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POINCARÉ SERIES AND EICHLER INTEGRALS

WLADIMIR DE AZEVEDO PRIBITKIN

Dedicated to the memory of Atle Selberg: a brilliant mind—
fine company for Gauss and Riemann, Poincaré and Ramanujan.

Abstract. By employing work concerning Selberg’s Klooster-
man zeta-function, we carry out the decomposition of a special

value of a nonanalytic Poincaré series of nonpositive even weight,

with a nonsingular multiplier system, on the full modular group.

The summands that emerge are connected meaningfully to each

other as well as to classical expressions for Eichler integrals and
modular forms.

In previous work [23] the author reveals how the study of nonanalytic Eisen-
stein series of negative even weight on the full modular group leads without
difficulty to the discovery of Eichler integrals of Eisenstein series of positive
weight. Furthermore, in [12] Knopp and the author demonstrate how a spe-
cial value of a nonanalytic Poincaré series of weight zero decomposes naturally
into three pieces involving generalized Abelian integrals. The present paper
provides an extension of this result to all nonpositive even weights. We es-
tablish that for negative even weights the analogous Poincaré series breaks
up nicely into four interesting pieces. The first three offer no surprise (the
aforementioned generalized Abelian integrals now become Eichler integrals),
whereas the fourth one is a nonanalytic modular form. The proof of its trans-
formation behavior requires the use of weight-changing operators as well as
the verification of a combinatorial identity. The latter is included, for the sake
of completeness, in the Appendix. In the course of our work, we arrive at some
new expressions pertaining to modular forms and Eichler integrals, and we
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also recover some well-known results that underpin Eichler cohomology. All
of our findings are summarized toward the end of the paper.

Let us consider, for ν any integer, the nonanalytic Poincaré series

(1) Pν(τ |s) = Pν(τ |s;k, v) =
1
2

∑
c,d∈Z

(c,d)=1

e2πi(ν+κ)Mτ

v(M)(cτ + d)k |cτ + d|s ,

where M = [ ∗
c

∗
d ] ∈ Γ(1), τ ∈ H, and Re(s) > 2 − k. As usual, Γ(1) = SL(2,Z)

denotes the full modular group, and H symbolizes the complex upper half-
plane. Here v is a multiplier system (MS) for Γ(1) in (real) weight k, and κ is
a parameter determined by v(S) = e2πiκ, 0 ≤ κ < 1, where S = [ 10

1
1 ]. A well-

known argument using absolute convergence of (1) shows that, for Re(s) >
2 − k, Pν(τ |s) obeys the transformation law

(2) Pν(Lτ |s) = v(L)(γτ + δ)k |γτ + δ|sPν(τ |s),

for all L = [ ∗
γ

∗
δ ] ∈ Γ(1) and τ ∈ H. In a beautiful tour de force that ex-

ploited spectral theory, Selberg [26] established by the middle of the 1960s
that Pν(τ |s) has a meromorphic continuation to the whole s-plane. Although
he explained the result for the case ν +κ > 0, the case ν +κ < 0 follows with-
out much difficulty from his profound work. (Of course, the case ν + κ = 0
corresponds to nonanalytic Eisenstein series and is rather well known.) For
simplicity we assume from now on that κ is nonzero and also that k is an
even integer. (The latter implies that both v and its complex conjugate MS v
are even Abelian characters for Γ(1).) From (1) it follows through standard
techniques (see [9] or [21]) that Pν(τ |s) has the Fourier expansion

Pν(τ |s) = e2πi(ν+κ)τ + i−k (2π)k+s

Γ(s/2)
(3)

×
{ ∞∑

n=0

(n + κ)k+s−1e2πi(n+κ)τ
∞∑

p=0

[−4π2(n + κ)(ν + κ)]p

p!Γ(k + p + s/2)

× σ(4π(n + κ)y, k + p + s/2, s/2)Zν,n(s/2 + k/2 + p)

+
∞∑

n=1

(n − κ)k+s−1e−2πi(n−κ)τ
∞∑

p=0

[−4π2(n − κ)(ν + κ)]p

p!Γ(k + p + s/2)

× σ
(
4π(n − κ)y, s/2, k + p + s/2

)
Zν,−n(s/2 + k/2 + p)

}
.

