Γ. Then ρ :=
∑∞

i=1 ρi has the required properties. �
Corollary 3.5. Suppose 1< p <∞ and 1≤ q ≤∞ are given. If 0≤ g ∈

Lp,q(X,μ) is Borel measurable, then
∫
γ
g <∞ for p, q-almost every γ ∈ Γrect.

The following theorem is also important.

Theorem 3.6. Let uk : X →R= [−∞,∞] be a sequence of Borel functions
which converge to a Borel function u : X →R in Lp,q(X,μ). Then there is a
subsequence (ukj )j such that∫

γ

|ukj − u| → 0 as j →∞,

for p, q-almost every curve γ ∈ Γrect.
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Proof. We follow Haj�lasz [13]. We take a subsequence (ukj )j such that

(7) ‖ukj − u‖Lp,q(X,μ) < 2−2j .

Set gj = |ukj − u|, and let Γ⊂ Γrect be the family of curves such that

limsup
j→∞

∫
γ

gj > 0.

We want to show that Modp,q(Γ) = 0. Denote by Γj the family of curves in
Γrect for which

∫
γ
gj > 2−j . Then 2jgj ∈ F (Γj) and hence Modp,q(Γj)< 2−pj

as a consequence of (7). We notice that

Γ⊂
∞⋂
i=1

∞⋃
j=i

Γj .

Thus,

Modp,q(Γ)
1/p ≤

∞∑
j=i

Modp,q(Γj)
1/p ≤

∞∑
j=i

2−j = 21−i

for every integer i≥ 1, which implies Modp,q(Γ) = 0. �

3.2. Upper gradient.

Definition 3.7. Let u : X → [−∞,∞] be a Borel function. We say that a
Borel function g : X → [0,∞] is an upper gradient of u if for every rectifiable
curve γ parametrized by arc length parametrization we have

(8)
∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣≤ ∫
γ

g

whenever both u(γ(0)) and u(γ(
(γ))) are finite and
∫
γ
g =∞ otherwise. We

say that g is a p, q-weak upper gradient of u if (8) holds on p, q-almost every
curve γ ∈ Γrect.

The weak upper gradients were introduced in the case p= q by Heinonen
and Koskela in [17]. See also Heinonen [15] and Shanmugalingam [27] and
[28].

If g is an upper gradient of u and g̃ = g, μ-almost everywhere, is another
nonnegative Borel function, then it might happen that g̃ is not an upper
gradient of u. However, we have the following result.

Lemma 3.8. If g is a p, q-weak upper gradient of u and g̃ is another nonneg-
ative Borel function such that g̃ = g μ-almost everywhere, then g̃ is a p, q-weak
upper gradient of u.

Proof. Let Γ1 ⊂ Γrect be the family of all nonconstant rectifiable curves
γ : [0, 
(γ)]→X for which

∫
γ
|g − g̃|> 0. The constant sequence gn = |g − g̃|

converges to 0 in Lp,q(X,μ), so from Theorem 3.6 it follows that Modp,q(Γ1) =
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0 and
∫
γ
|g − g̃| = 0 for every nonconstant rectifiable curve γ : [0, 
(γ)]→X

that is not in Γ1.
Let Γ2 ⊂ Γrect be the family of all nonconstant rectifiable curves γ :

[0, 
(γ)]→X for which the inequality∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

g

is not satisfied. Then Modp,q(Γ2) = 0. Thus Modp,q(Γ1 ∪ Γ2) = 0. For every
γ ∈ Γrect not in Γ1 ∪ Γ2 we have∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣≤ ∫
γ

g =

∫
γ

g̃.

This finishes the proof. �
The next result shows that p, q-weak upper gradients can be nicely ap-

proximated by upper gradients. The case p = q was proved by Koskela and
MacManus [23].

Lemma 3.9. If g is a p, q-weak upper gradient of u which is finite μ-almost
everywhere, then for every ε > 0 there exists an upper gradient gε of u such
that

gε ≥ g everywhere on X and ‖gε − g‖Lp,q(X,μ) ≤ ε.

Proof. Let Γ ⊂ Γrect be the family of all nonconstant rectifiable curves
γ : [0, 
(γ)]→X for which the inequality∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣≤ ∫
γ

g

is not satisfied. Then Modp,q(Γ) = 0 and hence, from Theorem 3.4 it follows
that there exists 0≤ ρ ∈ Lp,q(X,μ) such that

∫
γ
ρ=∞ for every γ ∈ Γ. Take

gε = g+ ερ/‖ρ‖Lp,q(X,μ). Then gε is a nonnegative Borel function and∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

gε

for every curve γ ∈ Γrect. This finishes the proof. �
If A is a subset of X let ΓA be the family of all curves in Γrect that intersect

A and let Γ+
A be the family of all curves in Γrect such that the Hausdorff one-

dimensional measure H1(|γ| ∩A) is positive. Here and throughout the paper
|γ| is the image of the curve γ.

The following lemma will be useful later in this paper.

Lemma 3.10. Let ui : X →R, i≥ 1, be a sequence of Borel functions such
that g ∈ Lp,q(X) is a p, q-weak upper gradient for every ui, i≥ 1. We define
u(x) = limi→∞ ui(x) and E = {x ∈X : |u(x)| =∞}. Suppose that μ(E) = 0
and that u is well-defined outside E. Then g is a p, q-weak upper gradient
for u.
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Proof. For every i≥ 1, we define Γ1,i to be the set of all curves γ ∈ Γrect

for which ∣∣ui

(
γ(0)

)
− ui

(
γ
(

(γ)

))∣∣≤ ∫
γ

g

is not satisfied. Then Modp,q(Γ1,i) = 0 and hence Modp,q(Γ1,0) = 0, where
Γ1,0 =

⋃∞
i=1Γ1,i. Let Γ1 ⊂ Γrect be the collection of all curves having a sub-

curve in Γ1,0. Then F (Γ1,0)⊂ F (Γ1) and hence Modp,q(Γ1)≤Modp,q(Γ1,0) =
0.

Let Γ0 be the collection of all paths γ ∈ Γrect such that
∫
γ
g =∞. Then we

have via Theorem 3.4 that Modp,q(Γ0) = 0 since g ∈ Lp,q(X,μ).
Since μ(E) = 0, it follows that Modp,q(Γ

+
E) = 0. Indeed, ∞ · χE ∈ F (Γ+

E)

and ‖∞ · χE‖Lp,q(X,μ) = 0. Therefore, Modp,q(Γ0 ∪ Γ+
E ∪ Γ1) = 0.

For any path γ in the family Γrect \ (Γ0∪Γ+
E ∪Γ1), by the fact that the path

is not in Γ+
E , there exists a point y in |γ| such that y is not in E, that is y ∈ |γ|

and |u(y)|<∞. For any point x ∈ |γ|, we have (since γ has no subcurves in
Γ1,0) ∣∣ui(x)

∣∣− ∣∣ui(y)
∣∣≤ ∣∣ui(x)− ui(y)

∣∣≤ ∫
γ

g <∞.

Therefore, ∣∣ui(x)
∣∣≤ ∣∣ui(y)

∣∣+ ∫
γ

g.

Taking limits on both sides and using the facts that |u(y)|<∞ and that γ is
not in Γ0 ∪ Γ1, we see that

lim
i→∞

∣∣ui(x)
∣∣≤ lim

i→∞

∣∣ui(y)
∣∣+ ∫

γ

g =
∣∣u(y)∣∣+ ∫

γ

g <∞

and therefore x is not in E. Thus ΓE ⊂ Γ0 ∪ Γ+
E ∪ Γ1 and Modp,q(ΓE) = 0.

Next, let γ be a path in Γrect \ (Γ0∪Γ+
E ∪Γ1). The above argument showed

that |γ| does not intersect E. If we denote by x and y the endpoints of γ, we
have∣∣u(x)− u(y)

∣∣= ∣∣∣ lim
i→∞

ui(x)− lim
i→∞

ui(y)
∣∣∣= lim

i→∞

∣∣ui(x)− ui(y)
∣∣≤ ∫

γ

g.

Therefore, g is a p, q-weak upper gradient for u as well. �

The following proposition shows how the upper gradients behave under a
change of variable.

Proposition 3.11. Let F : R → R be C1 and let u : X → R be a Borel
function. If g ∈ Lp,q(X,μ) is a p, q-weak upper gradient for u, then |F ′(u)|g
is a p, q-weak upper gradient for F ◦ u.



590 Ş. COSTEA AND M. MIRANDA JR.

Proof. Let Γ0 to be the set of all curves γ ∈ Γrect for which∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

g

is not satisfied. Then Modp,q(Γ0) = 0. Let Γ1 ⊂ Γrect be the collection of all
curves having a subcurve in Γ0. Then F (Γ0)⊂ F (Γ1) and hence Modp,q(Γ1)≤
Modp,q(Γ0) = 0.

Let Γ2 be the set of curves γ ∈ Γrect for which
∫
γ
g =∞. Then we have

via Theorem 3.4 that Modp,q(Γ2) = 0 since g ∈ Lp,q(X,μ). Thus, Modp,q(Γ1∪
Γ2) = 0.

The claim will follow immediately after we show that

(9)
∣∣(F ◦ u)

(
γ(0)

)
− (F ◦ u)

(
γ
(

(γ)

))∣∣≤ ∫ �(γ)

0

(∣∣F ′(u(γ(s)))∣∣+ ε
)
g
(
γ(s)

)
ds

for all curves γ ∈ Γrect \ (Γ1 ∪ Γ2) and for every ε > 0.
So fix ε > 0 and choose a curve γ ∈ Γrect \ (Γ1∪Γ2). Let 
= 
(γ). We notice

immediately that u ◦ γ is uniformly continuous on [0, 
] and F ′ is uniformly
continuous on the compact interval I := (u ◦ γ)([0, 
]). Let δ, δ1 > 0 be chosen
such that∣∣(F ′ ◦ u ◦ γ

)
(t)−

(
F ′ ◦ u ◦ γ

)
(s)
∣∣+ |(u ◦ γ)(t)− (u ◦ γ)(s)|< δ1

for all t, s ∈ [0, 
] with |t− s|< δ and such that∣∣F ′(u)− F ′(v)
∣∣< ε for all u, v ∈ I with |u− v|< δ1.

