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COMPUTATION OF THE KERNELS OF LEVY
FUNCTIONALS AND APPLICATIONS
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ABSTRACT. An effective computation of the kernels of the chaos
decomposition of Lévy functionals is used, to prove, among other
things, a chain- and product-rule of the Malliavin derivative for
a large class of Lévy processes. In case of finite and infinite-
dimensional Brownian motion, the well-known rules are obtained,
but for Poisson processes, the results are new. The kernels of a
Lévy functional can be computed by taking the expected value
of the product of this functional and multiple white noise of the
Lévy process.

1. Introduction

Chaotic representations of Lévy functionals often serve as basis for the
Malliavin calculus for Lévy processes. We refer to the articles [9], [16], [22],
[23], [24] and [27] for infinite dimensional Brownian motion, and to [5], [10],
[16], [17], [21] and [23] for finite dimensional Lévy processes. Lévy functionals
are square integrable random variables and are uniquely determined by a
sequence (fn)nen, of deterministic functions, where the domain of f,, is the
continuous time line [0,7]",7 € RT or [0, 00[".

An effective recipe for the computation of the kernels is used to prove,
among other things, a chain- and product-rule of the Malliavin derivative
for a large class Lévy processes. In case of finite and infinite-dimensional
Brownian motion, the well-known rules are obtained (see Nualart [16]), but
for Poisson processes the results and, in any case, the method are new. As
far as I know, this recipe has never been used before to prove these rules.
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This recipe can be found in [19] and is an extension of a result, due to
Cutland and Ng [4], for finite-dimensional Brownian motion to more general
Lévy processes. N. Wiener [26] was the first to develop chaotic representations
of Brownian functionals. He used them to obtain better models for telecom-
munications under Brownian noise (see P. R. Masani [15]). The domain of a
Brownian functional ¢ is the Wiener space Cr of real continuous functions
on the continuous time line, endowed with the Wiener measure. Cutland and
Ng [4] have pointed out, that it was the intention of Wiener, to think of the
kernels f,, of ¢ as being given by

(1) Falte,- - tn) =E(pby, -+ by,),

where i)t is the derivative of the Brownian motion b at time ¢. However, i)t
only exists in the sense of Schwartz distributions (see Walter [25]).

Instead of taking generalized functions, Cutland and Ng [4] use an extension
of the notion “finite” in a countably saturated model 9t of mathematics.
We refer to the book of S. Albeverio, J. E. Fenstad, R. Hgegh-Krohn, T.
Lindstrgm [1] for details. Without any loss of generality, Cutland and Ng
replace the Wiener space with a *finite (finite in 9%) dimensional Euclidean
space . The Wiener measure on Cy is replaced with the Loeb measure [13]
over the centered Gauflian measure on 2 of infinitely small variance. The
continuous time line is replaced with a *finite time line and the Brownian
motion b with a *smooth Brownian motion. Cutland and Ng now showed
that, using these new entities, Equation (1) becomes a mathematically exact
statement.

The literature is full of nice applications of finitization of topics in stochastic
analysis. The pioneers are Loeb [13], Anderson [2], Keisler [8], Lindstrgm [11],
Hoover and Perkins [7], ....

In our paper finitization is used, to compute the kernels for quite general
Lévy functionals, in particular for the product of two Lévy functionals, in
order to obtain the product- and chain-rule in standard terms. Infinite di-
mensional Brownian motion in the context of abstract Wiener spaces (see
Gross [6]) and Poisson processes are included, and, of course, finite dimen-
sional Brownian motion.

An abstract Wiener space is a pair (H,B), where B is a real Banach space
and H is a densely embedded separable Hilbert space. In case of a B-valued
Brownian motion, the range of the kernel f,, of a Brownian functional is the
n-fold tensor product of H.

If L is a one dimensional Lévy process, then the range of the kernel f,, of
an L-functional is a suitable subspace of RNZ | where N;, C N (see [19]). In
case of one dimensional Brownian motion or for Poisson processes Ny = {1},
for symmetrized Poisson processes Np = {1,2} (see [19]). In [19], there are
also examples, where Ny = N.
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The computation of the kernels is simple and intuitive. It will be seen
that it is also effective. However, its application is rather technical, although,
one should better say, because it is constructive. For example, in order to
compute the kernels of the product ¢ -1 of two Lévy functionals ¢ and v,
quite complicated finite combinatorics is used. Therefore, for the reader’s
convenience, we describe the ideas in the much simpler case of, even infi-
nite dimensional, Brownian motion, before going to more general Lévy pro-
cesses.

Added to proof: In the meantime versions of the results in this article and
the theories behind can be found in an introduction to Malliavin calculus

([200).

2. The main results

First, we present the product- and chain-rules for finite dimensional Lévy
processes. Based on Lindstrgm’s article [12], it is shown in [19] that each
Lévy process L lives on a fixed *finite dimensional sample space 2; € only
depends on the dimension of L. The probability measure i = iy, on §2 charac-
terizes the process L. For simplicity, we study only one-dimensional processes
L: [0,00[x 2 — R, except for infinite-dimensional Brownian motion, where
R is replaced by any separable Banach space. We assume that L is locally
square integrable and equivalent to a process with limited increments. Brow-
nian motion, Poisson processes and many other important Lévy processes (see
[19]) meet this demand. It is also fulfilled for truncated Lévy processes.