Here y = Im(τ) and σ(η,α,β) is the special function which has the represen-
tation

(4) σ(η,α,β) =
∫ ∞

0

(u + 1)α−1uβ−1e−ηu du,
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for Re(η) > 0, α ∈ C, and Re(β) > 0. Note that the function σ(η,α,β)/Γ(β)
is entire in α and β. Additionally, for any ν, n ∈ Z and Re(w) > 1,

(5) Zν,n(w) = Zν,n(w;v) =
∞∑

c=1

Ac(ν,n)
c2w

is Selberg’s Kloosterman zeta-function, where

(6) Ac(ν,n) = Ac(ν,n;v) =
c−1∑

−d=0

(c,d)=1

v(M)e
2πi

c [(ν+κ)a+(n+κ)d]

is the generalized Kloosterman sum and M = [a
c

∗
d ] ∈ Γ(1). In the afore-

mentioned work [26] Selberg proved that Zν,n(w) possesses a meromorphic
continuation to the whole w-plane. Later on Goldfeld and Sarnak [3] and
Pribitkin [22] provided estimates on Zν,n(w). These results on Selberg’s
Kloosterman zeta-function combined with basic facts concerning the σ-func-
tion (see, for example, [23]) imply that the expansion (3), at first com-
puted for Re(s) > 2 − k, remains valid throughout the whole s-plane wher-
ever Pν(τ |s) is analytic. Furthermore, it is known from Selberg theory [26]
(see also [20, Section 2.3]) that Pν(τ |s) is analytic, in s, at s = 0. So let
Pν(τ) = Pν(τ ;k, v) = Pν(τ |0). From (2) it follows that

(7) Pν(Lτ) = v(L)(γτ + δ)kPν(τ),

for all L = [ ∗
γ

∗
δ ] ∈ Γ(1) and τ ∈ H. Hence Pν(τ) transforms like a modular form

of weight k and multiplier system v on Γ(1). But Pν(τ) need not be analytic
in τ. Of course, if k ≥ 2, then Pν(τ) is a modular form of weight k and MS v
on Γ(1). (This was largely known to Petersson [17], [18].) But what happens
when k ≤ 0? The answer to this question is provided below, where we see
that it is fruitful to look at the family of all even weights simultaneously.

Initially we decompose Pν(τ) as follows:

Pν(τ) = Aν(τ) + Rν(τ),

where

Aν(τ) = e2πi(ν+κ)τ(8)

+ i−k(2π)k
∞∑

n=0

∞∑
p=0

[−4π2(n + κ)(ν + κ)]p

p!

× Zν,n(s/2 + k/2 + p)
Γ(k + p + s/2)

∣∣∣∣
s=0

(n + κ)k−1e2πi(n+κ)τ

is the analytic piece and

Rν(τ) = −2πi

∞∑
n=1

−k/2∑
p=0

[−2πi(ν + κ)]p

p!
· Res

(
Zν,−n(w);k/2 + p

)
(9)
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×
∫ i∞

−τ

(z + τ)−k−pe2πi(n−κ)z dz

is the remaining piece. Here Aν(τ) = Aν(τ ;k, v) and Rν(τ) = Rν(τ ;k, v).
(Nota bene that throughout this paper we adhere to the convention that a
finite sum is considered empty if the upper limit of summation is less than
the lower limit of summation. In such cases the value of the sum is taken to
be zero.) To obtain (8) and (9), we started with (3) and used the fact that

σ(η,α,β)
Γ(β)

∣∣∣∣
β=0

= 1

(which follows quickly from (4) by integration by parts), as well as the relation

ηβ σ(η,α,β)
Γ(β)

= η1−α σ(η,1 − β,1 − α)
Γ(1 − α)

(which likewise is not difficult to derive directly from (4)). Additionally, we
invoked the deep fact (see [26] and [20, Section 2.3]) that Zν,n(w) has at most
simple poles at nonpositive integers, and the easier fact that it is analytic at
positive integers. (From (5) and (6) we see instantly that Zν,n(w) is analytic
for Re(w) > 1; the analyticity (in fact absolute convergence) at w = 1 follows
from any nontrivial estimate (see [14]) on generalized Kloosterman sums.)
Obviously, if k ≥ 2, then Rν(τ) ≡ 0 and so Aν(τ) = Pν(τ) is a modular form
of weight k and MS v on Γ(1). But what happens to Aν(τ) and Rν(τ) when
k ≤ 0? In order to resolve this question, we recall some basic facts.

Let F (z) be any complex-valued function of the complex variable z = x+ iy
and assume that its rth order complex partial derivative exists. Here r is a
nonnegative integer, and as usual the first order complex partial differential
operator is defined by ∂

∂z = 1
2 ( ∂

∂x − i ∂
∂y ). Then it is easy to verify (by induction

on r) that

∂rF

∂zr
(Lz) =

r∑
j=0

(
r
j

)
Γ(w + r)
Γ(w + j)

γr−j(γz + δ)w+r+j ∂j

∂zj
{(γz + δ)−wF (Lz)},

where L = [ ∗
γ

∗
δ ] ∈ SL(2,C) and w is a complex number. Setting w = 1 − r, we

obtain the important special case

(10) (γz + δ)−r−1 ∂rF

∂zr
(Lz) =

∂r

∂zr
{(γz + δ)r−1F (Lz)}.