Fix an integer n > 1/δ and put 
i = (i
)/n, i = 0, . . . , n − 1. For every i =
0, . . . , n− 1 we have∣∣(F ◦ u ◦ γ)(
i+1)− (F ◦ u ◦ γ)(
i)

∣∣ = ∣∣F ′(ti,i+1)
∣∣∣∣(u ◦ γ)(
i+1)− (u ◦ γ)(
i)

∣∣
≤
∣∣F ′(ti,i+1)

∣∣ ∫ �i+1

�i

g
(
γ(s)

)
ds,

where ti,i+1 ∈ Ii,i+1 := (u ◦ γ)((
i, 
i+1)). From the choice of δ, it follows that∣∣(F ◦ u ◦ γ)(
i+1)− (F ◦ u ◦ γ)(
i)
∣∣≤ ∫ �i+1

�i

(∣∣F ′(u(γ(s)))∣∣+ ε
)
g
(
γ(s)

)
ds,

for every i= 0, . . . , n− 1. If we sum over i, we obtain easily (9). This finishes
the proof. �

As a direct consequence of Proposition 3.11, we have the following corol-
laries.

Corollary 3.12. Let r ∈ (1,∞) be fixed. Suppose u : X →R is a bounded
nonnegative Borel function. If g ∈ Lp,q(X,μ) is a p, q-weak upper gradient of
u, then rur−1g is a p, q-weak upper gradient for ur.
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Proof. Let M > 0 be such that 0 ≤ u(x) < M for all x ∈ X . We apply
Proposition 3.11 to any C1 function F : R→ R satisfying F (t) = tr,0 ≤ t ≤
M . �

Corollary 3.13. Let r ∈ (0,1) be fixed. Suppose that u : X → R is a
nonnegative Borel function that has a p, q-weak upper gradient g ∈ Lp,q(X,μ).
Then r(u+ ε)r−1g is a p, q-weak upper gradient for (u+ ε)r for all ε > 0.

Proof. Fix ε > 0. We apply Proposition 3.11 to any C1 function F : R→R

satisfying F (t) = tr, ε≤ t <∞. �

Corollary 3.14. Suppose 1≤ q ≤ p <∞. Let u1, u2 be two nonnegative
bounded real-valued Borel functions defined on X . Suppose gi ∈ Lp,q(X,μ), i=
1,2 are p, q-weak upper gradients for ui, i= 1,2. Then Lp,q(X,μ) � g := (gq1 +

gq2)
1/q is a p, q-weak upper gradient for u := (uq

1 + uq
2)

1/q .

Proof. The claim is obvious when q = 1, so we assume without loss of
generality that 1 < q ≤ p. We prove first that g ∈ Lp,q(X,μ). Indeed, via

Remark 2.3 it is enough to show that gq ∈ L
p
q ,1(X,μ). But gq = gq1 + gq2 and

gqi ∈ L
p
q ,1(X,μ) since gi ∈ Lp,q(X,μ). (See Remark 2.3.) This, the fact that

‖ · ‖
L

p
q
,1
(X,μ)

is a norm whenever 1< q ≤ p, and another appeal to Remark 2.3

yield g ∈ Lp,q(X,μ) with

‖g‖qLp,q(X,μ) = ‖gq‖
L

p
q
,1
(X,μ)

≤ ‖gq1‖L p
q
,1
(X,μ)

+ ‖gq2‖L p
q
,1
(X,μ)

= ‖g1‖qLp,q(X,μ) + ‖g2‖qLp,q(X,μ).

For i= 1,2 let Γi,1 be the family of nonconstant rectifiable curves γ in Γrect

for which ∣∣ui

(
γ(0)

)
− ui

(
γ
(

(γ)

))∣∣≤ ∫
γ

gi

is not satisfied. Then Modp,q(Γi,1) = 0 since gi is a p, q-weak upper gradient
for ui, i = 1,2. Let Γ0,1 be the family of nonconstant rectifiable curves γ in
Γrect having a subcurve in Γ1,1 ∪ Γ2,1. Then F (Γ1,1 ∪ Γ2,1) ⊂ F (Γ0,1) and
hence Modp,q(Γ0,1)≤Modp,q(Γ1,1 ∪ Γ2,1) = 0.

Let Γi,2 be the family of nonconstant rectifiable curves γ in Γrect for which∫
γ
gi =∞. Then for i = 1,2 we have Modp,q(Γi,2) = 0 via Theorem 3.4 be-

cause by hypothesis gi ∈ Lp,q(X,μ), i= 1,2. Let Γ0 =Γ0,1 ∪Γ1,2 ∪Γ2,2. Then
Modp,q(Γ0) = 0.

Fix ε > 0. By applying Corollary 3.12 with r = q, u = ui and g = gi,
i= 1,2, we see that Lp,q(X,μ) � q(ui + ε)q−1gi is a p, q-weak upper gradient
of (ui + ε)q for i= 1,2. Thus, via Hölder’s inequality it follows that Gε is a
p, q-weak upper gradient for Uε, where

Gε := q
(
(u1 + ε)q + (u2 + ε)q

)(q−1)/q(
gq1 + gq2

)1/q
and

Uε := (u1 + ε)q + (u2 + ε)q.
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We notice that Gε ∈ Lp,q(X,μ). Indeed, Gε = qU
(q−1)/q
ε g, with Uε nonnega-

tive a bounded and g ∈ Lp,q(X,μ), so Gε ∈ Lp,q(X,μ).
Now we apply Corollary 3.13 with r = 1/q, u = Uε and g = Gε to obtain

that uε := U
1/q
ε has 1/qU

(1−q)/q
ε Gε = g as a p, q-weak upper gradient that

belongs to Lp,q(X,μ). In fact, by looking at the proof of Proposition 3.11, we
see that ∣∣uε

(
γ(0)

)
− uε

(
γ
(

(γ)

))∣∣≤ ∫
γ

g

for every curve γ ∈ Γrect that is not in Γ0. Letting ε→ 0, we obtain the desired
conclusion. This finishes the proof of the corollary. �

Lemma 3.15. If ui, i= 1,2 are nonnegative real-valued Borel functions in
Lp,q(X,μ) with corresponding p, q-weak upper gradients gi ∈ Lp,q(X,μ), then
g := max(g1, g2) ∈ Lp,q(X,μ) is a p, q-weak upper gradient for u := max(u1,
u2) ∈ Lp,q(X,μ).

Proof. It is easy to see that u, g ∈ Lp,q(X,μ). For i = 1,2 let Γ0,i ⊂ Γrect

be the family of nonconstant rectifiable curves γ for which
∫
γ
gi =∞. Then

we have via Theorem 3.4 that Modp,q(Γ0,i) = 0 because gi ∈ Lp,q(X,μ). Thus
Modp,q(Γ0) = 0, where Γ0 =Γ0,1 ∪ Γ0,2.

For i= 1,2 let Γ1,i ⊂ Γrect be the family of curves γ ∈ Γrect \ Γ0 for which∣∣ui

(
γ(0)

)
− ui

(
γ
(

(γ)

))∣∣≤ ∫
γ

gi

is not satisfied. Then Modp,q(Γ1,i) = 0 since gi is a p, q-weak upper gradient
for ui, i= 1,2. Thus, Modp,q(Γ1) = 0, where Γ1 =Γ1,1 ∪ Γ1,2.

It is easy to see that

(10)
∣∣u(x)− u(y)

∣∣≤max
(∣∣u1(x)− u1(y)

∣∣, ∣∣u2(x)− u2(y)
∣∣).

On every curve γ ∈ Γrect \ (Γ0 ∪ Γ1) we have∣∣ui

(
γ(0)

)
− ui

(
γ
(

(γ)

))∣∣≤ ∫
γ

gi ≤
∫
γ

g.

This and (10) show that∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

g

on every curve γ ∈ Γrect \ (Γ0 ∪ Γ1). This finishes the proof. �

Lemma 3.16. Suppose g ∈ Lp,q(X,μ) is a p, q-weak upper gradient for a
nonnegative Borel function u ∈ Lp,q(X,μ). Let λ ≥ 0 be fixed. Then uλ :=
min(u,λ) ∈ Lp,q(X,μ) and g is a p, q-weak upper gradient for uλ.
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Proof. Obviously 0≤ uλ ≤ u on X , so it follows via Bennett and Sharpley
[1, Proposition I.1.7] and Kauhanen, Koskela and Malý [20, Proposition 2.1]
that uλ ∈ Lp,q(X,μ) with ‖uλ‖Lp,q(X,μ) ≤ ‖u‖Lp,q(X,μ). The second claim fol-
lows immediately since |uλ(x)− uλ(y)| ≤ |u(x)− u(y)| for every x, y ∈X . �

4. Newtonian Lp,q spaces

We denote by Ñ1,Lp,q

(X,μ) the space of all Borel functions u ∈ Lp,q(X,μ)
that have a p, q-weak upper gradient g ∈ Lp,q(X,μ). We note that the space

Ñ1,Lp,q

(X,μ) is a vector space, since if α,β ∈ R and u1, u2 ∈ Ñ1,Lp,q

(X,μ)
with respective p, q-weak upper gradients g1, g2 ∈ Lp,q(X,μ), then |α|g1+ |β|g2
is a p, q-weak upper gradient of αu1 + βu2.

Definition 4.1. If u is a function in Ñ1,Lp,q

(X,μ), let

‖u‖
Ñ1,Lp,q :=

{
(‖u‖qLp,q(X,μ) + infg ‖g‖qLp,q(X,μ))

1/q, 1≤ q ≤ p,

(‖u‖pLp,q(X,μ) + infg ‖g‖pLp,q(X,μ))
1/p, p < q ≤∞,

where the infimum is taken over all p, q-integrable p, q-weak upper gradients
of u.

Similarly, let

‖u‖
Ñ1,L(p,q) :=

{
(‖u‖q

L(p,q)(X,μ)
+ infg ‖g‖qL(p,q)(X,μ)

)1/q, 1≤ q ≤ p,

(‖u‖p
L(p,q)(X,μ)

+ infg ‖g‖pL(p,q)(X,μ)
)1/p, p < q ≤∞,

where the infimum is taken over all p, q-integrable p, q-weak upper gradients
of u.