We take the o-algebra D :=Dy, on 2, generated by the Wiener—Lévy in-
tegrals, associated to L. Also determined by L, there exists an initial subset
Ny, of N and a sequence (pg)ken, of real orthogonal polynomials.

Each square integrable Dy -measurable random variable ¢ can be expanded
to an orthogonal series Y~ I,,(f,,) of multiple integrals I,,(f,), the so called
chaotic representation of ¢. The kernels f, of ¢, which are uniquely de-
termined by ¢, are deterministic square summable real functions, defined
on Ny x [0,00[", that is, > cnn f[o,oo[n f2(k,)d\™ < 0o, where A" is the
Lebesgue measure on [0,00[". Moreover, the kernels f,, are symmetric, that
is, for all permutations ¢ on {1,...,n},

falkr, oo sknyriy oo mn) = fa(Boys ooy ko s oy e oo s Tay, )

Using the shorthand k = (k1,...,ky),7 = (11,...,7y), the integrals I,,(f,,) have
the following form (for details, see [19]):

W)= 3 [ o) b (0, dME (),

keny 7 (0,002

where (M")pen, is a bunch of real square-integrable martingales M¥. In-
tuitively, the increment AMPF®(r,-) of M* at r € [0,00[ is the polynomial py
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applied to the increment AL(r,-) of L at r. It should be mentioned that for
all k € Ny, the Doleans-measure of M* is the Lebesgue measure.

Each ¢ € L% (1) has the decomposition ¢ =Y  I,(f) ([19]). The Malli-
avin derivative D is a densely defined operator from the space L (1) into the
space L?(c ® A\ ® fi) of real square summable stochastic processes, defined on
Nz x [0,00[ x £ (see [19]) by

(D(p)l,f’(X) DSD l TX ZIW 1 fn ) vv ))( )a

neN

if this series converges in L?(c® A ® [i). Then ¢ is called Malliavin differen-
tiable. For each S € N, define
[S:= Y I(falS),

nE€Np

where (f, [ S)(k,r):= fulk,r) if n <S)|fu(k,r)| < S, ke{l,...,S}" and
r < S. Otherwise, (f, [ S)(k,r):=0. If p=¢g or f=f]S5, then we say that
o, f, respectively, are bounded by S.

Bounded ¢ € L2,(ji) are Malliavin differentiable. Fix ¢ € L (fi). Since I,
is a bounded operator, limg_,~ ps = ¢ in L% (f), and, if ¢ is Malliavin differ-
entiable, then limg_.o, Dypgs = Dy in L?(c® A®[i). Here are the main results,
where we use constants a(k,&,!) € R depending on k,&,! € Nz. Intuitively,

ok, 7, 1) :/ AME - AMF - AMLd\® (s, X).
[0,00[x 2

The precise definition of a(k,,1) will be given in Equation (2).
THEOREM 2.1 (Product rule). Let Ny, be finite. Fiz Malliavin differentiable
o, € L3,(11) such that (Ez(ps - ¢s))sen converges in R.

(A) Suppose that the sequences (Dpg - s)sen, (s - Dig)sen converge in
L?>(c®@ A® ). Then (D(ps - ¥s))sen converges in L*(c ® A ® 1) iff
(17, X) > o merg, @R l) - (D) (X) - (Do ) (X)) st converges
in L2(c® A @), in which case ¢ -1 is Malliavin differentiable and

(D(<P'¢))(l, (DQO)IT ¢+<P (Dw)(l,r)
+ > a(k R D) (DY) - (DY),

k,RENL
in L2(c®@A®M). In case, N = {1}, we have for a =a(1,1,1)

«

in L2(A@). If a =0, then (D(p-v)), = (D), -+ - (D).
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(B) Suppose that (D(¢s - 1s))sen converges in L*(c @ A®@ ). Then ¢ -1 is
Malliavin differentiable and for all | € Np, we have \ ® [i-a.e.

(D(p-v)),, = (Do) +¢- (DP)ir+ D (kR l) - (D) (DY)
K,RENL

If L is the Brownian motion, then N; = {1} and a=0. For the Poisson

process with rate § we have N = {1} and oo = Lﬁ In case of symmetrized
Poisson processes, we have Ny = {1,2} (see [19]).

THEOREM 2.2 (Chain rule). Suppose that N ={1}. Fiz g: R® =R and
Malliavin differentiable @1,...,p,. Assume that the partial derivatives of g
exist and that there are polynomials q; in n variables with limg; = g and
lim0;q; = 0;g fori=1,...,n.

(A) Fiz S € N. Suppose that (D(qj(¢1,5,---,%n.5)))jen converges in L2(A®

i) and (Ez(q;(¢1,5:---¢n,s)))jen converges in R.
Then g(¢1.8,---,¢n.s) is Malliavin differentiable and A ® fi-a.e.,

(D(g(g@l,Sa"W(pnws)))r
1
= _(g(‘Pl,S +a- (D‘Pl,S)ra cePns o (DQDn,S)r) - 9(90175’ - -a‘Pn,S))v
«

where this fraction is equal to > (8;9)(¢1,5,---,¢n,s) - (Dpis)r, if
a=0.
(B) Assume that (A) is true for all S €N, and g and 0;g are continuous.