If additionally the rth order complex derivative of F (z) exists, then rather
evidently (since ∂

∂z and d
dz act equivalently) we obtain

(11) (γz + δ)−r−1F (r)(Lz) =
dr

dzr
{(γz + δ)r−1F (Lz)},

an identity established by Bol [1] in 1949. (Note that (11) can also be proved
by using Cauchy’s integral formula.) It follows from (10) that if F (τ), τ =
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x + iy ∈ H, transforms like an automorphic form of integer weight k ≤ 0 and
MS v on a suitable group Γ, then ∂1−kF (τ)

∂τ1−k transforms like an automorphic
form of weight 2 − k and MS v on Γ. We emphasize that F (τ) need not be
an analytic function. (In fact, v need not be a unitary MS, but we shall not
deal with this scenario.) Furthermore, if f(τ) transforms like an automorphic
form of weight 2 − k and MS v on Γ and F (τ) is any function such that
∂1−kF (τ)

∂τ1−k = f(τ), then (10) implies that F (τ) satisfies the functional equation

v(L)(γτ + δ)−kF (Lτ) − F (τ) = rL(τ),

for all L = [ ∗
γ

∗
δ ] ∈ Γ and τ ∈ H, where rL(τ) is some function annihilated by

∂1−k

∂τ1−k . Finally, recall that if F (τ) is in fact an analytic function throughout H
such that its (1 − k)th derivative is an automorphic form of weight 2 − k and
MS v on Γ, then F (τ) is called an Eichler integral of weight k and MS v on Γ,
with period polynomials rL(τ). Observe that these polynomials are necessarily
of degree ≤ −k.

We return now to our study of Aν(τ) and Rν(τ). First we claim that if
k ≤ 0, then

(12)
∂1−kRν(τ)

∂τ1−k
≡ 0.

This stems from the observation that the integral in (9) is a polynomial in τ of
degree −k − p with coefficients that are entire functions of −τ . (In fact, these
coefficients can be found by applying the binomial theorem to (z+τ)−k−p and
then integrating by parts sufficiently often.) Hence Rν(τ) is itself a polynomial
in τ of degree not exceeding −k with coefficients that are analytic in −τ
throughout H. Since ∂

∂τ obviously annihilates analytic functions of τ , it is
clear that ∂1−k

∂τ1−k annihilates Rν(τ). Next we assert that if k ≤ 0, then Aν(τ) is
an Eichler integral of weight k and MS v on Γ(1). By design Aν(τ) is analytic
throughout H. Its behavior under modular transformations follows from the
fact that

A(1−k)
ν (τ) =

∂1−kAν(τ)
∂τ1−k

=
∂1−k(Pν(τ) − Rν(τ))

∂τ1−k
=

∂1−kPν(τ)
∂τ1−k

by (12). But from (7) we know that Pν(τ) transforms like a modular form of
weight k and MS v on Γ(1), and therefore (based upon remarks of the previous
paragraph) we see that ∂1−kPν(τ)

∂τ1−k transforms like a modular form of weight
2 − k and MS v on Γ(1). Since A

(1−k)
ν (τ) is clearly analytic throughout H and

meromorphic at i∞, we conclude that A
(1−k)
ν (τ) is a modular form of weight

2 − k and MS v on Γ(1). And so, for k ≤ 0, Aν(τ) is an Eichler integral as
asserted. But we still want to decompose Pν(τ) into more recognizable parts!

So we write Aν(τ) as

Aν(τ) = Fν(τ) + Zν(τ),
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where

Fν(τ) = e2πi(ν+κ)τ(13)

+ i−k(2π)k
∞∑

n=0

∞∑
p=1−k/2

p≥0

[−4π2(n + κ)(ν + κ)]p

p!Γ(k + p)

× Zν,n(k/2 + p)(n + κ)k−1e2πi(n+κ)τ

and

Zν(τ) = i−k(2π)k
∞∑

n=0

−k/2∑
p=0

[4π2(n + κ)(ν + κ)]p

p!
(−k − p)!(14)

× Res
(
Zν,n(w);k/2 + p

)
(n + κ)k−1e2πi(n+κ)τ .

Note that Fν(τ) = Fν(τ ;k, v) and Zν(τ) = Zν(τ ;k, v). It is clear that (13)
and (14) follow readily from (8). In particular, to obtain (14) we used the fact
that, for nonpositive even k and 0 ≤ p ≤ −k/2,

Zν,n(s/2 + k/2 + p)
Γ(k + p + s/2)

∣∣∣∣
s=0

= (−1)p(−k − p)! · Res
(
Zν,n(w);k/2 + p

)
.