If u, v are functions in Ñ1,Lp,q

(X,μ), let u ∼ v if ‖u − v‖
Ñ1,Lp,q = 0. It

is easy to see that ∼ is an equivalence relation that partitions Ñ1,Lp,q

(X,μ)
into equivalence classes. We define the space N1,Lp,q

(X,μ) as the quotient

Ñ1,Lp,q

(X,μ)/∼ and

‖u‖N1,Lp,q = ‖u‖
Ñ1,Lp,q and ‖u‖

N1,L(p,q) = ‖u‖
Ñ1,L(p,q)

Remark 4.2. Via Lemma 3.9 and Corollary 2.8, it is easy to see that the
infima in Definition 4.1 could as well be taken over all p, q-integrable upper
gradients of u. We also notice (see the discussion before Definition 2.1) that
‖·‖

N1,L(p,q) is a norm whenever 1< p<∞ and 1≤ q ≤∞ , while ‖·‖N1,Lp,q is a

norm when 1≤ q ≤ p <∞. Moreover (see the discussion before Definition 2.1),

‖u‖N1,Lp,q ≤ ‖u‖
N1,L(p,q) ≤ p′‖u‖N1,Lp,q

for every 1< p<∞, 1≤ q ≤∞ and u ∈N1,Lp,q

(X,μ).

Definition 4.3. Let u : X → [−∞,∞] be a given function. We say that
(i) u is absolutely continuous along a rectifiable curve γ if u ◦ γ is absolutely
continuous on [0, 
(γ)].
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(ii) u is absolutely continuous on p, q-almost every curve (has ACCp,q prop-
erty) if for p, q-almost every γ ∈ Γrect, u ◦ γ is absolutely continuous.

Proposition 4.4. If u is a function in Ñ1,Lp,q

(X,μ), then u is ACCp,q .

Proof. We follow Shanmugalingam [27]. By the definition of Ñ1,Lp,q

(X,μ),
u has a p, q-weak upper gradient g ∈ Lp,q(X,μ). Let Γ0 be the collection of
all curves in Γrect for which∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣≤ ∫
γ

g

is not satisfied. Then by the definition of p, q-weak upper gradients, we have
that Modp,q(Γ0) = 0. Let Γ1 be the collection of all curves in Γrect that have
a subcurve in Γ0. Then Modp,q(Γ1)≤Modp,q(Γ0) = 0.

Let Γ2 be the collection of all curves in Γrect such that
∫
γ
g =∞. Then

Modp,q(Γ2) = 0 because g ∈ Lp,q(X,μ). Hence, Modp,q(Γ1 ∪ Γ2) = 0. If γ is a
curve in Γrect \ (Γ1 ∪ Γ2), then γ has no subcurves in Γ0, and hence∣∣u(γ(β))− u

(
γ(α)

)∣∣≤ ∫ β

α

g
(
γ(t)

)
dt, provided [α,β]⊂

[
0, 
(γ)

]
.

This implies the absolute continuity of u ◦ γ as a consequence of the absolute
continuity of the integral. Therefore, u is absolutely continuous on every curve
γ in Γrect \ (Γ1 ∪ Γ2). �

Lemma 4.5. Suppose u ∈ Ñ1,Lp,q

(X,μ) is such that ‖u‖Lp,q(X,μ) = 0. Then
the family

Γ=
{
γ ∈ Γrect : u(x) 
= 0 for some x ∈ |γ|

}
has zero p, q-modulus.

Proof. We follow Shanmugalingam [27]. Since ‖u‖Lp,q(X,μ) = 0, the set E =
{x ∈X : u(x) 
= 0} has measure zero. With the notation introduced earlier,
we have

Γ = ΓE =Γ+
E ∪

(
ΓE \ Γ+

E

)
.

We can disregard the family Γ+
E , since

Modp,q
(
Γ+
E

)
≤ ‖∞ · χE‖pLp,q(X,μ) = 0,

where χE is the characteristic function of the set E. The curves γ in ΓE \Γ+
E

intersect E only on a set of linear measure zero, and hence with respect to the
linear measure almost everywhere on γ the function u is equal to zero. Since
γ also intersects E, it follows that u is not absolutely continuous on γ. By
Proposition 4.4, we have Modp,q(ΓE \ Γ+

E) = 0, yielding Modp,q(Γ) = 0. This
finishes the proof. �
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Lemma 4.6. Let F be a closed subset of X . Suppose that u : X → [−∞,∞]
is a Borel ACCp,q function that is constant μ-almost everywhere on F . If
g ∈ Lp,q(X,μ) is a p, q-weak upper gradient of u, then gχX\F is a p, q-weak
upper gradient of u.

Proof. We can assume without loss of generality that u = 0 μ-almost ev-
erywhere on F . Let E = {x ∈ F : u(x) 
= 0}. Then by assumption μ(E) = 0.
Hence, Modp,q(Γ

+
E) = 0 because ∞ · χE ∈ F (Γ+

E).
Let Γ0 ⊂ Γrect be the family of curves on which u is not absolutely contin-

uous or on which ∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

g

is not satisfied. Then Modp,q(Γ0) = 0. Let Γ1 ⊂ Γrect be the family of curves
that have a subcurve in Γ0. Then F (Γ0) ⊂ F (Γ1) and thus Modp,q(Γ1) ≤
Modp,q(Γ0) = 0.

Let Γ2 ⊂ Γrect be the family of curves on which
∫
γ
g =∞. Then via Theo-

rem 3.4 we have Modp,q(Γ2) = 0 because g ∈ Lp,q(X,μ).
Let γ : [0, 
(γ)]→X be a curve in Γrect \ (Γ1 ∪ Γ2 ∪ Γ+

E) connecting x and
y. We show that ∣∣u(x)− u(y)

∣∣≤ ∫
γ

gχX\F

for every such curve γ.
The cases |γ| ⊂ F \E and |γ| ⊂ (X \F )∪E are trivial. So is the case when

both x and y are in F \E. Let K := (u ◦ γ)−1({0}). Then K is a compact
subset of [0, 
(γ)] because u ◦ γ is continuous on [0, 
(γ)]. Hence, K contains
its lower bound c and its upper bound d. Let x1 = γ(c) and y1 = γ(d).

Suppose that both x and y are in (X \ F ) ∪E. Then we see that [c, d]⊂
(0, 
(γ)) and γ([0, c)∪ (d, 
(γ)])⊂ (X \ F )∪E.

Moreover, since γ is not in Γ1 and u(x1) = u(y1), we have∣∣u(x)− u(y)
∣∣ ≤ ∣∣u(x)− u(x1)

∣∣+ ∣∣u(y1)− u(y)
∣∣

≤
∫
γ([0,c])

g+

∫
γ([d,�(γ)])

g ≤
∫
γ

gχX\F

because the subcurves γ|[0,c] and γ|[d.�(γ)] intersect E on a set of Hausdorff
1-measure zero.

Suppose now by symmetry that x ∈ (X \ F ) ∪ E and y ∈ F \ E. This
means in terms of our notation that c > 0 and d = 
(γ). We notice that
γ([0, c))⊂ (X \ F )∪E and u(x1) = u(y) and thus∣∣u(x)− u(y)

∣∣= ∣∣u(x)− u(x1)
∣∣≤ ∫

γ([0,c])

g ≤
∫
γ

gχX\F

because the subcurve γ|[0,c] intersects E on a set of Hausdorff 1-measure zero.
This finishes the proof of the lemma. �
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Lemma 4.7. Assume that u ∈N1,Lp,q

(X,μ), and that g,h ∈ Lp,q(X,μ) are
p, q-weak upper gradients of u. If F ⊂X is a closed set, then

ρ= gχF + hχX\F

is a p, q-weak upper gradient of u as well.

Proof. We follow Haj�lasz [13]. Let Γ1 ⊂ Γrect be the family of curves on
which

∫
γ
(g + h) =∞. Then via Theorem 3.4 it follows that Modp,q(Γ1) = 0

because g+ h ∈ Lp,q(X,μ).
Let Γ2 ⊂ Γrect be the family of curves on which u is not absolutely contin-

uous. Then via Proposition 4.4 we see that Modp,q(Γ2) = 0.
Let Γ′

3 ⊂ Γrect be the family of curves on which∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤min

(∫
γ

g,

∫
γ

h

)
is not satisfied. Let Γ3 ⊂ Γrect be the family of curves which contain subcurves
belonging to Γ′

3. Since F (Γ′
3)⊂ F (Γ3), we have Modp,q(Γ3)≤Modp,q(Γ

′
3) = 0.

Now it remains to show that∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

ρ

for all γ ∈ Γrect \ (Γ1∪Γ2∪Γ3). If |γ| ⊂ F or |γ| ⊂X \F , then the inequality is
obvious. Thus, we can assume that the image |γ| has a nonempty intersection
both with F and with X \ F .

The set γ−1(X \ F ) is open and hence it consists of a countable (or fi-
nite) number of open and disjoint intervals. Assume without loss of general-
ity that there are countably many such intervals. Denote these intervals by
((ti, si))

∞
i=1. Let γi = γ|[ti,si]. We have∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣ ≤ ∣∣u(γ(0))− u
(
γ(t1)

)∣∣+ ∣∣u(γ(t1))− u
(
γ(s1)

)∣∣
+
∣∣u(γ(s1))− u

(
γ
(

(γ)

))∣∣
≤
∫
γ\γ1

g+

∫
γ1

h,

where γ \ γ1 denotes the two curves obtained from γ by removing the interior
part γ1, that is the curves γ|[0,t1] and γ|[s1,b]. Similarly, we can remove a
larger number of subcurves of γ. This yields∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣≤ ∫
γ\
⋃n

i=1 γi

g+

∫
⋃n

i=1 γi

h

for each positive integer n. By applying Lebesgue dominated convergence
theorem to the curve integral on γ, we obtain∣∣u(γ(0))− u

(
γ
(

(γ)

))∣∣≤ ∫
γ

gχF +

∫
γ

hχX\F =

∫
γ

ρ. �
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Next we show that when 1 < p < ∞ and 1 ≤ q < ∞, every function u ∈
N1,Lp,q

(X,μ) has a ‘smallest’ p, q-weak upper gradient. For the case p = q,
see Kallunki and Shanmugalingam [19] and Shanmugalingam [28].

