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ON THE EXISTENCE OF A COMPLEMENT FOR A FINITE
SIMPLE GROUP IN ITS AUTOMORPHISM GROUP

A. LUCCHINI, F. MENEGAZZO, AND M. MORIGI

Abstract. In this paper we determine all finite simple groups G for
which the automorphism group AutG splits over G = InnG.

The theory of group extensions, and, in particular, the study of conditions
which force the splitting of a given extension or class of extensions, is one
of the themes with which the name of Reinhold Baer is associated. The
present article gives a concrete, very special instance of this type of study: we
examine the automorphism groups of the finite non abelian simple groups to
determine those groups G for which AutG splits over G, where we identify
G with the inner automorphism group InnG. For such groups, the structure
of the complement for InnG in the automorphism group AutG is of course
well known: the complement is isomorphic to the outer automorphism group
OutG (see [2]).

The question we are considering is very natural and easily stated; yet, it
seems that only very partial results are known (see [6], [7]).

In fact, this is a problem on simple groups of Lie type, since the remaining
cases are easily dealt with. Indeed, if n ≥ 5, n 6= 6, Sym(n) = Aut(Alt(n))
always splits over Alt(n), while Alt(6) ∼= PSL(2, 9) has no complement in
Aut(Alt(6)). Similarly, all automorphism groups of the sporadic simple groups
split over their socle: if G is a sporadic group, then either AutG = InnG or
InnG has index 2 in AutG, and in each case there exists a conjugacy class of
non-inner involutions in AutG (see [2]).

On the other hand, the behaviour of groups of Lie type is not so uniform;
it depends on the type of the group and on some arithmetical conditions
involving the cardinality of the field and the rank of the group. The following
theorem collects our results.
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Theorem. Let G be a simple group of Lie type over a finite field with
q = pm elements, p prime, and denote by d the order of the abelian group
Ĥ/H, where Ĥ is the group of diagonal automorphisms of G and H is the
subgroup of Ĥ consisting of those diagonal automorphisms which are inner.
(The values of d for untwisted and twisted groups are given in the tables in
Sections 3 and 4.) Then AutG splits over G if and only if one of the following
conditions holds:

(1) G is untwisted, not of type Dl(q), and ( q−1
d , d,m) = 1;

(2) G = Dl(q) and ( q
l−1
d , d,m) = 1;

(3) G is twisted, not of type 2Dl(q), and
(
q+1
d , d,m

)
= 1;

(4) G = 2Dl(q) and either l is odd or p = 2.

The paper is divided into four sections. In Sections 1 and 2 we study the
groups An(q) and 2An(q), respectively, using their natural projective represen-
tations; in Sections 3 and 4 we consider the remaining untwisted (respectively
twisted) groups of Lie type.

1. The special linear groups

Let F = Fq be the finite field with q elements, where q = pm for some
prime number p. We fix a generator λ of the multiplicative group of the
field F∗. As usual, GL(n, q) (resp. SL(n, q)) will denote the general (resp.
special) linear group of degree n over the field Fq. In the following we will
identify F∗ with the subgroup of GL(n, q) consisting of scalar matrices, and
let PGL(n, q) = GL(n, q)/F∗, PSL(n, q) = SL(n, q) F∗ /F∗. For an element
g ∈ GL(n, q) its image in PGL(n, q) will be denoted with ḡ. Also, as usual,
det(g) will denote the determinant of a matrix g.

Throughout this section, we will consider G = An−1(q) = PSL(n, q), for
n and q fixed. Let φ be the Frobenius automorphism of F, defined by aφ =
ap (using the exponential notation for automorphisms). Then φ induces an
automorphism of GL(n, q) of order m, which will also be denoted by φ, given
by (aij)φ = (apij) for i, j = 1, . . . , n.

Let ι : GL(n, q)→ GL(n, q) be the automorphism defined by gι = (g>)−1,
where g> denotes the transpose matrix of g.

Both φ and ι induce automorphisms φ̄ and ῑ of PGL(n, q). φ̄ generates the
group of field automorphisms, ῑ is the product of the graph automorphism and
an inner automorphism if n ≥ 3, and it is an inner automorphism if n = 2.
As G is simple, we may also identify G with InnG ≤ AutG.

We have the sequence of normal subgroups

SL(n, q) ≤ GL(n, q) ≤ ΓL(n, q) = GL(n, q)〈φ〉 ≤ ΓL(n, q)〈ι〉.
Taking quotients modulo the scalar matrices we obtain

G ≤ PGL(n, q) ≤ PΓL(n, q) = PGL(n, q)〈φ̄〉 ≤ AutG = PΓL(n, q)〈ῑ〉.
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Also, PGL(n, q)/G is cyclic of order d = (n, q − 1) and φ̄ acts on it as the
p-th power. We want to prove that G has a complement in AutG if and
only if

(
q−1
d , d,m

)
= 1. Letting t be the product of all prime factors of d

dividing q−1
d , counting multiplicities, this is equivalent to proving that G has

a complement in AutG if and only if (t,m) = 1.