Evidently, if k ≥ 2, then Zν(τ) ≡ 0 and so Fν(τ) = Aν(τ) = Pν(τ) is a modular
form of weight k and MS v on Γ(1). Next, by the usual reasoning (see, for
example, [21]), we transform (13) into

(15) Fν(τ) = e2πi(ν+κ)τ +
∞∑

n=0

an(ν;k, v)e2πi(n+κ)τ ,

where

an(ν;k, v) = 2πi−k

(
n + κ

|ν + κ|

)(k−1)/2 ∞∑
c=1

Ac(ν,n)
c

(16)

×

⎧⎨
⎩Ik−1

( 4π
√

(n+κ)|ν+κ|
c

)
if ν < 0,

Jk−1

( 4π
√

(n+κ)(ν+κ)

c

)
if ν ≥ 0.

This is valid for all k ∈ 2Z! Here Ik−1 and Jk−1 are the modified and
regular Bessel functions of the first kind, respectively. We now recall the
rather well-known identities (see, for example, [29, Chapter 17]) I−m = Im

and J−m = (−1)mJm, valid for m ∈ Z. Not only do they expose the connec-
tion between (16), ν < 0, and the classical work pertaining to modular forms
of nonpositive even weight (see Rademacher and Zuckerman [25] for k < 0
and [12] for citations concerning k = 0), but also they reveal that

(17)
an(ν;k, v)
(n + κ)k−1

=
an(ν; 2 − k, v)

(ν + κ)k−1
,
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again for all ν ∈ Z and k ∈ 2Z. This beautiful duality relation (which is analo-
gous to σk−1(n)/nk−1 = σ1−k(n)—the relation involving the divisor function
which arises with Eichler integrals of Eisenstein series in [23]) allows us to
deduce that, for k ≤ 0,

(18) F (1−k)
ν (τ ;k, v) = [2πi(ν + κ)]1−kFν(τ ; 2 − k, v).

However, if k ≤ 0, then Fν(τ ; 2 − k, v) is a modular form of weight 2 − k and
MS v on Γ(1). And so (18) tells us that, for k ≤ 0, Fν(τ ;k, v) is an Eichler
integral of weight k and MS v on Γ(1). Denote the period polynomials of
Fν(τ) by cL(τ) = cL(τ ;ν, k, v). Therefore

(19) v(L)(γτ + δ)−kFν(Lτ ;k, v) − Fν(τ ;k, v) = cL(τ ;ν, k, v),

for all L = [ ∗
γ

∗
δ ] ∈ Γ(1) and τ ∈ H. Note that the degree of cL(τ) is at most

−k. Since Aν(τ) is also an Eichler integral (assuming k ≤ 0), we ascertain
that Zν(τ) = Aν(τ) − Fν(τ) must be an Eichler integral of weight k and MS v
on Γ(1). Denote the period polynomials of Zν(τ) by pL(τ) = pL(τ ;ν, k, v). So

(20) v(L)(γτ + δ)−k Zν(Lτ ;k, v) − Zν(τ ;k, v) = pL(τ ;ν, k, v),

for all L = [ ∗
γ

∗
δ ] ∈ Γ(1) and τ ∈ H. Let C0(k, v) be the space of cusp forms on

Γ(1) of weight k and MS v. Because of the key assumption κ > 0, it is evident
from (14) that Z (1−k)

ν (τ) ∈ C0(2 − k, v) for all ν ∈ Z and k ≤ 0, k ∈ 2Z. Under
these conditions it follows immediately from (14) that

Z (1−k)
ν (τ) = 2πi

∞∑
n=0

−k/2∑
p=0

[4π2(n + κ)(ν + κ)]p

p!
(−k − p)!(21)

× Res
(
Zν,n(w);k/2 + p

)
e2πi(n+κ)τ .

Note that

(22) Zν(τ) =
1

(−k)!

∫ τ

i∞
Z (1−k)

ν (z)(z − τ)−k dz

and so through traditional arguments

(23) pL(τ) =
1

(−k)!

∫ i∞

L−1(i∞)

Z (1−k)
ν (z)(z − τ)−k dz.

It is transparent from (23) that the degree of pL(τ) is at most −k. We still
want to dissect Rν(τ).

Rν(τ) is somewhat inscrutable, but it can be decomposed as follows:

Rν(τ) = Z ∗
ν (τ) + Nν(τ),

where

Z ∗
ν (τ) = −2πi

∞∑
n=0

−k/2∑
p=0

{4π2[n + (1 − κ)][(−ν − 1) + (1 − κ)]}p

p!
(24)
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× (−k − p)!
(−k)!

· Res
(
Z−ν−1,n(w;v);k/2 + p

)
×

∫ i∞

τ

e2πi[n+(1−κ)]z(z − τ)−k dz

and

Nν(τ) = −2πi
∞∑

n=0

−k/2∑
p=1

p∑
j=1

{2πi[(−ν − 1) + (1 − κ)]}p

p!
(25)

× {2πi[n + (1 − κ)]}j−1(−1)j(2yi)−k−p+j

(−k − p + 1)(−k − p + 2) · · · (−k − p + j)

× Res
(
Z−ν−1,n(w;v);k/2 + p

)
e2πi[n+(1−κ)]τ .