Moreover, let (D(g(41,5,---,%n,s)))sen, Ea(g(@1,5,---5¢n,s))sen con-
verge in L2 (A ® [i), in R, respectively. Then g(p1,...,¢n) is Malliavin
differentiable and we have A ® [i-a.e.

(D(g(e1,---,0n))),
_9lpr+a-(Dp1)rs - ospn+a - (Don)r) = g(p1,-- - #n)

where this fraction is equal to Y i1 (9:9)(¢1,-- -, n) - (D@i)r, if @ =0.

In the terminology of Nualart and Schoutens [17], the densely defined op-
erator D(+); from L% (1) into LA (A ® [i) is called the partial derivative for
leNyp.

In the work of G. Di Nunno, Th. Meyer-Brandis, B. @ksendal, F. Proske
[5] on pure jump processes, the product rule has the form

(D(¢-v)), = (De)i -+ ¢ (DY) + D(p); - D(1);.

In case of the chain rule, they prove a corresponding formula via Wick product
similar to the formula above for « = 0. Moreover, in that work and also in the
work of J. L. Solé, F. Utzet, J. Vives [21] the set R x [0, 00[ X §2 is the domain
of the Malliavin derivative D¢ of a Lévy functional ¢, where the measure on
R depends on the Lévy process.
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In our approach D¢ is defined on Ny, x [0,00[ x 2, the measure on N, x
[0,00[ is the product of the counting measure on N and Lebesgue measure
on [0,00[. Later on, we briefly refer to the work of Nualart and Schoutens
[17]. They take the power jump processes of a Lévy process to prove a chaos
representation result for Lévy functionals. J. A. Léon, J. L. Solé, F. Utzet,
J. Vives [10] use their approach to define the directional Malliavin derivative
and the directional Skorohod integral.

3. Preliminaries

To keep this paper self-contained to a large extent, we recall some relevant
notions in [19]. We are working in a countably saturated model 9 of math-
ematics, where we have a strict extension *A of each infinite standard set A.
However, we can work in 91 as it is common practice in mathematics. For
example, the extensions *R, *+,*- *< of R, +, -, < together with 0,1 build an
ordered field.

It should be mentioned that not each subset of *A is a set in 9. The
internal subsets of *A (internal in 9%) include the finite subsets and have nice
closure properties: each subset of *A, which can be defined by using only
internal objects, is again internal. For details and for undefined notations in
this article, consult the book of S. Albeverio, J. E. Fenstad, R. Hgegh Krohn,
T. Lindstrgm [1] or the book of P. Loeb and M. Wolff [14]. Recall that a € *R
is called limited, if |a| < n for some n € N. For limited a there exists a uniquely
determined standard number, denoted by °a, which is infinitely close to a,
that is, the difference of a and °a is smaller than any positive standard real
number.

Fix an unlimited H € *N such that, for technical reasons, each n € N divides
H and for t <H let T := {4 |i € *N, % <t}. Set T:=Ty. On T*, n€N,
we take the counting measure v" with
_ Al

Hn
for all internal subsets A C T)*, where |A| denotes the internal number of
elements of T{*. Let (T}, Ly, I') denote the Loeb space over (T, v"). It is a
nonfinite measure space iff ¢ is unlimited. However, the set of all (¢1,...,t,) €
T; such that all the ith components ¢; for some ¢ € {1,...,n} are unlimited
is a ﬁ—nullset. For unlimited ¢ the set T; can be seen as an infinitely fine
partition of [0,c0[. However, T is finite in the sense of M, |T;| =t - H. Set

T2:={teT" |ty <---<tn}, Ty:={teT"|[t;#t;fori#j}.

vi'(A):

It is known that the standard part map st: (t1,...,tn) — (°t1,...,%,) is
v-a.s. well defined and a measure preserving map from T onto [0, c0[™,
where [0, 0o[™ is endowed with the Lebesgue measure A\". Let £™ C L,» be the
o-algebra, generated by the standard part map, augmented by the z/ﬁ—nullsets,
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and let for p € [0,00] L%, (™) be the space of L£"-measurable functions in
LP(v™). Then the LP-spaces LP(A") and L%, (v™) can be identified, because

L Lp()\") — L., (175), @) (t1, .. tp) = <p(°t1, . .,Otn)

defines a canonical, that is, basis independent, isometric isomorphism be-
tween both LP-spaces. It is more comfortable to work with Lf:n(ljﬁ) than
with LP(A\"), because vn s closely linked to the counting measure v™ in the
following sense: fix r € N and B € L,». Then there exists an internal A CT}"
such that the symmetric difference of A and B is a v7-nullset. It follows that
v (B) ~ v(A). Tt should be mentioned that the full Loeb o-algebra Ly» is
much larger than £".