Theorem 4.8. Suppose that 1 < p < ∞ and 1 ≤ q < ∞. For every u ∈
N1,Lp,q

(X,μ), there exists the least p, q-weak upper gradient gu ∈ Lp,q(X,μ)
of u. It is smallest in the sense that if g ∈ Lp,q(X,μ) is another p, q-weak
upper gradient of u, then g ≥ gu μ-almost everywhere.

Proof. We follow Haj�lasz [13]. Let m = infg ‖g‖Lp,q(X,μ), where the in-
fimum is taken over the set of all p, q-weak upper gradients of u. It suf-
fices to show that there exists a p, q-weak upper gradient gu of u such that
‖gu‖Lp,q(X,μ) =m. Indeed, if we suppose that g ∈ Lp,q(X,μ) is another p, q-
weak upper gradient of u such that the set {g < gu} has positive measure,
then by the inner regularity of the measure μ there exists a closed set F ⊂
{g < gu} such that μ(F ) > 0. Via Lemma 4.7 it follows that the function
ρ := gχF +guχX\F is a p, q-weak upper gradient. Via Kauhanen, Koskela and
Malý [20, Proposition 2.1] that would give ‖ρ‖Lp,q(X,μ) < ‖gu‖Lp,q(X,μ) =m,
in contradiction with the minimality of ‖gu‖Lp,q(X,μ).

Thus, it remains to prove the existence of a p, q-weak upper gradient gu
such that ‖gu‖Lp,q(X,μ) = m. Let (gi)

∞
i=1 be a sequence of p, q-weak upper

gradients of u such that ‖gi‖Lp,q(X,μ) < m + 2−i. We will show that it is
possible to modify the sequence (gi) in such a way that we will obtain a new
sequence of p, q-weak upper gradients (ρi) of u satisfying

‖ρi‖Lp,q(X,μ) <m+ 21−i, ρ1 ≥ ρ2 ≥ ρ3 ≥ · · · μ-almost everywhere.

The sequence (ρi)
∞
i=1 will be defined by induction. We set ρ1 = g1. Suppose

the p, q-weak upper gradients ρ1, ρ2, . . . , ρi have already been chosen. We will
now define ρi+1. Since ρi ∈ Lp,q(X,μ), the measure μ is inner regular and
the (p, q)-norm has the absolute continuity property whenever 1< p<∞ and
1 ≤ q <∞ (see the discussion after Definition 2.1), there exists a closed set
F ⊂ {gi+1 < ρi} such that∥∥ρiχ{gi+1<ρi}\F

∥∥
Lp,q(X,μ)

< 2−i−1.

Now, we set ρi+1 = gi+1χF + ρiχX\F . Then

ρi+1 ≤ ρi and ρi+1 ≤ gi+1χF∪{gi+1≥ρi} + ρiχ{gi+1<ρi}\F .

We show that m ≤ ‖ρi+1‖Lp,q(X,μ) <m+ 2−i. Suppose first that 1 ≤ q ≤ p.
Since ‖ · ‖Lp,q(X,μ) is a norm, we see that

‖ρi+1‖Lp,q(X,μ) ≤ ‖gi+1χF∪{gi+1≥ρi}‖Lp,q(X,μ) + ‖ρiχ{gi+1<ρi}\F ‖Lp,q(X,μ)

<m+ 2−i−1 + 2−i−1 =m+ 2−i.
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Suppose now that p < q <∞. Then we have via Proposition 2.6

‖ρi+1‖pLp,q(X,μ) ≤ ‖gi+1χF∪{gi+1≥ρi}‖
p
Lp,q(X,μ) + ‖ρiχ{gi+1<ρi}\F ‖

p
Lp,q(X,μ)

<
(
m+ 2−i−1

)p
+ 2−p(i+1) <

(
m+ 2−i

)p
.

The sequence of p, q-weak upper gradients (ρi)
∞
i=1 converges pointwise to a

function ρ. The absolute continuity of the (p, q)-norm (see Bennett and Sharp-
ley [1, Proposition I.3.6] and the discussion after Definition 2.1) yields

lim
i→∞

‖ρi − ρ‖Lp,q(X,μ) = 0.

Obviously ‖ρ‖Lp,q(X,μ) =m. The proof will be finished as soon as we show
that ρ is a p, q-weak upper gradient for u.

By taking a subsequence if necessary, we can assume that ‖ρi−ρ‖Lp,q(X,μ) ≤
2−2i for every i≥ 1.

Let Γ1 ⊂ Γrect be the family of curves on which
∫
γ
(ρ+ ρi) =∞ for some

i ≥ 1. Then via Theorem 3.4 and the subadditivity of Modp,q(·)1/p we see
that Modp,q(Γ1) = 0 since ρ+ ρi ∈ Lp,q(X,μ) for every i≥ 1.

For any integer i≥ 1 let Γ2,i ⊂ Γrect be the family of curves for which∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

ρi

is not satisfied. Then Modp,q(Γ2,i) = 0 because ρi is a p, q-weak upper gradient
for u. Let Γ2 =

⋃∞
i=1 Γ2,i.

Let Γ3 ⊂ Γrect be the family of curves for which limsupi→∞
∫
γ
|ρi − ρ|> 0.

Then it follows via Theorem 3.6 that Modp,q(Γ3) = 0.
Let γ be a curve in Γrect \ (Γ1∪Γ2∪Γ3). On any such curve we have (since

γ is not in Γ2,i)∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ ∫
γ

ρi for every i≥ 1.

By letting i→∞, we obtain (since γ is not in Γ1 ∪ Γ3)∣∣u(γ(0))− u
(
γ
(

(γ)

))∣∣≤ lim
i→∞

∫
γ

ρi =

∫
γ

ρ <∞.

This finishes the proof of the theorem. �

5. Sobolev p, q-capacity

In this section, we establish a general theory of the Sobolev–Lorentz p, q-
capacity in metric measure spaces. If (X,d,μ) is a metric measure space, then
the Sobolev p, q-capacity of a set E ⊂X is

Capp,q(E) = inf
{
‖u‖p

N1,Lp,q : u ∈A(E)
}
,

where
A(E) =

{
u ∈N1,Lp,q

(X,μ) : u≥ 1 on E
}
.



NEWTONIAN LORENTZ METRIC SPACES 599

We call A(E) the set of admissible functions for E. If A(E) = ∅, then
Capp,q(E) =∞.

Remark 5.1. It is easy to see that we can consider only admissible func-
tions u for which 0≤ u≤ 1. Indeed, for u ∈A(E), let v := min(u+,1), where
u+ =max(u,0). We notice that |v(x)− v(y)| ≤ |u(x)− u(y)| for every x, y in
X , which implies that every p, q-weak upper gradient for u is also a p, q-weak
upper gradient for v. This implies that v ∈A(E) and ‖v‖N1,Lp,q ≤ ‖u‖N1,Lp,q .

5.1. Basic properties of the Sobolev p, q-capacity. A capacity is a
monotone, subadditive set function. The following theorem expresses, among
other things, that this is true for the Sobolev p, q-capacity.

Theorem 5.2. Suppose that 1< p <∞ and 1≤ q ≤∞. Suppose also that
(X,d,μ) is a complete metric measure space. The set function E �→Capp,q(E),
E ⊂X , enjoys the following properties:

(i) If E1 ⊂E2, then Capp,q(E1)≤Capp,q(E2).
(ii) Suppose that μ is nonatomic. Suppose that 1< q ≤ p. If E1 ⊂E2 ⊂ · · · ⊂

E =
⋃∞

i=1Ei ⊂X , then

Capp,q(E) = lim
i→∞

Capp,q(Ei).

(iii) Suppose that p < q ≤∞. If E =
⋃∞

i=1Ei ⊂X , then

Capp,q(E)≤
∞∑
i=1

Capp,q(Ei).

(iv) Suppose that 1≤ q ≤ p. If E =
⋃∞

i=1Ei ⊂X , then

Capp,q(E)q/p ≤
∞∑
i=1

Capp,q(Ei)
q/p.

Proof. Property (i) is an immediate consequence of the definition.
(ii) Monotonicity yields

L := lim
i→∞

Capp,q(Ei)≤Capp,q(E).

To prove the opposite inequality, we may assume without loss of generality
that L<∞. The reflexivity of Lp,q(X,μ) (guaranteed by the nonatomicity of
μ whenever 1< q ≤ p <∞) will be used here in order to prove the opposite
inequality.

Let ε > 0 be fixed. For every i= 1,2, . . . we choose ui ∈ A(Ei), 0≤ ui ≤ 1
and a corresponding upper gradient gi such that

(11) ‖ui‖qN1,Lp,q <Capp,q(Ei)
q/p + ε≤ Lq/p + ε.

We notice that ui is a bounded sequence in N1,Lp,q

(X,μ). Hence there exists
a subsequence, which we denote again by ui and functions u, g ∈ Lp,q(X,μ)
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such that ui → u weakly in Lp,q(X,μ) and gi → g weakly in Lp,q(X,μ). It is
easy to see that

u≥ 0 μ-almost everywhere and g ≥ 0 μ-almost everywhere.

Indeed, since ui converges weakly to u in Lp,q(X,μ) which is the dual of

Lp′,q′(X,μ) (see Hunt [18, p. 262]), we have

lim
i→∞

∫
X

ui(x)ϕ(x)dμ(x) =

∫
X

u(x)ϕ(x)dμ(x)

for all ϕ ∈ Lp′,q′(X,μ). For nonnegative functions ϕ ∈ Lp′,q′(X,μ), this yields

0≤ lim
i→∞

∫
X

ui(x)ϕ(x)dμ(x) =

∫
X

u(x)ϕ(x)dμ(x),

which easily implies u ≥ 0 μ-almost everywhere on X . Similarly, we have
g ≥ 0 μ-almost everywhere on X .

From the weak-∗ lower semicontinuity of the p, q-norm (see Bennett and
Sharpley [1, Proposition II.4.2, Definition IV.4.1 and Theorem IV.4.3] and
Hunt [18, p. 262]), it follows that

‖u‖Lp,q(X,μ) ≤ lim inf
i→∞

‖ui‖Lp,q(X,μ) and
(12) ‖g‖Lp,q(X,μ) ≤ lim inf

i→∞
‖gi‖Lp,q(X,μ).