Lemma 1.1.

(i) 〈ḡ〉 is a complement for PSL(n, q) in PGL(n, q) if and only if det(g) =
λu, with (u, d) = 1 and gd ∈ F∗.

(ii) Assume that G has a complement C̄ in PΓL(n, q). Then it is possible
to choose g ∈ GL(n, q) and h ∈ SL(n, q) such that C̄ = 〈ḡ, φ̄h̄〉,
det(g) = λ, |ḡ| = d and ḡφ̄h̄ = ḡp.

Proof. (i) Suppose that det(g) = λu. Then ḡ generates PGL(n, q) modulo
PSL(n, q) if and only if λu generates F∗ modulo (F∗)n, that is, if and only if
(u, d) = 1. Therefore 〈ḡ〉 is a complement if and only if we have that ḡd = 1,
that is, gd ∈ F∗.

(ii) Choose g such that 〈ḡ〉 = C̄ ∩ G. As ḡ generates PGL(n, q) modulo
PSL(n, q), we have that det(g) = λu with (u, d) = (u, n, q − 1) = 1. Let
r, s, v ∈ Z be such that ru + sn + v(q − 1) = 1. Then det(λsgr) = λ and we
may replace g by λsgr. The remaining statements follow from the fact that
the projection π : C̄ → 〈ḡ, φ̄〉G/G is an isomorphism. �

Lemma 1.2. Assume that G has a complement in PΓL(n, q). Then
(m, t) = 1.

Proof. Let g, h be as in Lemma 1.1 (ii), so that gd = λα ∈ F∗. Taking the
determinant of both sides we have that λd = det(g)d = (λα)n. So d ≡ αn
mod q−1, that is, 1 ≡ α(n/d) mod (q − 1)/d and thus (α, q−1

d ) = 1. It follows
that (α, t) = 1.

We may view φh as a ring automorphism of the ring Mat(n, q) of n × n
matrices with entries in F. As ḡφ̄h̄ = ḡp, we have that gφh = (gz)p for some
z ∈ F∗, so φh normalizes the subring F[g] of Mat(n, q) (where, as usual, F
is identified with the ring of scalar matrices). Now the map π : F[g] → F[g],
defined by vπ = vp is also a ring automorphism of F[g], and φhπ−1 is a ring
automorphism which centralizes F. So λα = gd = (gd)φhπ

−1
= (gφhπ

−1
)d =

(gz)d = λαzd and zd = 1. Thus we may assume that z = λβ(q−1)/d for some
integer β. It is easy to see that g(φh)i = gp

i

zip
i

for each natural number i. As
(φh)m is a scalar matrix, we obtain that g = g(φh)m = gp

m

zmp
m

= gqzmq =
gqzm, so gq−1 = z−m. As gq−1 = gd

q−1
d = λα

q−1
d , we have that α q−1

d ≡
−(mβ) (q−1)

d mod q − 1. It follows that α ≡ −βmmod d, so (m, t) | (α, t) = 1,
as we wanted to prove. �
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We now seek a complement for G in PΓL(n, q). If n = 2, we find g ∈
GL(n, q) such that det(g) = λ, gd ∈ F∗, and 〈g〉 is normalized by φ; if n ≥ 3,
we find a matrix g with the above properties and such that 〈g〉 is normalized
by ιu, for a suitable matrix u ∈ GL(n, q) such that (ιu)2 = 1 and ιu commutes
with φ.

Lemma 1.3. Let d = tl, d1|d, d1 = t1l1, where t1 = (d1, t). There exist
v1, . . . , vn/t1 ∈ F and u ∈ Z such that (u, t1) = 1, vl1j = 1 for j = 1, . . . , n/t1,
and

n/t1∏
j=1

(−1)t1−1λuvj = λd/d1 .