Let (A,C,p) be a measure space, let g, defined on T™ x A, be L™ ® C-
measurable and let f, defined on [0,00[" x A, be Leb ® C-measurable. Then
f and g are called equivalent, if g(t1,...,tn,x) = f(°t1,..., %, x) for v ® p-
almost all (ty,...,t,,x). Equivalent functions can be identified.

Using the work of Lindstrgm’s [12], it is shown in [19] that all (for simplicity
one-dimensional) Lévy processes are determined by internal Borel probability
measures p! on *R. Let p be the H2-fold product of p' on Q:=*R”. Let
(Q,L,(B),11) denote the Loeb space over (2,B,u), where B is the internal
Borel algebra on the H?-dimensional Euclidean space £2. On B we take the
canonical filtration (Bt)ier, i.e., By is unable to distinguish X from Y in Q if
Xs =Y, for all s <t. Often we use the filtration (B;-)ier with ¢t~ :=t — %,
where By := {Q,0}. The conditional expectation with respect to B; is denoted
by EB:.

We assume that the Lévy processes, determined by p!, are equivalent to
processes with bounded increments. This condition is true for Brownian mo-
tion, Poisson processes and many other important Lévy processes. In [19],
the reader can find the details and some examples.

While Nualart and Schoutens [17] orthonormalize the full power jump pro-
cess of the Lévy process, in [19] we have orthonormalized the increments and
obtain internal sequences (px)ren,ufo} of orthogonal polynomials py in the
internal space L?(u') with po=1 and E,1p} = & for k> 1. It is assumed
that Ny, is an initial segment of N, depending on the Lévy process L. In [19],
we have written Noj instead of Ny. The following terms are crucial: set for
I, K, keNL

(2) o(k,R,0):=HE pe-pr - and  a(k, k1) :=°0(k, k).

A slight modification (see [19]) of the Loeb—Anderson lifting theorem (see [2],
[13]) is used: There exists a *finite extension My, of Ny, such that any measur-
able f: N7 x[0,00[" x Q@ — Rhas alifting F : M* xT" xQ — *R, i.e., Fj(t,)
is B-measurable and Fj(t, X) ~ f,(°t, X) for all k € N7 and 1™ @ p-almost all
(t,X). Then we call f the standard part of F, denoted by °F. The function
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F is called S-square summable if © ZkeMgL Fill2ng, = ZkeN’L”
which case we write FF € SL?(c™@v" ®@u). If m =0, then F is called S-square
integrable.

OFkH?\”@ﬁ’ in

4. Infinite-dimensional Brownian motion

In the case of finite dimensional Brownian motion, Ny = {1} and a =
«(1,1,1) = 0. Therefore, the rules for Brownian motion are much simpler
than they are for more general Lévy processes, even in the infinite-dimensional
case. For the reader’s convenience, we first give priority to the computation of
the kernels in the chaos decomposition of Gaufliian functionals in the infinite
dimensional case.

Fix an infinite dimensional separable Hilbert space H. The n-fold ten-
sor product H®» of H is the Hilbert-space of continuous multilinear maps
frH' = Rwith Y, oy f2(iy,. .., bs,) < 00, where (b;)ien is an orthonor-
mal basis of H. For n =1 H®* is the topological dual space H' = H of H. Set
H®o :=R. The scalar product on H®" is denoted by {(f,g) and the norm by
II-|I- In [18], there is a *finite-dimensional representation F of H. This means
the following.

There is a finite-dimensional (in the sense of 9) linear space F and an
embedding * from H®» into F®» such that for all f,g € H®",

<f7.g>z Z *f'*g(ei17"'7ei1):: <*f’*g>a

B15e ey SW

where € := (¢;);c is an internal orthonormal basis of F. The norm on F®n
is also denoted by || - ||. Set F®o :=*R. If f € H®" and F € F®", then we
define f~pn F < ||*f — F| =0, in which case we call f the standard part of
F, denoted by °F. Note that |[*f — F||? =3, . (*f — F)*(eiy, . .-, ¢5,).

Set Q:=FT, that is, we now replace *R in Section 3 by the w-dimensional
F and R by H. Then Q is an H? - w-dimensional Euclidean space. Let ! :=
74 be the centered GauBliian measure on *R of variance % This measure
was introduced by Cutland [3]; the density is infinitely close to the Dirac
d-function, but a smooth function.

The internal probability measure v on the internal Borel algebra B of € is
the H? - w-fold product of v'. With the shorthand zs; := (X, ¢;) we have for

all Be B,
H H?.w
_H 2
'y(B) = V(BG) ::/ e 2 YseT icw Tai d(xs,i)sET,iew . 27 ,
Be ™
where B® := {(z5,)seT.i<w | (>-i @5 ¢;)ser € B}. Note that v(B) does not
depend on the orthonormal basis of F.
Let B be an abstract Wiener space over H. Then B is the Banach space
completion of H with respect to a Gross measurale norm |-| on H, which
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means in nonstandard terms: for all internal subspaces F C F with E | *a for
all a € H,
'yAl{xGE\ |x|7’>90}:0,

where 77 is the Loeb measure over the internal Gaufiian measure of variance
1 on E. The dual space B’ of B is a dense subspace of H' = H in the original
norm on H. It is well known that each separable Banach space appears as an
abstract Wiener space (see Kuo [9]).