Using Mazur’s lemma simultaneously for ui and gi, we obtain sequences
vi with correspondent upper gradients g̃i such that vi ∈ A(Ei), vi → u in
Lp,q(X,μ) and μ-almost everywhere and g̃i → g in Lp,q(X,μ) and μ-almost
everywhere. These sequences can be found in the following way. Let i0 be
fixed. Since every subsequence of (ui, gi) converges to (u, g) weakly in the
reflexive space Lp,q(X,μ) × Lp,q(X,μ), we may use the Mazur lemma (see
Yosida [30, p. 120]) for the subsequence (ui, gi), i≥ i0.

We obtain finite convex combinations vi0 and g̃i0 of the functions ui and gi,
i≥ i0 as close as we want in Lp,q(X,μ) to u and g, respectively. For every i=
i0, i0+1, . . . , we see that ui = 1 in Ei ⊃Ei0 . The intersection of finitely many
supersets of Ei0 contains Ei0 . Therefore, vi0 equals 1 on Ei0 . It is easy to
see that g̃i0 is an upper gradient for vi0 . Passing to subsequences if necessary,
we may assume that vi converges to u pointwise μ-almost everywhere, that g̃i
converges to g pointwise μ-almost everywhere and that for every i= 1,2, . . .
we have

(13) ‖vi+1 − vi‖Lp,q(X,μ) + ‖g̃i+1 − g̃i‖Lp,q(X,μ) ≤ 2−i.

Since vi converges to u in Lp,q(X,μ) and pointwise μ-almost everywhere
on X while g̃i converges to g in Lp,q(X,μ) and pointwise μ-almost everywhere
on X it follows via Corollary 2.8 that

lim
i→∞

‖vi‖Lp,q(X,μ) = ‖u‖Lp,q(X,μ) and
(14)

lim
i→∞

‖g̃i‖Lp,q(X,μ) = ‖g‖Lp,q(X,μ).
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This, (11) and (12) yield

(15) ‖u‖qLp,q(X,μ) + ‖g‖qLp,q(X,μ) = lim
i→∞

‖vi‖qN1,Lp,q ≤ Lq/p + ε.

For j = 1,2, . . . we set

wj = sup
i≥j

vi and ĝj = sup
i≥j

g̃i.

It is easy to see that wj = 1 on E. We claim that ĝj is a p, q-weak upper
gradient for wj . Indeed, for every k > j, let

wj,k = sup
k≥i≥j

vi.

Via Lemma 3.15 and finite induction, it follows easily that ĝj is a p, q-weak
upper gradient for every wj,k whenever k > j. It is easy to see that wj =
limk→∞wj,k pointwise in X . This and Lemma 3.10 imply that ĝj is indeed a
p, q-weak upper gradient for wj .

Moreover,

(16) wj ≤ vj +

∞∑
i=j

|vi+1 − vi| and ĝj ≤ g̃j +

k−1∑
i=j

|g̃i+1 − g̃i|.

Thus,

‖wj‖Lp,q(X,μ) ≤ ‖vj‖Lp,q(X,μ) +

∞∑
i=j

‖vi+1 − vi‖Lp,q(X,μ)

≤ ‖vj‖Lp,q(X,μ) + 2−j+1

and

‖ĝj‖Lp,q(X,μ) ≤ ‖g̃j‖Lp,q(X,μ) +

∞∑
i=j

‖g̃i+1 − g̃i‖Lp,q(X,μ)

≤ ‖g̃j‖Lp,q(X,μ) + 2−j+1,

which implies that wj , ĝj ∈ Lp,q(X,μ). Thus, wj ∈A(E) with p, q-weak upper
gradient ĝj . We notice that 0 ≤ g = infj≥1 ĝj μ-almost everywhere on X
and 0 ≤ u = infj≥1wj μ-almost everywhere on X . Since w1 and ĝ1 are in
Lp,q(X,μ), the absolute continuity of the p, q-norm (see Bennett and Sharpley
[1, Proposition I.3.6] and the discussion after Definition 2.1) yields

lim
j→∞

‖wj − u‖Lp,q(X,μ) = 0 and lim
j→∞

‖ĝj − g‖Lp,q(X,μ) = 0.(17)

By using (15), (17), and Corollary 2.8, we see that

Capp,q(E)q/p ≤ lim
j→∞

‖wj‖qN1,Lp,q = ‖u‖qLp,q(X,μ) + ‖g‖qLp,q(X,μ) ≤ Lq/p + ε.

By letting ε→ 0, we get the converse inequality so (ii) is proved.
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(iii) We can assume without loss of generality that

∞∑
i=1

Capp,q(Ei)
q/p <∞.

For i= 1,2, . . . let ui ∈A(Ei) with upper gradient gi such that

0≤ ui ≤ 1 and ‖ui‖qN1,Lp,q <Capp,q(Ei)
q/p + ε2−i.

Let u := (
∑∞

i=1 u
q
i )

1/q and g := (
∑∞

i=1 g
q
i )

1/q . We notice that u ≥ 1 on E.
By repeating the argument from the proof of Theorem 3.2 (iii), we see that
u, g ∈ Lp,q(X,μ) and

‖u‖qLp,q(X,μ) + ‖g‖qLp,q(X,μ) ≤
∞∑
i=1

(
‖ui‖qLp,q(X,μ) + ‖gi‖qLp,q(X,μ)

)
≤ 2ε+

∞∑
i=1

Capp,q(Ei)
q/p.

We are done with the case 1≤ q ≤ p as soon as we show that u ∈A(E) and that
g is a p, q-weak upper gradient for u. It follows easily via Corollary 3.14 and
finite induction that g is a p, q-weak upper gradient for ũn := (

∑
1≤i≤n u

q
i )

1/q

for every n ≥ 1. Since u(x) = limi→∞ ũi(x) <∞ on X \ F , where F = {x ∈
X : u(x) =∞} it follows from Lemma 3.10 combined with the fact that u ∈
Lp,q(X,μ) that g is in fact a p, q-weak upper gradient for u. This finishes the
proof for the case 1≤ q ≤ p.

(iv) We can assume without loss of generality that

∞∑
i=1

Capp,q(Ei)<∞.

For i= 1,2, . . . let ui ∈A(Ei) with upper gradients gi such that

0≤ ui ≤ 1 and ‖ui‖pN1,Lp,q <Capp,q(Ei) + ε2−i.

Let u := supi≥1 ui and g := supi≥1 gi. We notice that u= 1 on E. Moreover,
via Proposition 2.6 it follows that u, g ∈ Lp,q(X,μ) with

‖u‖pLp,q(X,μ) + ‖g‖pLp,q(X,μ) ≤
∞∑
i=1

(
‖ui‖pLp,q(X,μ) + ‖gi‖pLp,q(X,μ)

)
≤ 2ε+

∞∑
i=1

Capp,q(Ei).

We are done with the case p < q ≤ ∞ as soon as we show that u ∈ A(E)
and that g is a p, q-weak upper gradient for u. Via Lemma 3.15 and finite
induction, it follows that g is a p, q-weak upper gradient for ũn := max1≤i≤n ui

for every n ≥ 1. Since u(x) = limi→∞ ũi(x) pointwise on X , it follows via
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Lemma 3.10 that g is in fact a p, q-weak upper gradient for u. This finishes
the proof for the case p < q ≤∞. �

Remark 5.3. We make a few remarks.
(i) Suppose μ is nonatomic and 1 < q < ∞. By mimicking the proof of

Theorem 5.2 (ii) and working with the (p, q)-norm and the (p, q)-capacity, we
can also show that

lim
i→∞

Cap(p,q)(Ei) = Cap(p,q)(E)

whenever E1 ⊂E2 ⊂ · · · ⊂E =
⋃∞

i=1Ei ⊂X .
(ii) Moreover, if Capp,q is an outer capacity then it follows immediately

that

lim
i→∞

Capp,q(Ki) = Capp,q(K)

whenever (Ki)
∞
i=1 is a decreasing sequence of compact sets whose intersection

set is K. We say that Capp,q is an outer capacity if for every E ⊂X we have

Capp,q(E) = inf
{
Capp,q(U) : E ⊂ U ⊂X,U open

}
.

(iii) Any outer capacity satisfying properties (i) and (ii) of Theorem 5.2 is
called a Choquet capacity. (See Appendix II in Doob [9].)

We recall that if A ⊂ X , then ΓA is the family of curves in Γrect that
intersect A and Γ+

A is the family of all curves in Γrect such that the Hausdorff
one-dimensional measure H1(|γ| ∩A) is positive. The following lemma will be
useful later in this paper.

Lemma 5.4. If F ⊂X is such that Capp,q(F ) = 0, then Modp,q(ΓF ) = 0.

Proof. We follow Shanmugalingam [27]. We can assume without loss of gen-
erality that q 
= p. Since Capp,q(F ) = 0, for each positive integer i there exists

a function vi ∈ A(F ) such that 0 ≤ vi ≤ 1 and such that ‖vi‖N1,L(p,q) ≤ 2−i.

Let un :=
∑n

i=1 vi. Then un ∈N1,L(p,q)

(X,μ) for each n, un(x) is increasing
for each x ∈X , and for every m>n we have

‖un − um‖
N1,L(p,q) ≤

n∑
i=m+1

‖vi‖N1,L(p,q) ≤ 2−m → 0, as m→∞.

Therefore, the sequence {un}∞n=1 is a Cauchy sequence in N1,L(p,q)

(X,μ).

Since {un}∞n=1 Cauchy in N1,L(p,q)

(X,μ), it follows that it is Cauchy in
Lp,q(X,μ). Hence by passing to a subsequence if necessary, there is a function
ũ in Lp,q(X,μ) to which the subsequence converges both pointwise μ-almost
everywhere and in the L(p,q) norm. By choosing a further subsequence, again
denoted by {ui}∞i=1 for simplicity, we can assume that

‖ui − ũ‖L(p,q)(X,μ) + ‖gi,i+1‖L(p,q)(X,μ) ≤ 2−2i,
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where gi,j is an upper gradient of ui − uj for i < j. If g1 is an upper gradient
of u1, then u2 = u1+(u2−u1) has an upper gradient g2 = g1+g12. In general,

ui = u1 +
i−1∑
k=1

(uk+1 − uk)

has an upper gradient

gi = g1 +

i−1∑
k=1

gk,k+1

for every i≥ 2. For j < i we have

‖gi − gj‖L(p,q)(X,μ) ≤
i−1∑
k=j

‖gk,k+1‖L(p,q)(X,μ) ≤
i−1∑
k=j

2−2k

≤ 21−2j → 0 as j →∞.