Proof. Assume that a prime r divides q−1
l = q−1

d
d
l = q−1

d t. Then r di-
vides q−1

d , so r divides neither l, as
(
q−1
d , l

)
= 1, nor n

d , as
(
n
d ,

q−1
d

)
=

1. It follows that
(
q−1
l , nt

)
=
(
q−1
l , lnd

)
= 1. Thus we have

(
q−1
l1
, nt1

)
=(

q−1
l

l
l1
, nt

t
t1

)
|
(
q−1
l , nt

)
l
l1

t
t1

= d
d1

.
We now distinguish two cases. If t1 is odd or n

t1
is even, we take u, y ∈ Z

such that y q−1
l1

+ u nt1 = d
d1

. Note that, by dividing both sides by d
d1

, we get
y q−1

d t1 + und l1 = 1, so (u, t1) = 1.
If t1 is even and n

t1
is odd, then d

d1
| q−1

2 , so we may take u, y ∈ Z such
that y q−1

l1
+ u nt1 = d

d1
+ q−1

2 . Again, dividing by d
d1

, we get y q−1
d t1 + und l1 =

1 + q−1
d

d1
2 , so (u, t1) = 1, because every prime dividing t1 divides also q−1

d .

In both cases u has the desired properties, and taking v1 = λy
q−1
l1 , vj = 1

for j 6= 1, we have
n/t1∏
j=1

(−1)t1−1λuvj = (−1)(t1−1)n/t1λu
n
t1

+y q−1
l1 = λd/d1 . �

We now describe a construction which will be used in the sequel.

Lemma 1.4. Let d1 = t1l1 be as above. Take u ∈ Z and v1, . . . , vn/t1 ∈ F
such that vl1j = 1 for every j = 1, . . . , n/t1, and

∏n/t1
j=1 (−1)t1−1λuvj = λd/d1 .

Then there exists a matrix g ∈ GL(n, q) such that gd1 ∈ F∗ and det(g) =
λd/d1 .

Proof. Note that Lemma 1.3 ensures the existence of u and v1, . . . , vn/t1
with the required properties. Let j ∈ {1, . . . , n/t1}, c = λu and cj = cvj .
Consider the commutative ring Vj = F[wj ], where wj has minimal polynomial
xt1 − cj over F, that is, F[wj ] is isomorphic to the quotient of the polynomial
ring F[x] over the ideal (xt1 − cj). Then Vj is a vector space of dimension t1
over F and a basis is {1, wj , w2

j , . . . , w
t1−1
j }. We have that wj acts on Vj via
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right multiplication, and the matrix associated to this endomorphism with
respect to the fixed basis is

gj =


0 1 0 . . . 0
0 0 1 0
...

. . . 0
0 0 0 1
cj 0 . . . 0 0

 .

Note that det(gj) = (−1)t1−1λuvj .
Also gd1

j = (gt1j )l1 = (cj)l1 = (cvj)l1 = cl1 . Let V = ⊕n/t1j=1 Vj and let g be
the matrix

g =

g1

. . .
gn/t1

 ;

then gd1 = cl1 ∈ F∗ and det(g) =
∏n/t1
j=1 (−1)t1−1λuvj = λd/d1 , as required.

�

Proposition 1.5. PSL(n, q) is complemented in PGL(n, q).

Proof. Take v1, . . . , vn/t ∈ F and u ∈ Z as in Lemma 1.3, with d1 = d,
and let g be the matrix constructed in Lemma 1.4. Then 〈ḡ〉 is the required
complement. �

We will also need the following observation:

Observation 1.6. Consider the polynomial xs−c, where c ∈ F and s|q−1.
If c = λu, where (u, s) = 1, then xs − c is irreducible in F[x].

Lemma 1.7. Let F[w] be a field, where w has minimal polynomial xs − c
over F and s|q − 1. Assume also that (s,m) = 1 and let k ∈ N be such that
mk ≡ −1 mod s. Let π : F[w] → F[w] be the map defined by vπ = vp. Then
ψ = πmk+1 is an automorphism of F[w] of order m such that aψ = ap for
every a ∈ F and wψ = (wz)p, where z = c(q

k−1)/s ∈ 〈w〉 ∩ F∗.

Proof. F[w] is a field of order qs = pms. Also, ψ = πmk+1 induces φ on F,
so m divides the order of ψ. Note that the order of π is sm, so if mk+ 1 = sh
we have that ψm = π(mk+1)m = πshm = 1. Hence ψ has order m. Also,
wψ = wπ

mk+1
= (wwq

k−1)p = (wc(q
k−1)/s)p, and z = c(q

k−1)/s ∈ 〈w〉. �

Next, we recall some well-known facts about symmetric bilinear forms.
Let K be a field and let β : V × V → K be a symmetric non-degenerate
bilinear form over a K-vector space V of dimension s. If f ∈ End(V ) is a
linear map, then there exists a unique linear map f ′ ∈ End(V ) such that
β(uf, v) = β(u, vf ′) for every u, v ∈ V . The map f ′ is called the adjoint map
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of f with respect to β, and f is said to be self-adjoint if f ′ = f . Take a basis
{e1, e2, . . . , es} of V and let A,A′ and B be the matrices associated to f, f ′

and β with respect to this basis. Then A′ = B>A>(B>)−1. The following
lemma is an exercise in [5, p. 367]:

Lemma 1.8. Let V be a vector space of dimension s over the field K,
and let f ∈ End(V ) be a linear map. Then there exists a symmetric non-
degenerate bilinear form β with discriminant δ ∈ {±1(K∗)2} such that f is
self-adjoint with respect to β.