It follows from [18] that there exists a continuous Brownian motion bp : §2 x
[0,00[— B for any abstract Wiener space B over H, defined by

(3)  bs(X,°t) =°B(X,t) with B(X,t):=) X.= Y (X, e)e

s<t s<t,i<w

for 7-almost all X € Q and all limited ¢ € T', where B(X,t) € F is fixed and
°B(X,t) is the standard part of B(X,t) in the topology of B. Note that B is
an internal discrete Brownian motion.

The probability space €2 is very rich, although it is finite dimensional: €
only depends on H and not on the many quite different abstract Wiener
spaces over H. Moreover, it is shown in [18] that the standard part map
kp: X — bp(X,-) is a surjective measurable mapping from 2 onto the space
Cp of continuous functions from [0, c0[ into B. This is true for any abstract
Wiener space B over the fixed H. The image measure Wy of 7 by xp is called
the Wiener measure on the Borel-algbra on Cg. Let W C L. (B) be the o-
algebra, generated by bg, augmented by the J-nullsets. Again, YW does not
depend on B, only on H. In analogy to the case of LZ. L(;ﬁ) and LP(\") we
can identify the “nonstandard space” LY, (7) with the standard space L (Wg).
Each ¢ € LY,,(7) can be identified with ¢ € LP(Wg) if ¢(X) =1 (bs(X,-)). It
is easier to work with L},,(3) than with L?(Wg), because 7 is closely linked
to the GauBian measure y on a finite-dimensional space. Moreover, L3},,(7) is
independent of B.

Fix a Lebesgue square integrable function g : [0,00[% — H®~. By a slight
modification of the Loeb—Andersen lifting theorems, there exists an inter-
nal function G : T? — F® such that g(°t) is the standard part of G(t) for
vi-almost all t € T% and G is S-square integrable, i.e. © ZteTg IG®)||? 3=
f[;?oo[z llgl|? dA™. The iterated Ité integral I,,(g) : 2 — R is F-a.s. well defined

(see [18]), by setting
I(9) ="In(G) with I,(G)(X):= Y Gu,0,(Xey,-o Xe,).
t1<-<tn, €T

Note that
Groontn Xeso s Xe) = D Gt (i ®0,) - Ty = T i

1150y tn €W
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Since I,,(G) is a finite sum, we can apply the binomial theorem to prove that

(4) EW(IR(G))4§(4!)"( > G?(eil,---,ein)%)

teT™ icwn
1 2
_ 40"(2 ||Gt||2—n)
tET"

is limited, thus I,,(G) is S-square integrable. By Loeb theory and the com-
putations (i), (ii), (iii) below, we have

E;((Iu(9))") ~ E Z”HG P —/m lgll? ™.

The proof, due to Cutland and Ng [4] for the one-dimensional case, can be
used to prove the following result (see also Theorem 5.6 in [19]). It is an
application of the chaos decomposition theorem in [18].

THEOREM 4.1. Fiz ¢ € L3,(7)and an S-square integrable lifting ® of ¢.
For all n € Ny define F,, : T2 —F® by setting

(5) Fn(rlv s 7rn)(ej1 AR ejn) =H" 'E’Y(CD Tyt mejn,)'
Then the standard part °F), : [0,00[" — H®"» of F,, exists and ¢ has the chaos

expansion
o0
p=> L(°F
n=0

Let us write Equation (5) in the following form: since the X, are the

increments of the internal Brownian motion B we obtain, using At := %,

AB,, AB,.
Fn('fl,...,'I“n)(ejl,--.,ejn) :E((I)< Atl 7ej1> <A—tn7ejn>>
= E(¢<Brl7ej1> T <B7"n7ejn>)7

where B, may be understood as the “derivative” of B at time t. This is
Wiener’s Equation (1).

Example. Fix a square integrable ¢ : [0,00[— H’ and an S-square integrable
lifting G : T — . Set ¢ := 11973 Jo ot 917X ey

O — 1O =5 Ter IG5
is an S-square integrable lifting of ¢. Therefore the kernel f,, : [0, oo[ — H®»
of (92 Jio.oef lall* is the standard part of F,, : T — F®" with

Fn(rlw--arn)(ejw"'?e]'n)

_1 21
— g™ ,Ew(eh(G) ) ZtET IG@)l " . Ly g1 'mejn)'
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H?.w
H

Using the shorthand c:=4/5- , we obtain by elementary computation:

Fn(’f‘l, e ,rn)(ejl yoeeny ejn)
— cH™ eXtericw(Ge(ei) zri— 5 GY (e) = G a7 ;)
*]RHZ""
CTpy gy Tt g AT ) teT <0

g H 2 Gi(ei)\2

_ n . E At A Nl A

—Cli / eT,i< 2( t,i H ) T . e “de(fI; ’,) T,i<
RH=w -

H’I’L
5[ Ad(x, )i
It ‘R (x 1.7]7,) <

; o= Ha2 Gh (8 '1) Grn (6 n)
(Wlth A= 621:1 2 Uy, (xrhjl —+ TJ> e <xtn i + H]
= GTl (ejl) T GTn (ejn)'

It follows that F}, is the n-fold tensor product G®---® G of G, and therefore,
°F, = g®" : [0,00[" — H®"

with ¢g®n(ry,...,rn)(a1,--.,an) = gr, (a1) - g (ay,). This is an elementary
proof of the following well-known result:

PROPOSITION 4.2. /1973 foae 191707 1 4 5700 1 (gony.