Of course, Z ∗
ν (τ) = Z ∗

ν (τ ;k, v) and Nν(τ) = Nν(τ ;k, v). Note that (24)
and (25) follow naturally from (9). Along the way we used the simple property

Zν,n(w;v) = Z−ν−1,−n−1(w;v),

which holds for any ν, n ∈ Z and 0 < κ < 1, applied the straightforward iden-
tity [∫ β

α

f(z)dz

]−
= −

∫ −β

−α

f(−z)dz,

as well as integrated by parts precisely p times. (Here [·]− denotes complex
conjugation.) Observe by comparing (21) and (24) that

(26) Z ∗
ν (τ ;k, v) =

1
(−k)!

∫ τ

i∞
Z (1−k)

−ν−1 (z;k, v)(z − τ)−k dz,

for k ≤ 0 and ν ∈ Z. This allows us to establish the modular behavior of Z ∗
ν (τ).

Since Z (1−k)
−ν−1 (z;k, v) ∈ C0(2 − k, v), we get that

v(L)(γτ + δ)−k Z ∗
ν (Lτ ;k, v) − Z ∗

ν (τ ;k, v)(27)

=
[

1
(−k)!

∫ i∞

L−1(i∞)

Z (1−k)
−ν−1 (z;k, v)(z − τ)−k dz

]−
,

for all L = [ ∗
γ

∗
δ ] ∈ Γ(1) and τ ∈ H. And by recalling (23) we see from (27) that

(28) v(L)(γτ + δ)−k Z ∗
ν (Lτ ;k, v) − Z ∗

ν (τ ;k, v) = [pL(τ ; −ν − 1, k, v)]−.

We remark that, modulo a constant factor, Z ∗
ν (τ ;k, v) is the “auxiliary inte-

gral” (as defined in [24]) of the cusp form Z (1−k)
−ν−1 (z;k, v).

It remains to decipher the modular behavior of Nν(τ). We claim that, in
fact, Nν(τ) transforms exactly like a modular form of weight k and MS v on
Γ(1)! That is,

(29) v(L)(γτ + δ)−kNν(Lτ ;k, v) − Nν(τ ;k, v) = 0,



POINCARÉ SERIES AND EICHLER INTEGRALS 891

for all L = [ ∗
γ

∗
δ ] ∈ Γ(1) and τ ∈ H. But Pν(τ) = Fν(τ)+ Zν(τ)+ Z ∗

ν (τ)+Nν(τ)
transforms like a modular form of weight k and MS v on Γ(1), and hence we
can deduce from (19), (20), (28), and (29) that

(30) cL(τ ;ν, k, v) + pL(τ ;ν, k, v) + [pL(τ ; −ν − 1, k, v)]− = 0.

From this identity we recapture Knopp’s relation [7] (see [24] for yet another
proof)

(31) cL(τ ;ν, k, v) = [cL(τ ; −ν − 1, k, v)]−,

for all ν ∈ Z. By analytic continuation it is quite clear that (30) and (31) hold
for τ ∈ C.

We now substantiate our claim concerning Nν(τ). If k ≥ 0, then Nν(τ) ≡ 0,
and there is nothing to prove. So, assume that k ≤ −2, k ∈ 2Z. We can
rewrite (25) as follows:

Nν(τ) = 2πi(2yi)−k

−k/2−1∑
d=0

1
(2yi)d

(32)

×
∞∑

n=0

−k/2−d−1∑
j=0

{2πi[(−ν − 1) + (1 − κ)]}d+1

(j + d + 1)!

× {4π2[n + (1 − κ)][(−ν − 1) + (1 − κ)]}j

(−k − j − d)(−k − j − d + 1) · · · (−k − d)

× Res(Z−ν−1,n(w;v);k/2 + j + d + 1)e2πi[n+(1−κ)]τ .

Let

(33) N ∗
ν (τ) = (2yi)kNν(τ)

and observe that Nν(τ) transforms like a modular form of weight k and MS v
if and only if N ∗

ν (τ) transforms like a modular form of weight −k and MS v.
Next we recall that, for nonpositive even k and ν any integer, Z (1−k)

ν (τ ;k, v) ∈
C0(2 − k, v). So, for k ≤ −2, k ∈ 2Z, we have that Z (−k−2q−1)

−ν−1 (τ ;k+2q+2, v) ∈
C0(−k − 2q, v), where q = 0,1, . . . , −k/2 − 1. For the sake of notational brevity,
put

(34) hq(τ) = Z (−k−2q−1)
−ν−1 (τ ;k + 2q + 2, v).