Lemma 1.9. Let V be a vector space of dimension s over the field K, and
let β be a symmetric non-degenerate bilinear form on V with discriminant δ.
If p is odd and δ = (K∗)2 or if p = 2 and s is odd, then there exists a basis
E of V such that the matrix associated to β with respect to E is the identity
matrix. If p is odd, −1 is not a square in F and δ = −1(K∗)2, then there
exists a basis E of V such that the matrix associated to β with respect to E is
the diagonal matrix B = diag(−1, 1, . . . , 1).

Proof. See [3, pp. 16,20]. �

In the sequel, if R is an algebra and w ∈ R, the linear map given by right
multiplication by w will be denoted by rw.

Lemma 1.10. With the hypotheses and notations of Lemma 1.7, let V =
F[w]. There exists a basis E = {e1, . . . , es} of V and a matrix B ∈ GL(s, p)
such that the following hold:

(i) ιB ∈ Aut(SL(n, q)) has order 2, and it commutes with φ.
(ii) The matrix g associated to rw with respect to E is such that gιB =

g−1 and gφ = (gz)p, where z = c(q
k−1)/s ∈ 〈g〉. Also, gs = c and

det(g) = (−1)s−1c.

Proof. We have that F[w] is a field of order qs = pms. The field F′ of
fixed points of the automorphism ψ has order ps and we have F∩F′ = Fp, as
(m, s) = 1.

Let F′ = Fp[v] and note that F[w] = F[v] and that every basis of F′ over
Fp is also a basis of F[w] over F. We may view F′ as a vector space over
Fp and consider the linear map rv ∈ EndFp(F′). By Lemma 1.8 there exists
a symmetric non-degenerate bilinear form β on F′ over Fp with discriminant
δ ∈ {±1(F∗p)

2} such that rv is self-adjoint with respect to β. Note that if p = 2,
then s is odd. By Lemma 1.9 we may choose a basis E = {e1, . . . , es} of F′

such that the matrix B associated to β is of the form B = diag(ε, 1, . . . , 1),
where ε ∈ {±1}. Then the matrix A of rv with respect to this basis satisfies
A>B = A.

Now consider V = F[v] = F[w]. We have that E is a basis for V over F.
Also, as w ∈ F[v], w is a linear combination of powers of v, so the matrix g
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associated to rw with respect to E is such that g>B = g, that is, gιB = g−1,
as required. Moreover, B ∈ GL(s,Fp), B = B> = B−1, so that (i) holds.

Next, let x = λ1 + λ2v + . . .+ λsv
s−1 ∈ V , with λ1, . . . , λs ∈ F. As ψ acts

trivially on E ⊆ F′, we have xψ = λp1 + λp2v . . . + λpsv
s−1, that is, ψ is the

semi-linear map associated to the identity matrix and the automorphism φ
with respect to the basis E. As wψ = (zw)p, the matrix associated to rwψ is
gφ = cp(q

k−1)/sgp, as we wanted to show.
Note that rws is right multiplication by the scalar c, so gs = c and xs − c

is both the minimal polynomial and the characteristic polynomial of g. It
follows that det(g) = (−1)s−1c. �

Proposition 1.11. Let d1|d, d1 = t1l1, where t1 = (d1, t). Assume that
D ≤ PGL(n, q) is such that G ≤ D and D/G has order d1. If (m, t1) = 1,
then G has a complement in 〈D, φ̄, ῑ〉.

Proof. Take v1, . . . , vn/t1 ∈ F and u ∈ Z as in Lemma 1.3, and let c = λu

and cj = cvj . Note that cj = λu+αj(q−1)/l1 for some integer αj , and as
(u, t1) = 1 we have that (u + αj

q−1
l1
, t1) = 1, so by Observation 1.6 the

polynomials xt1 − cj are irreducible. Now we may apply Lemma 1.10 and
find matrices gj and Bj such that Bj satisfies (i) of Lemma 1.10, gιBjj = g−1

j ,

gφj = (cvj)p(q
k−1)/t1gpj and gt1j = cvj for j = 1, . . . , n/t1. As l1| q

k−1
t1

, it follows

that v(qk−1)/t1
j = 1, so gφj = cp(q

k−1)/t1gp. Also, gd1
j = gt1l1j = (cvj)l1 = cl1 .