To obtain the product- and chain rule, we transfer ¢, € L3,,(7) = L*(Ws)
into the model 9. Using the chaos decomposition theorem in [18], ¢, have
S-square integrable liftings ®, ¥ of the form

M M
®=> L(F), U=Y L(Gy),
n=0 n=0

where the F,,,G,, : 17— F®~ are S-square integrable and symmetric. Now
assume that ¢, be Malliavin differentiable. The Malliavin derivative Dy of
© is a process from [0, 00[ X 2 into H' = H. By results in [18], we may assume
that Dy, Dy have S-square integrable liftings of the form

M M
DO(r,X) =Y ILi1(Fu(-7r)),  DU(rX):=Y I 1(Gn(-1)) EF =F.
n=1 n=1
Note that for all a € F,

M
D®,(X)(a) = D®(r,X)(a) =Y Fo(t,r)(Xyys. . Xe, ,,0).
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In order to prove the product rule, we want to compute functions K, : T2 —
F®, such that p-¢ =3 I,(°K,) and

M
Z I,(K,) is an S-square integrable lifting of ¢ - .
n=0

However, ¢ -1 is not square integrable, in general. Therefore, we assume that
@ and v belong to finite chaos levels, that is, M € Ny. Then,

O-T, (DP)- U, - DVP and D(P - V) are S-square integrable liftings of
o, (Dg) -1, ¢ Db and D(p- 1), respectively.

Now K, given by
_ n
Kn(Tl, LR aTTL7ep1? ey epn) =H E’Y((p -0 ’ITlvl’l o .x"‘n,7pn)
has the desired property. We have to compute all possible
a =By (Tt r  Ttpr Tsr,00 " Tsgon " Tripr " Trpn )

with 1 < -+ <tp,81 < -+ <8k, 71 < --- <ry,. Here are some typical exam-
ples:

(i) Let rp, <t:=ty, =sk. If 0:=m7, =0y, then

_ B,_ .2
a= ]E’Y(xtlﬂ'l Tty 1, m—1Ts1,00 " Tsp_q,06—1 81,01 T Lo "E7 xt,a)

1
= ]E’Y (‘Ttlﬂ'l Lty Tm—1s1,010 " Usp_1,06—1Tr,p1 7 Ly, op ﬁ )
B,_,2 _ 2__ 1
because B~ xj , =E12° = 7. If 7, # o}, then

a= E’Y (‘rtLﬁ Lty 1,1 Ts1,010 0 s 1,06 1Tr1,01 7 e pn
B,—
EP (245, Tt ))
= O,
B,- _ _ . .
because E°t= (x4 1, - ¥4,5,,) = E,22 -y =0. We may continue in the same

manner: for example, let ¢,,_1 < Sg_1 =7"n,0k—1 = Pn,"n < tm = Sk and
Tm = 0. Then

1
a=E, <xt1,7'1 Tty 1,1 Ts1,01 7 s g0k o Tri,p1 T T, oz )
(ii) Let ¢y, sk <71y =:7. Then

_ B,.— _
a= E’Y (l‘tlﬂ'l Tt T s1,01 0 Tsg,oLry,pr T $771717p7171E " w’r,pn) =0
. B _ — _
because E°~z,. , =E,1xz=0.
(iii) Let t:=t,, = $x =rn. Then
a= E’Y (xtlaTl Tty 1, mm—1Ts1,00 7 Tsp_,06—1 81,01 0 L1, 001

BP0, 0, T, )
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because E.1 3= E72x2 -y=E sz -y-2=0. Here is a difference to more
general Lévy processes. In general, E 1 23 #£0.

In order to gain control of all the summands in K,,, we proceed as follows:
let n € Ny and k <n We identify k € Ny with the set {1,...,k}, thus 0= 0.
If 7 is a strictly monotone increasing function from k into n, then we will
write m: kT n. For m: kTn,let T: n—k 1 n\range(r), that is, T enumerates
the numbers in n, that are different from my,..., 7. For example, if k=0,
thenm: kTn=0and 7: kT k=idg. Calculating H"E,(®V-[[\_, 2y, ,,), we
obtain the following formula:

n M?
Kn(rl,...,rmal,u-aan):Z Z Z Z ZA.B'%’

k=0m:kInm=0teT icw™

where, with (a1,...,an) == (ep,,...,¢p,),
A=Fpir(t, Ty Ty Cigs ooy @iy s Qryy e ey Gy ),
B = Gm_i_n_k(t,rﬁl,...,T77L7k7ei17...,eim,aﬁl,...,a/ﬁnik).