We now invoke weight-changing operators. Specifically, consider the opera-
tor δr

w, defined by

(35) δr
w =

r∑
j=0

(
r
p

)
Γ(w + r)
Γ(w + j)

(2yi)j−r ∂j

∂τ j
,

where w is any complex number and r is any nonnegative integer. This op-
erator maps a form of weight w to one of weight w + 2r. A special case of it
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reconfirms the remark (made soon after (10)) that, for any nonpositive inte-
ger k, δ1−k

k = ∂1−k

∂τ1−k maps a form to a form. (Here, a “form” means a function
in τ which transforms like an automorphic form. We assume sufficiently many
partial derivatives exist. Obviously, the MS remains unchanged by δr

w. Ob-
serve that δ0

w equals the identity and δr
w = δw+2r−2 ◦ · · · ◦ δw+2 ◦ δw, where

r > 0 and δw = ∂
∂τ + w

2yi is the well-known weight-raising operator introduced
by Maass [16].) Returning to the matter at hand, we consider

(36) h∗
q(τ) = δq

−k−2q(hq(τ)),

where k ≤ −2, k ∈ 2Z, and q = 0, . . . , −k/2 − 1. Note that h∗
q(τ) transforms

like a modular form of weight −k and MS v. (Of course, h∗
0(τ) = h0(τ) is a

cusp form of weight −k and MS v.) As an aside, we remark that h∗
q(τ) is

“nearly holomorphic” in the sense of Shimura [28] (also see, for example, [5,
Section 10.1]). To prove our claim, it suffices to show that N ∗

ν is in the space
spanned by {h∗

q } −k/2−1
q=0 . That is, we want to show that the equation

(37) N ∗
ν (τ) =

−k/2−1∑
q=0

Cqh
∗
q(τ)

can be solved for C0, . . . ,C−k/2−1. After a good bit of manipulation involv-
ing (33) and (32) on the one hand, as well as (36), (35), (34), and (21) on the
other hand, it turns out that equation (37) is solved by

Cq =
{2πi[(−ν − 1) + (1 − κ)]}q+1

(q + 1)!
· −k − 2q − 1

(−k − q)!
.

The proof of this requires verification of the following combinatorial identity:
j∑

p=0

(−1)p

(
j
p

)
(38)

× −k − 2d − 2p − 1
(−k − p − 2d − 1)(−k − p − 2d − 2) · · · (−k − p − 2d − j − 1)

× 1
(p + d + 1)(−k − d − p)

=
d!j!

(j + d + 1)!(−k − j − d)(−k − j − d + 1) · · · (−k − d)
,

where k ≤ −2, k ∈ 2Z, d = 0, . . . , −k/2 − 1, and j = 0, . . . , −k/2 − d − 1. Nowa-
days, an identity such as (38) can be checked by computer using the revolu-
tionary method of Wilf–Zeilberger [30] (see also [19]). It can also be proved by
hand—a fun exercise which we undertake in the Appendix. At any rate, this
concludes our demonstration of why Nν(τ) transforms like a modular form of
weight k and MS v.
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We recapitulate the main findings of this paper. We begin with our de-
composition result.

Theorem 1. Let Pν(τ |s;k, v) be defined by (1), where ν is any integer,
and suppose that v is a nonsingular MS in even integer weight k. Recall that
Pν(τ |s;k, v) has a meromorphic continuation to the whole s-plane, where it
is analytic at s = 0, and Pν(τ ;k, v) = Pν(τ |0;k, v) transforms like a modular
form of weight k and MS v on Γ(1). Then for τ ∈ H,

Pν(τ ;k, v) = Fν(τ ;k, v) + Zν(τ ;k, v) + Z ∗
ν (τ ;k, v) + Nν(τ ;k, v),

where Fν(τ ;k, v), Zν(τ ;k, v), Z ∗
ν (τ ;k, v), and Nν(τ ;k, v) are defined by (13),

(14), (24), and (25), respectively.

We continue with some basic consequences.

Corollary 2. Let Fν(τ ;k, v), Zν(τ ;k, v), Z ∗
ν (τ ;k, v), and Nν(τ ;k, v) be

as in Theorem 1, where ν is any integer and v is a nonsingular MS in even
weight k. Then the following hold:

(i) Fν(τ ;k, v) is given by (15), (16), and (6). Moreover, the duality rela-
tion (17) is true for all integers n ≥ 0.

(ii) Zν(τ ;k, v) ≡ 0 if k ≥ 2, and if k ≤ 0, then Zν(τ ;k, v) is given by (22)
and (21).

(iii) Z ∗
ν (τ ;k, v) ≡ 0 if k ≥ 2, and if k ≤ 0, then Z ∗

ν (τ ;k, v) is given by (26)
and (21).

(iv) Nν(τ ;k, v) ≡ 0 if k ≥ 0, and if k ≤ −2, then Nν(τ ;k, v) is given by (32).