Now consider the matrices

g =

g1

. . .
gn/t1

 , B =

B1

. . .
Bn/t1

 .

We have that ιB has order 2 and commutes with φ, gιB = g−1 and gφ = (gz)p,
where z = c(q

k−1)/t1 ∈ F. Also, gd1 = cl1 and

det(g) =
n/t1∏
j=1

det(gj) =
n/t1∏
j=1

(−1)t1−1λuvj = λd/d1 .

Then C̄ = 〈ḡ, φ̄, ῑB̄〉 is the required complement. �

Combining Lemma 1.2 with the special case d1 = d of Proposition 1.11 we
get:

Theorem 1.12. PSL(n, q) has a complement in Aut(PSL(n, q)) if and
only if ( q−1

d , d,m) = 1.
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2. The unitary groups

In this section, we will consider the group G = 2An−1(q) = PSU(n, q), for
n and q fixed.

Let F = Fq2 be the finite field with q2 elements, where q = pm for some
prime number p. We fix a generator λ of the multiplicative group of the field
F∗. Then U(n, q) (resp. SU(n, q)) will denote the general (resp. special)
unitary group of degree n, that is, U(n, q) = {g ∈ GL(n, q2) | g(g>)σ = 1},
where σ = φm ∈ Aut(GL(n, q2)), and SU(n, q) = {g ∈ U(n, q) | det(g) = 1}.
All other notations, unless otherwise specified, are as in the previous section,
and as usual F∗ is identified with the subgroup of GL(n, q2) consisting of
scalar matrices.

We have the sequence of normal subgroups

SU(n, q) ≤ U(n, q) ≤ U(n, q)〈φ〉,
from which, taking images in U(n, q)〈φ〉F∗ /F∗, we obtain the sequence

PSU(n, q) ≤ PU(n, q) ≤ U(n, q)〈φ〉F∗ /F∗ = Aut(PSU(n, q)).

Also, PU(n, q)/G is cyclic of order d = (n, q + 1) and φ̄ acts on it as the
p-th power. We want to prove that G has a complement in AutG if and
only if

(
q+1
d , d,m

)
= 1. Letting t be the product of all prime factors of d

dividing q+1
d , counting multiplicities, this is equivalent to proving that G has

a complement in AutG if and only if (t,m) = 1.

Lemma 2.1.

(i) If g ∈ U(n, q), then det(g)q+1 = 1.
(ii) U(n, q) ∩ F∗ = {a ∈ F∗ | aq+1 = 1}.
(iii) 〈ḡ〉 is a complement for PSU(n, q) in PU(n, q) if and only if det(g) =

λ(q−1)u, with (u, d) = 1, and gd ∈ F∗.
(iv) Assume that G has a complement C̄ in AutG. Then it is possible to

choose g ∈ U(n, q) and h ∈ SU(n, q) such that C̄ = 〈ḡ, φ̄h̄〉, ḡφ̄h̄ = ḡp,
det(g) = λ(q−1)u, with (u, d) = 1, and gd, (φh)2m ∈ F∗.

Proof. (i) and (ii) follow directly form the definition of U(n, q). To obtain
(iii) and (iv), we note that, by (i), det(g) is of the form λ(q−1)u. The proofs
are now analogous to those of Lemma 1.1. �

Lemma 2.2. Assume that G has a complement in AutG. Then (m, t) = 1.

Proof. Let g, h be as in Lemma 2.1 (iv), so that det(g) = λ(q−1)u, with
(u, d) = 1, and gd = λα(q−1) ∈ U(n, q) ∩ F∗ for some natural number α (see
Lemma 2.1 (ii)). Taking the determinant on both sides, we obtain λdu(q−1) =
λαn(q−1), that is, du(q−1) ≡ dαnd (q−1) mod(q2−1), and so u ≡ αnd mod q+1

d .
If r is a prime such that r|t, then r| q+1

d and r - u, so r - α. It follows that
(α, t) = 1.
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We may view φh as a ring automorphism of the ring Mat(n, q2). As ḡφ̄h̄ =
ḡp, we have that gφh = (gz)p for some z ∈ F∗, so φh normalizes the subring
F[g] of Mat(n, q2). Now the map π : F[g]→ F[g], defined by vπ = vp, is also a
ring automorphism of F[g], and φhπ−1 is ring automorphism which centralizes
F. So λα(q−1) = gd = (gd)φhπ

−1
= (gφhπ

−1
)d = (gz)d = λα(q−1)zd and zd = 1.