In order to prove the product rule
D(p-)or = Doy - + @ - Dpor,
we write K, (r1,...,"n—1,7,01,...,0an_1,a) in a slightly different way:
Kn(’l"l,...77"»,,,7177"7041,..-704”71,0/)
= KDP® Y (v q,7a,. . a1, a)
+K§.D\I’T(rl7"'arn717r7a17"'7an717a)7

where the first summand is equal to

Y Y Y Y Y an

k=0 m:ETn—1m=0tcT icw™
with
Au = m+k:+1(ta/r7r17”-7T7rk>r7ei1a"’>eim7aﬂ'17"'aaﬂ'k7a)a
Bu = Gm_i_n_l_k(t,rﬁl yo o 7T?n—1—k’7 eil yoeeny eim, (Iﬁl, e ,aﬁnilik).

The second summand is equal to
n—1 M? 1
> 2D D ABu
k=0 m:kTn—1m=0teT icw™

with

Ay = Foi k(B Ty ooy Py @i e e o5 €1 Qg e e ey Oy ),

By =Gtk (T, oo P71 s Ty Cigse ooy @i s Gy e ey Q15 Q).
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Note that for r € T and a € F,

Krj?‘br'q'(rl, s T 1, T A1y ey A1, Q) = H"_1]E7 (Dq)r(a)\ll . H xm,pi>v

KS'D‘P" (F1yee s 1,701, ., Gpe1,a) = H"ilﬂlY (@D\I/r(a) . H XTM,,,) .

Therefore, KP® ¥ K2 DY build the kernels under D®, - ¥, & - DW, for

Do, -1, @ - Do, respectively. To sum up, we obtain for z@y almost
all (r, X)

Dl 1)er ~szn (Ko (7)) ()

= an—l(Kfq’""W(wr))(X)

M2
F Y L (KEPE () (X)
n=1
~r Dpor(X) - h(X) + o(X) - Dipor(X).
The proof of the product-rule is finished for functions in finite chaos levels.
The proof of more general results, according to Theorems 2.1, 2.2, is similar
to the proof in the following section.

5. The proof of the rules

Now we turn back to Sections 2 and 3. Some additional difficulties appear
in the case of more general Lévy processes. The set Ny, is often different from
{1} and the multiple integrals are only square integrable. It follows that, in
contrast to Brownian motion, the product of two Lévy functionals even in
finite chaos levels is, in general, not square integrable. However, the most
unpleasant difference is the fact that E, p3 # 0, for example, in the case of
Poisson processes. In the Gauflian case p;(x) = z.

In order to get over some of the difficulties, we replace functionals in fi-
nite chaos levels by bounded functions (see Section 2). An internal function
®: Q) — *R is called a polynomial, bounded by S € *N, if

SPIDIPILALE) | FAES

n€*No ke M7 teT2

where F, : M7 x T2 — *R is internal and symmetric and ® and therefore
also the F}, are bounded by S. The functions F;, are called the kernels of ®.
By Theorem 6.1 in [19], we can assume that each ¢ : Q — R in L2 (fi) has
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a polynomial lifting ® : Q — *R € SL?(u1), bounded by some S € *N. If ¢ is
Malliavin differentiable, then we can, in addition, assume that

DE: (LX)~ > > ZFk;,l,terkXt

ne*NkeMp teT2™ 1

belongs to SL?*(c® v ® u) and is a lifting of the Malliavin derivative of .

We use the following notations; compare this notation with the nota-
tion in the Brownian motion case. Fix m € N, p € m U {0}, a strictly in-
creasing p-tuple 1 <--- <, in m and i € {p,...,m}. Let 7:i—pTm)\
{B1,...,B,} be a strictly monotone increasing function from ¢ — p into m \
{B1,...,B,}. Then 7 denotes the complement of 7, i.e., T is the uniquely deter-
mined strictly monotone increasing function from m — i onto m \ (range(7) U
{B1,...,Bp}). Account that 7 and 7 depend on m. Here is the key to both
rules:

THEOREM 5.1. Suppose that ¢, € L% () and the kernels in the chaos
decomposition (see Theorem 6.1 in [19]) of ¢ and v are bounded by some
standard S € N. Then we have in L?(c @\ ® [i).

( (QO ¢))(lr (Dw)(lr 1/}+90(D’(/})(l,r)
+ Y a(w, R D) (DY) - (D)ir

Kk,RENL

Proof. By the chaos expansion result (see Theorem 6.1 in [19]), ¢ and ¢
have polynomial liftings ® and ¥. Since ¢,% are bounded by S, we can
assume that ® and ¥ are also bounded by S. Therefore, ® - ¥ belongs to
SL?(p) and is a lifting of ¢ - ¢ € LA(). Moreover, D(® - ¥),D® - U, d -
DV € SL*(c® v ® p) are liftings of D(y - 1), Dy - 1, ¢ - D, respectively.
Moreover, >, -y, 0(k,FK,) - D®, - DV5 € SL*(c®v ® u) and is a lifting
of ZK’%NL a(k,R,1) - Dy, - Dig. By the recipe for the computation of the
kernels of the chaos decomposition (see Theorem 5.6 in [19]), the kernels
of ¢ -1 are the standard parts of the kernels K,, under ® - ¥, given by
Ko=E,(® T) and for m > 1,