Therefore, {gi}∞i=1 is also a Cauchy sequence in L(p,q)(X,μ), and hence
converges in the L(p,q) norm to a nonnegative Borel function g. Moreover, we
have

‖gj − g‖L(p,q)(X,μ) ≤ 21−2j

for every j ≥ 1.
We define u by u(x) = limi→∞ ui(x) wherever the definition makes sense.

Since ui → ũ μ-almost everywhere, it follows that u= ũ μ-almost everywhere
and thus u ∈ Lp,q(X,μ). Let

E =
{
x ∈X : lim

i→∞
ui(x) =∞

}
.

The function u is well defined outside of E. In order for the function u to
be in the space N1,Lp,q

(X,μ), the function u has to be defined on almost all
paths by Proposition 4.4. To this end, it is shown that the p, q-modulus of
the family ΓE is zero. Let Γ1 be the collection of all paths from Γrect such
that

∫
γ
g = ∞. Then we have via Theorem 3.4 that Modp,q(Γ1) = 0 since

g ∈ Lp,q(X,μ).
Let Γ2 be the family of all curves from Γrect such that limsupj→∞

∫
γ
|gj −

g|> 0. Since ‖gj−g‖Lp,q (X,μ)≤ 21−2j for all j ≥ 1, it follows via Theorem 3.6
that Modp,q(Γ2) = 0.

Since u ∈ Lp,q(X,μ) and E = {x ∈X : u(x) =∞}, it follows that μ(E) = 0
and thus ModΓ+

E
= 0. Therefore, Modp,q(Γ1 ∪ Γ2 ∪ Γ+

E) = 0. For any path,

γ in the family Γrect \ (Γ1 ∪ Γ2 ∪ Γ+
E), by the fact that γ is not in Γ+

E , there
exists a point y in |γ| \E. For any point x in |γ|, since gi is an upper gradient
of ui, it follows that

ui(x)− ui(y)≤
∣∣ui(x)− ui(y)

∣∣≤ ∫
γ

gi.
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Therefore,

ui(x)≤ ui(y) +

∫
γ

gi.

Taking limits on both sides and using the fact that γ is not in Γ1 ∪ Γ2, it
follows that

lim
i→∞

ui(x)≤ lim
i→∞

ui(y) +

∫
γ

g = u(y) +

∫
γ

g <∞,

and therefore x is not in E. Thus ΓE ⊂ Γ1 ∪ Γ2 ∪ Γ+
E and Modp,q(ΓE) = 0.

Therefore, g is a p, q-weak upper gradient of u, and hence u ∈N1,Lp,q

(X,μ).
For each x not in E, we can write u(x) = limi→∞ ui(x) < ∞. If F \ E is
nonempty, then

u|F\E ≥ un|F\E =

n∑
i=1

vi|F\E = n

for arbitrarily large n, yielding that u|F\E =∞. But this impossible, since x
is not in the set E. Therefore F ⊂E, and hence ΓF ⊂ ΓE . This finishes the
proof of the lemma. �

Next, we prove that (N1,Lp,q

(X,μ),‖ · ‖
N1,L(p,q) ) is a Banach space.

Theorem 5.5. Suppose 1 < p <∞ and 1 ≤ q ≤∞. Then (N1,Lp,q

(X,μ),
‖ · ‖

N1,L(p,q) ) is a Banach space.

Proof. We follow Shanmugalingam [27]. We can assume without loss of
generality that q 
= p. Let {ui}∞i=1 be a Cauchy sequence in N1,Lp,q

(X,μ).
To show that this sequence is convergent in N1,Lp,q

(X,μ), it suffices to show
that some subsequence is convergent in N1,Lp,q

(X,μ). Passing to a further
subsequence if necessary, it can be assumed that

‖ui+1 − ui‖L(p,q)(X,μ) + ‖gi,i+1‖L(p,q)(X,μ) ≤ 2−2i,

where gi,j is an upper gradient of ui − uj for i < j. Let

Ej =
{
x ∈X : |uj+1(x)− uj(x)| ≥ 2−j

}
.

Then 2j |uj+1 − uj | ∈ A(Ej) and hence

Capp,q(Ej)
1/p ≤ 2j‖uj+1 − uj‖N1,Lp,q ≤ 2−j .

Let Fj =
⋃∞

k=j Ek. Then

Capp,q(Ej)
1/p ≤

∞∑
k=j

Capp,q(Ek)
1/p ≤ 21−j .

Let F =
⋂∞

j=1Fj . We notice that Capp,q(F ) = 0. If x is a point in X \ F ,

there exists j ≥ 1 such that x is not in Fj =
⋃∞

k=j Ek. Hence for all k ≥ j, x is
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not in Ek. Thus, |uk+1(x)− uk(x)| ≤ 2−k for all k ≥ j. Therefore, whenever
l≥ k ≥ j we have that ∣∣uk(x)− ul(x)

∣∣≤ 21−k.

Thus, the sequence {uk(x)}∞k=1 is Cauchy for every x ∈ X \ F . For every
x ∈X \ F , let u(x) = limi→∞ ui(x). For k <m,

um = uk +

m−1∑
n=k

(un+1 − un).

Therefore for each x in X \ F ,

(18) u(x) = uk(x) +
∞∑

n=k

(
un+1(x)− un(x)

)
.

Noting by Lemma 5.4 that Modp,q(ΓF ) = 0 and that for each path γ in
Γrect \ΓF equation (18) holds pointwise on |γ|, we conclude that

∑∞
n=k gn,n+1

is a p, q-weak upper gradient of u− uk. Therefore,

‖u− uk‖N1,L(p,q) ≤ ‖u− uk‖L(p,q)(X,μ) +

∞∑
n=k

‖gn,n+1‖L(p,q)(X,μ)

≤ ‖u− uk‖L(p,q)(X,μ) +
∞∑

n=k

2−2n

≤ ‖u− uk‖L(p,q)(X,μ) + 21−2k → 0 as k→∞.

Therefore, the subsequence converges in the norm of N1,Lp,q

(X,μ) to u. This
completes the proof of the theorem. �

6. Density of Lipschitz functions in N1,Lp,q

(X,μ)

6.1. Poincaré inequality. Now we define the weak (1,Lp,q)-Poincaré in-
equality. Podbrdsky in [26] introduced a stronger Poincaré inequality in the
case of Banach-valued Newtonian Lorentz spaces.

Definition 6.1. The space (X,d,μ) is said to support a weak (1,Lp,q)-
Poincaré inequality if there exist constants C > 0 and σ ≥ 1 such that for
all balls B with radius r, all μ-measurable functions u on X and all upper
gradients g of u we have

(19)
1

μ(B)

∫
B

|u− uB |dμ≤Cr
‖gχσB‖Lp,q(X,μ)

μ(σB)1/p
.

Here

uB =
1

μ(B)

∫
B

u(x)dμ(x)

whenever u is a locally μ-integrable function on X .
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In the above definition, we can equivalently assume via Lemma 3.9 and
Corollary 2.8 that g is a p, q-weak upper gradient of u. When p= q, we have
the weak (1, p)-Poincaré inequality. For more about the Poincaré inequality
in the case p= q, see Haj�lasz and Koskela [14] and [17].

A measure μ is said to be doubling if there exists a constant C ≥ 1 such
that

μ(2B)≤Cμ(B)

for every ball B = B(x, r) in X. A metric measure space (X,d,μ) is called
doubling if the measure μ is doubling. Under the assumption that the measure
μ is doubling, it is known that (X,d,μ) is proper (that is, closed bounded
subsets of X are compact) if and only if it is complete.

Now we prove that if 1≤ q ≤ p, the measure μ is doubling, and the space
(X,d,μ) carries a weak (1,Lp,q)-Poincaré inequality, the Lipschitz functions
are dense in N1,Lp,q

(X,μ).
In order to prove that we need a few definitions and lemmas.

Definition 6.2. Suppose (X,d) is a metric space that carries a doubling
measure μ. For 1< p<∞ and 1≤ q ≤∞, we define the noncentered maximal
function operator by

Mp,qu(x) = sup
B
x

‖uχB‖Lp,q(X,μ)

μ(B)1/p
,

where u ∈ Lp,q(X,μ).

Lemma 6.3. Suppose (X,d) is a metric space that carries a doubling mea-
sure μ. If 1≤ q ≤ p, then Mp,q maps Lp,q(X,μ) to Lp,∞(X,μ) boundedly and
moreover,

lim
λ→∞

λpμ
({

x ∈X : Mp,qu(x)> λ
})

= 0.

Proof. We can assume without loss of generality that 1 ≤ q < p. For ev-
ery R > 0 let MR

p,q be the restricted maximal function operator defined on
Lp,q(X,μ) by

MR
p,qu(x) = sup

B
x,diam(B)≤R

‖uχB‖Lp,q(X,μ)

μ(B)1/p
.

Denote Gλ = {x ∈X : Mp,qu(x)> λ} and GR
λ = {x ∈X : MR

p,qu(x)> λ}. It
is easy to see that GR1

λ ⊂GR2

λ if 0<R1 <R2 <∞ and GR
λ →Gλ as R→∞.

Fix R > 0. For every x ∈ GR
λ , λ > 0, there exists a ball B(yx, rx) with

diameter at most R such that x ∈B(yx, rx) and such that

‖uχB(yx,rx)‖
p
Lp,q(X,μ) > λpμ

(
B(yx, rx)

)
.

We notice that B(yx, rx) ⊂ GR
λ . The set GR

λ is covered by such balls and
then by Heinonen [15, Theorem 1.2] it follows that there exists a countable
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disjoint subcollection {B(xi, ri)}∞i=1 such that the collection {B(xi,5ri)}∞i=1

covers GR
λ . Hence,

μ
(
GR

λ

)
≤

∞∑
i=1

μ
(
B(xi,5ri)

)
≤C

( ∞∑
i=1

μ
(
B(xi, ri)

))

≤ C

λp

( ∞∑
i=1

‖uχB(xi,ri)‖
p
Lp,q(X,μ)

)
≤ C

λp
‖uχGR

λ
‖pLp,q(X,μ).

The last inequality in the sequence was obtained by applying Proposition 2.4.
(See also Chung, Hunt and Kurtz [5, Lemma 2.5].)