Hence we may assume that z = λβ(q2−1)/d for some integer β. As (φh)2m

is a scalar matrix and g(φh)i = gp
i

zip
i

for each natural number i, we obtain
that g = g(φh)2m

= gq
2
z2m, so gq

2−1 = z−2m. Moreover, gq
2−1 = gd(q2−1)/d =

λα(q−1)(q2−1)/d, so we have α(q−1) q
2−1
d ≡ −(2mβ) q

2−1
d mod q2 − 1. It follows

that α(q − 1) ≡ −2βm mod d.
Let r be a prime which divides t. If r = 2, then p 6= 2. Both q+1

d and
d are even, so q + 1 = pm + 1 ≡ 0 mod 4 and m is odd. If r 6= 2, then
r|d, r|q + 1, r - q − 1, and r - α (by what we have just proved), so r - m. It
follows that (m, t) = 1, as we wanted to prove. �

We now seek a complement for G in AutG. We find g, h ∈ U(n, q) such
that det(g) = λq−1, gd ∈ F∗, (φh)2m ∈ F∗ and 〈g〉 is normalized by φh.

Lemma 2.3. Assume that d = tl, d1|d, d1 = t1l1, where t1 = (d1, t).
Then there exist v1, . . . , vn/t1 ∈ (F∗)q−1 and u ∈ Z such that vl1j = 1 for
j = 1, . . . , n/t1 and

n/t1∏
j=1

(−1)t1−1λu(q−1)vj = λ(q−1)d/d1 .

Proof. The proof is analogous to that of Lemma 1.3. �

Lemma 2.4. Let d1 = t1l1 as above. Take u ∈ Z and v1, . . . , vn/t1 ∈ F
such that vl1j = 1 for every j = 1, . . . , n/t1, and

∏n/t1
j=1 (−1)t1−1λu(q−1)vj =

λ(q−1)d/d1 . Then there exists a matrix g ∈ U(n, q) such that gd1 ∈ F∗ and
det(g) = λ(q−1)d/d1 .

Proof. Note that Lemma 2.3 ensures the existence of u and v1, . . . , vn/t1
with the required properties. Then construct the matrix g as in Lemma 1.4,
using c = λu(q−1) in place of c = λu. It is easy to see that gj(g>j )σ =
diag(1, . . . , 1, cq+1

j ) = 1, as cq+1
j = (λu(q−1)vj)q+1 = 1, because l1|q + 1. It

follows that g(g>)σ = 1, so g ∈ U(n, q). �

Proposition 2.5. PSU(n, q) is complemented in PU(n, q).

Proof. Take v1, . . . , vn/t ∈ F and u ∈ Z as in Lemma 2.3, with d1 = d
and let g be the matrix constructed in Lemma 2.4. Then 〈ḡ〉 is the required
complement. �
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Lemma 2.6. Let F[w] be a commutative ring, where w has minimal poly-
nomial xt1 − c over F (where t1 is as in Lemma 2.3), that is, F[w] is iso-
morphic to the quotient of the polynomial ring F[x] over the ideal (xt1 − c).
Let c = λu(q−1) and assume also that (t1, u) = (t1,m) = 1. Then F[w] has
a ring automorphism ψ of order 2m such that aψ = ap for every a ∈ F and
wψ = (wz)p, with z ∈ 〈c〉. More specifically, we have:

(i) If t1 is odd, let k ∈ N be such that 2mk ≡ −1 mod t1. Then z =
c(q

2k−1)/t1 ∈ 〈w〉.
(ii) If t1 is even let k ∈ N be such that k is odd and mk ≡ −1 mod t1/2.

Then z = c(q
2k−1)/(2t1) ∈ 〈w〉.

Proof. (i) In this case (t1, 2m) = 1. Note that, as t1|q + 1, we have that
(t1, q−1) = 1, so by Observation 1.6 the polynomial xt1−λu(q−1) is irreducible.
Then the map ψ = π2mk+1 constructed in Lemma 1.7 with s = t1 and 2m in
place of m has the required properties.

(ii) As (m, t12 ) = 1, there exist an odd k ∈ N and s ∈ Z such that mk +
s t12 + 1 = 0.

Let ε = c(q
2k−1)/(2t1). As q2 ≡ 1 mod t, it follows that 1+q2+· · ·+q2(k−1) ≡

kmod t. Also, it is clear that
(
q−1

2 , t1
)

= 1, so if α = u q−1
2 (1+q2+· · ·+q2(k−1))

we have that (α, t1) = 1. It follows that ε = λ(q−1)u(q2k−1)/(2t1) = λα(q2−1)/t1

has order t1, so εt1/2 = −1.
Let b = λu(q−1)/2, so that b2 = c. Then xt1 − c = (xt1/2 − b)(xt1/2 + b).