Next we describe the modular behavior of our summands. For succinctness
we call an Eichler integral of weight k “polar” (respectively “cuspidal”) if its
(1 − k)th derivative is a “pole form” (respectively cusp form) of weight 2 − k.
(At i∞ a pole form is meromorphic, but not holomorphic, in the uniformizing
variable.)

Corollary 3. Let Fν(τ ;k, v), Zν(τ ;k, v), Z ∗
ν (τ ;k, v), and Nν(τ ;k, v) be

as before, where ν is any integer and v is a nonsingular MS in even weight k.
Recall that if k ≥ 2, then Fν(τ ;k, v) is a modular form of weight k and MS v
on Γ(1). If k ≤ 0, then the following hold:

(i) Fν(τ ;k, v) is an Eichler integral of weight k and MS v on Γ(1). More-
over, Fν(τ ;k, v) is polar if ν < 0, and if ν ≥ 0, then Fν(τ ;k, v) is cuspidal.

(ii) Zν(τ ;k, v) is a cuspidal Eichler integral of weight k and MS v on Γ(1).
(iii) Z ∗

ν (τ ;k, v) vanishes at infinity and transforms like an Eichler inte-
gral of weight k and MS v on Γ(1), but is nonanalytic (unless it vanishes
identically).

(iv) Nν(τ ;k, v) vanishes at infinity and transforms like a modular form of
weight k and MS v on Γ(1), but is nonanalytic (unless it vanishes identically).
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Lastly we record some fundamental interrelationships. Note that the first
part of (iv) below (due to Knopp [7]) follows instantly from (iii) and the
nonexistence of nontrivial cusp forms of nonpositive weight. Furthermore,
the second part of (iv) (due to Knopp [7] as well as Knopp and Lehner [11])
follows readily from (15) and (17). Similarly, (v) is a consequence of (ii)
and (26).

Corollary 4. Let all notation be as before, where ν is any integer and v is
a nonsingular MS in even weight k ≤ 0. If we denote the period polynomials
of Fν(τ ;k, v), Zν(τ ;k, v), and Z ∗

ν (τ ;k, v) by cL(τ ;ν, k, v), pL(τ ;ν, k, v), and
p∗

L(τ ;ν, k, v), respectively, then the following are true:
(i) cL(τ ;ν, k, v) + pL(τ ;ν, k, v) + p∗

L(τ ;ν, k, v) = 0, L ∈ Γ(1).
(ii) p∗

L(τ ;ν, k, v) = [pL(τ ; −ν − 1, k, v)]−, L ∈ Γ(1).
(iii) cL(τ ;ν, k, v) = [cL(τ ; −ν − 1, k, v)]−, L ∈ Γ(1).
(iv) If ν < 0, then Fν(τ ;k, v) is a modular form of weight k and MS v on

Γ(1) if and only if F−ν−1(τ ;k, v) vanishes identically. Moreover, this happens
if and only if the cusp form F−ν−1(τ ; 2 − k, v) vanishes identically.

(v) Z ∗
ν (τ ;k, v) transforms like a modular form of weight k and MS v on

Γ(1) if and only if it vanishes identically. Moreover, this happens if and only
if Z−ν−1(τ ;k, v) vanishes identically. (Evidently, this occurs if and only if the
cusp form Z (1−k)

−ν−1 (τ ;k, v) vanishes identically.)

The previous two corollaries prompt the question: Under what conditions
on ν, k, and v does any one of the functions Fν(τ ;k, v), Zν(τ ;k, v), Z ∗

ν (τ ;k, v),
and Nν(τ ;k, v) vanish identically? In fact, it can be shown that in all cases
at least one of these functions must be identically zero! The proof of this
depends upon a deeper probe of Selberg’s Kloosterman zeta-function. What is
more, for special values of k it is possible to work out explicitly (by exploiting
the setting of Γ(1)) the nature of these constituent functions. We hope to
substantiate these claims in a future article.

We finish by pointing out several references. For information on multiplier
systems, consult the texts [10] and [15]. And for a thorough explanation of
Eichler integrals (including cohomology theory), read the seminal papers of
Eichler [2] and Shimura [27], as well as the work of Gunning [4], Husseini and
Knopp [6], Knopp [8], and Kohnen and Zagier [13].

Appendix: Proof of combinatorial identity

There are certainly a couple different ways for a human being to establish
the crucial identity (38). We choose to evaluate the left-hand side, which we
call S. Because −k − 2d − 2p − 1 = (−k − d − p) − (p + d + 1), we have that

S =
j∑

p=0

(−1)p

(
j
p

)
1

(−k − p − 2d − 1) · · · (−k − p − 2d − j − 1)(p + d + 1)
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−
j∑

p=0

(−1)p

(
j
p

)
1

(−k − p − 2d − 1) · · · (−k − p − 2d − j − 1)(−k − d − p)
.