Thus,

μ
(
GR

λ

)
≤ C

λp
‖uχGR

λ
‖pLp,q(X,μ) ≤

C

λp
‖uχGλ

‖pLp,q(X,μ)

for every R > 0. Since Gλ =
⋃

R>0G
R
λ , we obtain (by taking the limit as

R→∞)

μ(Gλ)≤
C

λp
‖uχGλ

‖pLp,q(X,μ).

The absolute continuity of the p, q-norm (see the discussion after Defini-
tion 2.1), the p, q-integrability of u and the fact that Gλ → ∅ μ-almost ev-
erywhere as λ→∞ yield the desired conclusion. �

Question 6.4. Is Lemma 6.3 true when p < q <∞?

The following proposition is necessary in the sequel.

Proposition 6.5. Suppose 1< p<∞ and 1≤ q <∞. If u is a nonnegative
function in N1,Lp,q

(X,μ), then the sequence of functions uk =min(u,k), k ∈
N, converges in the norm of N1,Lp,q

(X,μ) to u as k→∞.

Proof. We notice (see Lemma 3.16) that uk ∈ Lp,q(X,μ). That lemma also
yields easily uk ∈N1,Lp,q

(X,μ) and moreover ‖uk‖N1,Lp,q ≤ ‖u‖N1,Lp,q for all
k ≥ 1.

Let Ek = {x ∈ X : u(x) > k}. Since μ is a Borel regular measure, there
exists an open set Ok such that Ek ⊂Ok and μ(Ok)≤ μ(Ek) + 2−k. In fact
the sequence (Ok)

∞
k=1 can be chosen such that Ok+1 ⊂Ok for all k ≥ 1. Since

μ(Ek)≤ C(p,q)
kp ‖u‖pLp,q(X,μ), it follows that

μ(Ok)≤ μ(Ek) + 2−k ≤ C(p, q)

kp
‖u‖pLp,q(X,μ) + 2−k.

Thus, limk→∞ μ(Ok) = 0. We notice that u= uk on X \Ok. Thus, 2gχOk
is

a p, q-weak upper gradient of u− uk whenever g is an upper gradient for u
and uk. See Lemma 4.6. The fact that Ok →∅ μ-almost everywhere and the
absolute continuity of the (p, q)-norm yield

limsup
k→∞

‖u− uk‖N1,L(p,q)

≤ 2 limsup
k→∞

(
‖uχOk

‖L(p,q)(X,μ) + ‖gχOk
‖L(p,q)(X,μ)

)
= 0. �
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Counterexample 6.6. For q =∞, Proposition 6.5 is not true. Indeed,
let n≥ 2 be an integer and let 1< p≤ n be fixed. Let X =B(0,1) \ {0} ⊂R

n,
endowed with the Euclidean metric and the Lebesgue measure.

Suppose first that 1< p< n. Let up and gp be defined on X by

up(x) = |x|1−n
p − 1 and gp(x) =

(
n

p
− 1

)
|x|−n

p .

It is easy to see that up, gp ∈ Lp,∞(X,mn). Moreover (see, for instance,
Haj�lasz [13, Proposition 6.4]), gp is the minimal upper gradient for up. Thus

up ∈N1,Lp,∞
(X,mn). For every integer k ≥ 1, we define up,k and gp,k on X

by

up,k(x) =

{
k if 0< |x| ≤ (k+ 1)

p
p−n ,

|x|1−n
p − 1 if (k+ 1)

p
p−n < |x|< 1

and

gp,k(x) =

{
(np − 1)|x|−n

p if 0< |x|< (k+ 1)
p

p−n ,

0 if (k+ 1)
p

p−n ≤ |x|< 1.

We notice that up,k ∈N1,Lp,∞
(X,mn) for all k ≥ 1. Moreover, via [13, Propo-

sition 6.4] and Lemma 4.6, we see that gp,k is the minimal upper gradi-
ent for up − up,k for every k ≥ 1. Since gp,k ↘ 0 on X as k → ∞ and
‖gp,k‖Lp,∞(X,mn) = ‖gp‖Lp,∞(X,mn) = C(n,p)> 0 for all k ≥ 1, it follows that

up,k does not converge to up in N1,Lp,∞
(X,mn) as k→∞.

Suppose now that p= n. Let un and gn be defined on X by

un(x) = ln
1

|x| and gn(x) =
1

|x| .

It is easy to see that un, gn ∈ Lp,∞(X,mn). Moreover (see, for instance,
Haj�lasz [13, Proposition 6.4]), gn is the minimal upper gradient for un. Thus,
un ∈N1,Ln,∞

(X,mn). For every integer k ≥ 1 we define un,k and gn,k on X
by

un,k(x) =

{
k if 0< |x| ≤ e−k,
ln 1

|x| if e−k < |x|< 1

and

gn,k(x) =

{ 1
|x| if 0< |x|< e−k,

0 if e−k ≤ |x|< 1.

We notice that un,k ∈ N1,Ln,∞
(X,mn) for all k ≥ 1. Moreover, via [13,

Proposition 6.4] and Lemma 4.6 we see that gn,k is the minimal upper gra-
dient for un − un,k for every k ≥ 1. Since gn,k ↘ 0 on X as k → ∞ and
‖gn,k‖Lp,∞(X,mn) = ‖gn‖Ln,∞(X,mn) = C(n) > 0 for all k ≥ 1, it follows that

un,k does not converge to un in N1,Ln,∞
(X,mn) as k→∞.

The following lemma will be used in the paper.
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Lemma 6.7. Let f1 ∈N1,Lp,q

(X,μ) be a bounded Borel function with p, q-
weak upper gradient g1 ∈ Lp,q(X,μ) and let f2 be a bounded Borel function with
p, q-weak upper gradient g2 ∈ Lp,q(X,μ). Then f3 := f1f2 ∈N1,Lp,q

(X,μ) and
g3 := |f1|g2 + |f2|g1 is a p, q-weak upper gradient of f3.

Proof. It is easy to see that f3 and g3 are in Lp,q(X,μ). Let Γ0 ⊂ Γrect be
the family of curves on which

∫
γ
(g1+g2) =∞. Then it follows via Theorem 3.4

that Modp,q(Γ0) = 0 because g1 + g2 ∈ Lp,q(X,μ).
Let Γ1,i ⊂ Γrect, i= 1,2 be the family of curves for which∣∣fi(γ(0))− fi

(
γ
(

(γ)

))∣∣≤ ∫
γ

gi

is not satisfied. Then ModΓ1,i = 0, i = 1,2. Let Γ1 ⊂ Γrect be the family
of curves that have a subcurve in Γ1,1 ∪ Γ1,2. Then F (Γ1,1 ∪ Γ1,2) ⊂ F (Γ1)
and thus Modp,q(Γ1)≤Modp,q(Γ1,1 ∪ Γ1,2) = 0. We notice immediately that
Modp,q(Γ0 ∪ Γ1) = 0.

Fix ε > 0. By using the argument from Lemma 1.7 in Cheeger [4], we see
that ∣∣f3(γ(0))− f3

(
γ
(

(γ)

))∣∣
≤
∫ �(γ)

0

(∣∣f1(γ(s))∣∣+ ε
)
g2
(
γ(s)

)
+
(∣∣f2(γ(s))∣∣+ ε

)
g1
(
γ(s)

)
ds

for every curve γ in Γrect \ (Γ0 ∪ Γ1). Letting ε → 0 we obtain the desired
claim. �

Fix x0 ∈X . For each integer j > 1 we consider the function

ηj(x) =

⎧⎨⎩
1 if d(x0, x)≤ j − 1,
j − d(x0, x) if j − 1< d(x0, x)≤ j,
0 if d(x0, x)> j.

Lemma 6.8. Suppose 1 ≤ q < ∞. Let u be a bounded function in the
space N1,Lp,q

(X,μ). Then the function vj = uηj is also in N1,Lp,q

(X,μ)
where ηj is defined as above. Furthermore, the sequence vj converges to u

in N1,Lp,q

(X,μ).

Proof. If X is bounded, the claims of the lemma are trivial. Thus, we
can assume without loss of generality that X is unbounded. Moreover, we
can also assume without loss of generality that u ≥ 0. Let g ∈ Lp,q(X,μ)
be an upper gradient for u. It is easy to see by invoking Lemma 4.6 that
hj := χB(x0,j)\B(x0,j−1) is a p, q-weak upper gradient for ηj and for 1 − ηj .

By using Lemma 6.7, we see that vj ∈N1,Lp,q

(X,μ) and that gj := uhj + gηj
is a p, q-weak upper gradient for vj . By using Lemma 6.7, we notice that

h̃j := uhj + g(1− ηj) is a p, q-weak upper gradient for u− vj . We have in fact

(20) 0≤ u− vj ≤ uχX\B(x0,j−1) and h̃j ≤ (u+ g)χX\B(x0,j−1)
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for every j > 1. The absolute continuity of the (p, q)-norm when 1 ≤ q <∞
(see the discussion after Definition 2.1) together with the p, q-integrability of
u, g and (20) yield the desired claim. �

Now we prove the density of the Lipschitz functions in N1,Lp,q

(X,μ) when
1≤ q < p. The case q = p was proved by Shanmugalingam. (See [27] and [28].)

Theorem 6.9. Let 1 ≤ q ≤ p < ∞. Suppose that (X,d,μ) is a doubling
metric measure space that carries a weak (1,Lp,q)-Poincaré inequality. Then
the Lipschitz functions are dense in N1,Lp,q

(X,μ).

Proof. We can consider only the case 1≤ q < p because the case q = p was
proved by Shanmugalingam in [27] and [28]. We can assume without loss of
generality that u is nonnegative. Moreover, via Lemmas 6.5 and 6.7 we can
assume without loss of generality that u is bounded and has compact support
in X . Choose M > 0 such that 0 ≤ u ≤ M on X . Let g ∈ Lp,q(X,μ) be a
p, q-weak upper gradient for u. Let σ ≥ 1 be the constant from the weak
(1,Lp,q)-Poincaré inequality.

Let Gλ := {x ∈X : Mp,qg(x)> λ}. If x is a point in the closed set X \Gλ,
then for all r > 0 one has that

1

μ(B(x, r))

∫
B(x,r)

|u− uB(x,r)|dμ ≤ Cr
‖gχB(x,σr)‖Lp,q(X,μ)

μ(B(x,σr))1/p

≤ CrMp,qg(x)≤Cλr.