Consider the ring K[w1], where w1 has minimal polynomial xt1/2 − b. Note
that, as

(
u q−1

2 , t12
)

= 1 and t1
2 |

q2−1
2 , the polynomials xt1/2 − b and xt1/2 + b

are irreducible.
We have that (w1ε)t1/2 = −b and we may assume that F[w] is the direct

product F[w1]× F[w1ε] = F[w1]× F[w1], as ε ∈ F. Moreover, we may assume
that w = (w1, w1ε) and that F ≤ F[w] is identified with the subfield F̃ =
{(a, a) | a ∈ F} of the direct product.

Define ψ : F[w] → F[w] by (a1, a2)ψ = (ap2, a
p2mk+1

1 ). For every a ∈ F we
have that (a, a)ψ = (ap, ap

2mk+1
) = (ap, ap) = (a, a)p, so that ψ acts on F̃ as

the p-th power π. In particular, the order of ψ is at least 2m.
We also have that (a1, a2)ψ

2
= (ap

2mk+2

1 , ap
2mk+2

2 ), so ψ2 stabilizes F[w1].
Moreover, ψ2m = π(2mk+2)m = π−2smt1/2. But π2mt1/2 acts trivially on F[w1],
so ψ has order 2m. Note that

wψw−p = (w1, w1ε)ψ(w1, w1ε)−p = (εp, wp
2mk+1−p

1 ε−p) = (ε, wp
2mk−1

1 ε−1)p

and

wp
2mk−1

1 = wq
2k−1

1 = w
t1(q2k−1)/t1
1 = c(q

2k−1)/t1 = ε2.
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Therefore wψw−p = (ε, ε)p, that is,

wψ = (gz)p, z = (c(q
2k−1)/(2t1), c(q

2k−1)/(2t1)) ∈ F̃ ∩ 〈w〉. �

Lemma 2.7. With the hypotheses and notation of Lemma 2.6, there exist
two matrices g, h ∈ U(t1, q) such that gt1 = c, det(g) = (−1)t1−1c, gφh =
(gz)p, where z = c(q

2k−1)/t1 ∈ 〈g〉 if t1 is odd, and z = c(q
2k−1)/(2t1) ∈ 〈g〉 if

t1 is even. Also, (φh)2m = 1.

Proof. We have that E = {1, w, w2, . . . , wt1−1} is a basis of V = F[w] as a
vector space over F. The matrix g associated to rw with respect to E is

g =


0 1 0 . . . 0
0 0 1 0
...

. . . 0
0 0 0 1
c 0 0 0

 .

We have that g ∈ U(t1, q), by the same argument as in Lemma 2.4. Also,
gt1 = c and det(g) = (−1)t1−1c. Note that ψ is a semilinear map associated
with the automorphism φ of F. We have that (wi)ψ = cαi(w)iσ, where σ ∈
Sym(t1). So ψ permutes the subspaces Fwi. Let h be the matrix associated
to the linear map which acts in the same way as ψ on the given basis. Then
h is monomial. Also, h(h>)σ is a diagonal matrix with all non-zero entries of
the form cαi(q+1) = λαiu(q−1)(q+1) = 1, so h ∈ U(t1, q).

Next, note that the group ΓL(V ) of semilinear maps is isomorphic to
ΓL(n, q) and, with respect to the chosen basis E, we have that ψ corresponds
to φh, so (φh)2m = 1. Also, 〈φh〉 ∩ F∗ = 1.

Finally, right multiplication by wψ is right multiplication by (wz)p, so
gφh = (gz)p. �

Proposition 2.8. Let d1|d, d1 = t1l1, where t1 = (d1, t). Let D ≤
PU(n, q) be such that G ≤ D and D/G has order d1. If (m, t1) = 1, then G
has a complement in 〈D, φ̄〉.

Proof. Take v1, . . . , vn/t1 ∈ F and u ∈ Z as in Lemma 2.3, and let c =
λu(q−1) and cj = cvj . Note that cj = λu(q−1)+αj(q

2−1)/l1 for some integer
αj , and as (u, t1) = 1 and t1| q

2−1
l1

, we have that (u + αj
q2−1
l1

, t1) = 1, so the
hypotheses of Lemma 2.6 are satisfied. Now we may apply Lemma 2.7 and
find matrices gj , hj ∈ U(t1, q) such that (φhj)2m = 1, gφhjj = (gjzj)p, with
zj ∈ 〈gj〉. If t1 is odd, we have

zj = c
(q2k−1)/t1
j = (cvj)(q2k−1)/t1 = c(q

2k−1)/t1
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for every j = 1, . . . n/t1, as l1 | q
2−1
t1

. If t1 is even, we have

zj = c
(q2k−1)/(2t1)
j = (cvj)(q2k−1)/(2t1) = c(q

2k−1)/(2t1)

for every j = 1, . . . n/t1, as l1 | q
2−1
2t1

(where l1 is odd). Also, gd1
j = gt1l1j =

(cvj)l1 = cl1 .
Now consider the matrices

g =

g1

. . .
gn/t1

 , h =

h1

. . .
hn/t1

 .