Write S = S1 − S2, where S1 and S2 are the first and second sums above,
respectively. We shall now analyze S1 by making repeated use of the simple
partial fraction decomposition

(39)
1

z(z − 1) · · · (z − r)
=

r∑
�=0

1
(−1)r−�
!(r − 
)!

· 1
z − 


,

valid for any nonnegative integer r and any (suitably restricted) complex
number z. Applying (39), with r = j and z = −k − p − 2d − 1, to the pertinent
product in S1 gives us that

S1 =
j∑

p=0

(−1)p

(
j
p

) j∑
�=0

1
(−1)j−�
!(j − 
)!

· 1
−k − p − 2d − 1 − 


· 1
p + d + 1

=
j∑

�=0

1
(−1)j−�
!(j − 
)!

j∑
p=0

(−1)p

(
j
p

)
1

(−k − p − 2d − 1 − 
)(p + d + 1)

=
j∑

�=0

1
(−1)j−�
!(j − 
)!

· 1
−k − d − 


j∑
p=0

(−1)p

(
j
p

)
1

−k − p − 2d − 1 − 


+
j∑

�=0

1
(−1)j−�
!(j − 
)!

· 1
−k − d − 


j∑
p=0

(−1)p

(
j
p

)
1

p + d + 1

=
j∑

�=0

(−1)�


!(j − 
)!
· 1

−k − d − 


j∑
p=0

(−1)p

(
j
p

)
1

p − k − 2d − 1 − 
 − j

+
1

(−k − d) · · · (−k − d − j)

j∑
p=0

(−1)p

(
j
p

)
1

p + d + 1
.

Along the way we interchanged sums and employed partial fractions to de-
compose [(−k − p − 2d − 1 − 
)(p + d + 1)]−1. We then replaced p with j − p
in the first sum over p, as well as applied (39), with r = j and z = −k − d, to
the second sum over 
. To simplify S1, we shall invoke the basic combinatorial
equality

(40)
r∑

p=0

(−1)p

(
r
p

)
1

p + m + 1
=

m!r!
(r + m + 1)!

,

valid for any nonnegative integers r and m. Observe that (40) is in fact an
immediate consequence of a special case of (39). (Alternatively, it can be
proved from scratch by starting with the binomial theorem.) A double dose
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of (40), with r = j and m = −k − 2d − 1 − 
 − j − 1 to transform the first sum
over p, as well as r = j and m = d to handle the second sum over p, produces

S1 =
j∑

�=0

(−1)�

(
j



)
(−k − 2d − 1 − 
 − j − 1)!

(−k − 2d − 1 − 
)!
· 1

−k − d − 


+
1

(−k − d) · · · (−k − d − j)
· d!j!
(j + d + 1)!

.

Now, note that the first term above equals S2. This implies that

S = S1 − S2 =
d!j!

(j + d + 1)!(−k − d) · · · (−k − d − j)
,

and secures the desired result.

Acknowledgment. The author thanks the referee for making insightful com-
ments and suggestions.
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[27] G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan
11 (1959), 291–311. MR 0120372

[28] G. Shimura, On a class of nearly holomorphic automorphic forms, Ann. of Math. 123
(1986), 347–406. MR 0835767

[29] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge
University Press, Cambridge, 1963. MR 1424469

[30] H. S. Wilf and D. Zeilberger, Rational functions certify combinatorial identities,

J. Amer. Math. Soc. 3 (1990), 147–158. MR 1007910

Wladimir de Azevedo Pribitkin, Department of Mathematics, College of

Staten Island, Cuny, 2800 Victory Boulevard, Staten Island, New York, 10314

USA

E-mail address: Wladimir.Pribitkin@csi.cuny.edu; w pribitkin@msn.com

http://www.ams.org/mathscinet-getitem?mr=0102600
http://www.ams.org/mathscinet-getitem?mr=0164033
http://www.ams.org/mathscinet-getitem?mr=0065583
http://www.ams.org/mathscinet-getitem?mr=1512629
http://www.ams.org/mathscinet-getitem?mr=1555346
http://www.ams.org/mathscinet-getitem?mr=1379802
http://www.ams.org/mathscinet-getitem?mr=1736013
http://www.ams.org/mathscinet-getitem?mr=1763900
http://www.ams.org/mathscinet-getitem?mr=1771287
http://www.ams.org/mathscinet-getitem?mr=2114904
http://www.ams.org/mathscinet-getitem?mr=1503417
http://www.ams.org/mathscinet-getitem?mr=0182610
http://www.ams.org/mathscinet-getitem?mr=0120372
http://www.ams.org/mathscinet-getitem?mr=0835767
http://www.ams.org/mathscinet-getitem?mr=1424469
http://www.ams.org/mathscinet-getitem?mr=1007910
mailto:Wladimir.Pribitkin@csi.cuny.edu
mailto:w_pribitkin@msn.com

	Appendix: Proof of combinatorial identity
	Acknowledgment
	References
	Author's Addresses