Hence, for s ∈ [r/2, r] one has that

|uB(x,s) − uB(x,r)| ≤
1

μ(B(x, s))

∫
B(x,s)

|u− uB(x,r)|dμ

≤ μ(B(x, r))

μ(B(x, s))
· 1

μ(B(x, r))

∫
B(x,r)

|u− uB(x,r)|dμ≤Cλr

whenever x is in X \Gλ. For a fixed s ∈ (0, r/2) there exists an integer k ≥ 1
such that 2−kr ≤ 2s < 2−k+1r. Then

|uB(x,s) − uB(x,r)| ≤ |uB(x,s) − uB(x,2−kr)|+
k−1∑
i=0

|uB(x,2−i−1r) − uB(x,2−ir)|

≤ Cλ

(
k∑

i=0

2−ir

)
≤Cλr.

For any sequence ri ↘ 0 we notice that (uB(x,ri))
∞
i=1 is a Cauchy sequence for

every point x in X \Gλ. Thus, on X \Gλ we can define the function

uλ(x) := lim
r→0

uB(x,r).

We notice that uλ(x) = u(x) for every Lebesgue point x in X \Gλ.
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For every x, y in X \Gλ we consider the chain of balls {Bi}∞i=−∞, where

Bi =B
(
x,21+id(x, y)

)
, i≤ 0 and Bi =B

(
y,21−id(x, y)

)
, i > 0.

For every two such points x and y, we have that they are Lebesgue points for
uλ by construction and hence∣∣uλ(x)− uλ(y)

∣∣≤ ∞∑
i=−∞

|uBi − uBi+1 | ≤Cλd(x, y),

where C depends only on the data on X . Thus, uλ is Cλ-Lipschitz on X \Gλ.
By construction it follows that 0≤ uλ ≤M on X \Gλ. Extend uλ as a Cλ-
Lipschitz function on X (see McShane [25]) and denote the extension by vλ.
Then vλ ≥ 0 on X since uλ ≥ 0 on X \Gλ. Let wλ := min(vλ,M). We notice
that wλ is a nonnegative Cλ-Lipschitz function on X since vλ is. Moreover,
wλ = vλ = uλ on X \Gλ whenever λ >M .

Since u=wλ μ-almost everywhere on X \Gλ whenever λ >M , we have

‖u−wλ‖Lp,q(X,μ) =
∥∥(u−wλ)χGλ

∥∥
Lp,q(X,μ)

≤ ‖uχGλ
‖Lp,q(X,μ) +C(p, q)λμ(Gλ)

1/p

whenever λ > M . The absolute continuity of the p, q-norm when 1 ≤ q ≤ p
together with Lemma 6.3 imply that

lim
λ→∞

‖u−wλ‖Lp,q(X,μ) = 0.

Since u−wλ = 0 μ-almost everywhere on the closed set Gλ, it follows via
Lemma 4.6 that (Cλ+ g)χGλ

is a p, q-weak upper gradient for u− wλ. By
using the absolute continuity of the p, q-norm when 1 ≤ q ≤ p together with
Lemma 6.3, we see that

lim
λ→∞

∥∥(Cλ+ g)χGλ

∥∥
Lp,q(X,μ)

= 0.

This finishes the proof of the theorem. �

Theorem 6.9 yields the following result.

Proposition 6.10. Let 1≤ q ≤ p <∞. Suppose that (X,d,μ) satisfies the
hypotheses of Theorem 6.9. Then Capp,q is an outer capacity.

In order to prove Proposition 6.10, we need to state and prove the fol-
lowing proposition, thus generalizing Proposition 1.4 from Björn, Björn and
Shanmugalingam [3].

Proposition 6.11 (See [3, Proposition 1.4]). Let 1< p <∞ and 1≤ q <
∞. Suppose that (X,d,μ) is a proper metric measure space. Let E ⊂X be
such that Capp,q(E) = 0. Then for every ε > 0 there exists an open set U ⊃E
with Capp,q(U)< ε.
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Proof. We adjust the proof of Proposition 1.4 in Björn, Björn and Shan-
mugalingam [3] to the Lorentz setting with some modifications. It is enough
to consider the case when q 
= p. Due to the countable subadditivity of
Capp,q(·)1/p we can assume without loss of generality that E is bounded.
Moreover, we can also assume that E is Borel. Since Capp,q(E) = 0, we

have χE ∈N1,Lp,q

(X,μ) and ‖χE‖N1,Lp,q = 0. Let ε ∈ (0,1) be arbitrary. Via
Lemma 3.9 and Corollary 2.8, there exists g ∈ Lp,q(X,μ) such that g is an
upper gradient for χE and ‖g‖Lp,q(X,μ) < ε. By adapting the proof of the
Vitali–Carathéodory theorem to the Lorentz setting (see Folland [10, Propo-
sition 7.14]) we can find a lower semicontinuous function ρ ∈ Lp,q(X,μ) such
that ρ≥ g and ‖ρ− g‖Lp,q(X,μ) < ε. Since Capp,q(E) = 0, it follows immedi-
ately that μ(E) = 0. By using the outer regularity of the measure μ and the
absolute continuity of the (p, q)-norm, there exists a bounded open set V ⊃E
such that

‖χV ‖Lp,q(X,μ) +
∥∥(ρ+ 1)χV

∥∥
Lp,q(X,μ)

<
ε

2
.

Let

u(x) =min

{
1, inf

γ

∫
γ

(ρ+ 1)

}
,

where the infimum is taken over all the rectifiable (including constant) curves
connecting x to the closed set X \V . We notice immediately that 0≤ u≤ 1 on
X and u= 0 on X \V . By Björn, Björn and Shanmugalingam [3, Lemma 3.3]
it follows that u is lower semicontinuous on X and thus the set U = {x ∈
X : u(x)> 1

2} is open. We notice that for x ∈E and every curve connecting
x to some y ∈X \ V , we have∫

γ

(ρ+ 1)≥
∫
γ

ρ≥ χE(x)− χE(y) = 1.

Thus, u= 1 on E and E ⊂ U ⊂ V . From [3, Lemmas 3.1 and 3.2] it follows
that (ρ+ 1)χV is an upper gradient of u. Since 0 ≤ u ≤ χV and u is lower
semicontinuous, it follows that u ∈N1,Lp,q

(X,μ). Moreover, 2u ∈ A(U) and
thus

Capp,q(U)1/p ≤ 2‖u‖N1,Lp,q ≤ 2
(
‖u‖Lp,q(X,μ) +

∥∥(ρ+ 1)χV

∥∥
Lp,q(X,μ)

)
≤ 2

(
‖χV ‖Lp,q(X,μ) +

∥∥(ρ+ 1)χV

∥∥
Lp,q(X,μ)

)
< ε.

This finishes the proof of Proposition 6.11. �

Now we prove Proposition 6.10.

Proof. We start the proof of Proposition 6.10 by showing that every func-
tion u in N1,Lp,q

(X,μ) is continuous outside open sets of arbitrarily small
p, q-capacity. (Such a function is called p, q-quasicontinuous.) Indeed, let u
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be a function in N1,Lp,q

(X,μ). From Theorem 6.9 there exists a sequence
{uj}∞j=1 of Lipschitz functions on X such that

‖uj − u‖N1,Lp,q < 2−2j for every integer j ≥ 1.

For every integer j ≥ 1 let

Ej =
{
x ∈X :

∣∣uj+1(x)− uj(x)
∣∣> 2−j

}
.

Then all the sets Ej are open because the all functions uj are Lipschitz. By
letting F =

⋂∞
j=1

⋃∞
k=j Ek and applying the argument from Theorem 5.5 to the

sequence {uk}∞k=1 which is Cauchy in N1,Lp,q

(X,μ), we see that Capp,q(F ) =

0 and the sequence {uk} converges in N1,Lp,q

(X,μ) to a function ũ whose
restriction on X \ F is continuous. Thus, ‖u− ũ‖N1,Lp,q = 0 and hence if we
let E = {x ∈X : u(x) 
= ũ(x)}, we have Capp,q(E) = 0. Therefore Capp,q(E ∪
F ) = 0 and hence, via Proposition 6.11 we have that u = ũ outside open
supersets of E ∪ F of arbitrarily small p, q-capacity. This shows that u is
quasicontinuous.

Now we fix E ⊂X and we show that

Capp,q(E) = inf
{
Capp,q(U),E ⊂ U ⊂X,U open

}
.

For a fixed ε ∈ (0,1) we choose u ∈A(E) such that 0≤ u≤ 1 on X and such
that

‖u‖N1,Lp,q <Capp,q(E)1/p + ε.

We have that u is p, q-quasicontinuous and hence there is an open set V such
that Capp,q(V )1/p < ε and such that u|X\V is continuous. Thus, there exists
an open set U such that U \ V = {x ∈ X : u(x) > 1 − ε} \ V ⊃ E \ V . We
see that U ∪ V = (U \ V )∪ V is an open set containing E ∪ V = (E \ V )∪ V .
Therefore,

Capp,q(E)1/p ≤ Capp,q(U ∪ V )1/p ≤Capp,q(U \ V )1/p +Capp,q(V )1/p

≤ 1

1− ε
‖u‖N1,Lp,q +Capp,q(V )1/p

≤ 1

1− ε

(
Capp,q(E)1/p + ε

)
+ ε.

Letting ε→ 0 finishes the proof of Proposition 6.10. �
Theorems 5.2 and 6.9 together with Proposition 6.10 and Remark 5.3 yield

immediately the following capacitability result. (See also Appendix II in Doob
[9].)

Theorem 6.12. Let 1 < q ≤ p < ∞. Suppose that (X,d,μ) satisfies the
hypotheses of Theorem 6.9. The set function E �→ Capp,q(E) is a Choquet
capacity. In particular, all Borel subsets (in fact, all analytic subsets) E of X
are capacitable, that is

Capp,q(E) = sup
{
Capp,q(K) : K ⊂E,K compact

}
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whenever E ⊂X is Borel (or analytic).

Remark 6.13. Counterexample 6.6 can be used to construct a counterex-
ample to the density result for N1,Lp,∞

in the Euclidean setting for 1< p≤ n
and q =∞.
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