K, (l,r)=H™E, (CI) U p (X))o pu,, (er))

with [ e N7, r € T, Let F,,,G,, be the kernels of ®, ¥, respectively. Ele-
mentary ﬁnlte combinatorics tells us that K,,(l,r) is the finite sum:

K, ()

Y YEY Y LYY a4ad

p=0x,KEN] Bem” 1=p T:i—pTm\{B1,...,8,} n€No kEN} teT2
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with
= Fppilk, oo, byl T8 T8, Ty oy 7y ,)
~Gn+m,i+p(k‘,%,lﬂ,.‘.,l?m_i,t,rgl,...,mp,r?l,...,r?m_i)
co(k1,R1,lp, ) 0 (kp, Rp,lg,)-
It is easy to see that
Kn(l,r)=A4+ B+ C(lym,rm)
with
m
1
— I,
> 2> 22 > 5 n
ReEN? Be(m—1)~2 i=p T:i— me\{[ﬁl7 By}, n€No kEN} teT2
T(i—p)=

- 1
> 2 X > 2 >
rReN? Be(m— 1)" 1=p T:i—pTm\{B1,...,8,},n€No kEN} t€T2
T(m—i)=m

Clmra =3 & % Y Y YYYa4n

p=0r,REN] BEM By=m i=p T:i—pIm\{B1,...,8,} n€ENo kEN} t€T2

k)
I
o

e
I
NE
K

k)
I
o

oy
I
NE
Z

3

In the same way, computing the kernel K, Dq)”" "m Y under DY, .. -V, we
obtain for I = (I1,...,lm-1),7 = (71, ...,rm_l),
K2 (L)
= Hm_lEH (D(I)lm,Tm -0 *Pu (XTl) * Pl (XTmf1))
m—1 m—1 1
=2 > X X > > 2 2
p=0 k,REN] BeEM—12 i=p T:i—pTm—1\{B1,...,8,} n€No kEN} teT2
: Fn+i+1(ka%7l7'1a e 'alTifpal’matvrﬁU' TRy Ty e - 77“7'1,7977"771)
) Gn+m71*i+p(k7 #lrys byt TBire s By TFrsy - 7T?m71ﬂ'>
U(Iﬁ:l,ﬁl,lﬁl) . 'U(I{p,’lz}p,lgp).
It is easy to see that Kgblf” (1 p) = A and
®-DY Tm Tm ' Tm -~
B=K,~; ™™, (ImyTm) = Z K n v o(m,7:lm),
n,meNL
where Ké D‘I’l’" "™ and K " rm P¥irm are the kernels under ® - Dy, ..

and under D<I)n7rm D5, respectively. This proves that for [ € Ny and
refl:

(D(@-9)) ) = (D)) W+ (DW) )+ Y (kR 1) DDy DV .
K,REN],

Taking standard parts, we obtain the desired result. O
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The product-rule (Theorem 2.1) now follows from Theorem 5.1 and Propo-
sition 6.1 below. The chain-rule (Theorem 2.2) follows from Theorem 5.1, the
following lemma and Proposition 6.1 below.

LEMMA 5.2. Suppose that N, ={1}. Fiz g: R" = R with g(z1,...,2,) =

aoake and @1, ... 0, € L3(0) bounded by some S € N.  Then in

L*(A®f)
D(g(#1,---,%n))
_ {é(g(wl +a- Doy, +a-Don) = g(e1,--,9n)),  if a#0,

> i1 (9ig) (1, on) - Dy, if a=0.
Proof. By induction on n, using the product-rule. In the case n =1, apply
induction on k. O

6. A commutation rule for derivative and limit

The following commutation rule, which we have used, reminds of a result in
elementary analysis: we can interchange derivative and limit if the sequence
of derivatives converges uniformly, and the original sequence converges in at
least one point. Here we have:

PROPOSITION 6.1. Suppose that (¢°) is a sequence of Malliavin differen-
tiable functions such that (D¢") converges in L%.op(c® v ) and suppose

that (E;¢") converges in the real numbers. Then (¢") converges to a Malliavin
differentiable function and

D(}lim @i) = lim Dy’ in L2yp(c® V@ ).
71— 00 71— 00
Proof. Let ' =% I,(f!). By the assumption,

0= lim HDcpi—Dcpjﬂz

i,j—00 C®@
= SN [ (1 - k)
T = keny YT XT

Since the f! are symmetric, (f?);cn is a Cauchy sequence in L2, (¢" ® v™) for
all n € N. Let lim; oo f2 = f, in L3, (c" ® 7). Then

M /T (k) — Falk,))* i =0,

keNp
It follows that in L} (1), Lzgp(c® U ® 1) respectively,

Zligloln(f%)zln(fn) and zllrgoDIn(frZL):DIn(fn)
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Since this is true and (<p’) and (D¢*) are Cauchy sequences and I,,(f%) L
(

I (), DIn(f;) L DI

7 for n # m, the following limits exist

n=1 =

ilirgopifn(f;; _hmZDI ) :Z DZI (fn)

n=0 n=1

in L%®D(c ® @) Define

pi= In(fa) + lim Ege'.

n=1
Then we have lim; .., ¢* = ¢ and lim;_,o, D¢’ = De. O
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