We have that g, h ∈ U(n, q), (φh)2m = 1 and gφh = (gz)p, where z ∈ F∩〈g〉.
Also, gd1 = cl1 and

det(g) =
n/t1∏
j=1

det(gj) =
n/t1∏
j=1

(−1)t1−1λu(q−1)vj = λ(q−1)d/d1 .

Then C̄ = 〈ḡ, φ̄h̄〉 is the required complement. �

Combining Lemma 2.2 with the special case d1 = d of Proposition 2.8 we
get:

Theorem 2.9. PSU(n, q) has a complement in Aut(PSU(n, q)) if and only
if ( q+1

d , d,m) = 1.

3. Untwisted groups of Lie type

In the following, we denote by Fq the finite field of order q = pm, with p a
prime and m a positive integer. Moreover, we denote by λ a generator of the
multiplicative group of Fq . Let Φ be a root system corresponding to a simple
Lie algebra L over the complex field C, and let us consider a fundamental
system Π = {a1, . . . , al} in Φ. For any choice of Π and for any finite field Fq,
we let L(q) denote the corresponding finite group (where L denotes the type
of the group; i.e., L = Al, Bl, Cl, Dl, E6, E7, E8, F4, G2).

We assume that for the various possible root systems the elements of Π are
labelled in such a way that (a, a) = 2 and (a, b) = 0 for each pair of roots in



COMPLEMENTS FOR FINITE SIMPLE GROUPS 407

Π, with the following exceptions:

Al : (ai, ai+1) = −1 for 1 ≤ i ≤ l − 1;

Bl : (a1, a1) = 1, (ai, ai+1) = −1 for 1 ≤ i ≤ l − 1;

Cl : (ai, ai)=1,(ai, ai+1)= −1/2 for 1 ≤ i≤ l − 2,

(al−1, al−1)= −(al−1, al) = 1;

Dl : (a1, a3) = (ai, ai+1) = −1 for 2 ≤ i ≤ l − 1;

El : (ai, ai+1) = (al−3, al) = −1 for 1 ≤ i ≤ l − 2;

F4 : (a1, a1) = (a2, a2) = 1, (a1, a2) = −1/2,

(a2, a3) = (a3, a4) = −1;

G2 : (a1, a1) = 2/3, (a1, a2) = −1.

The Chevalley group L(q), viewed as a group of automorphisms of a Lie
algebra LK over the field K = Fq, obtained from a simple Lie algebra L over
the complex field C, is the group generated by certain automorphisms xr(t),
where t runs over Fq and r runs over the root system Φ associated to L. For
each r ∈ Φ, Xr = {xr(t) | t ∈ Fq} is a subgroup of L(q) isomorphic to the
additive group of the field. Xr is called a root subgroup, and the group L(q)
is generated by the root-subgroups Xr, ±r ∈ Π. In the following we will use
the notations and the terminology introduced in [1].

Let us recall some facts about the automorphism group of L(q).
Any automorphism σ of the field Fq induces a field automorphism (also

denoted by σ) of L(q), defined by

(xr(t))σ = xr(tσ).

The set of the field automorphisms of L(q) is a cyclic group of order m gen-
erated by the Frobenius automorphism φ.

We recall that a symmetry of the Dynkin diagram of L(q) is a permutation
ρ of the nodes of the diagram, such that the number of bonds joining nodes
i, j is the same as the number of bonds joining nodes iρ, jρ, for any i 6= j.
A non trivial symmetry ρ of the Dynkin diagram can be extended to a map
of the space 〈Φ〉 into itself, which we also denote by ρ. This map yields an
outer automorphism ε of L(q); ε is said to be a graph automorphism of L(q).
If L(q) is Al(q), l ≥ 2, Dl(q) or E6(q), then (xr(t))ε = xrρ(γrt), where r ∈
Φ, t ∈ Fq, γr ∈ Z. Moreover, the γr can be chosen so that γr = 1 if r ∈ Π,
and γr = −1 if −r ∈ Π.

Let P = ZΦ be the additive group generated by the roots in Φ; a homomor-
phism from P into the multiplicative group F∗q will be called an Fq-character
of P . From each Fq-character χ of P arises a diagonal automorphism h(χ)
of L(q) which maps xr(t) to xr(χ(r)t). The automorphisms of the form h(χ)
form an abelian subgroup Ĥ of the full automorphism group of L(q). Now con-
sider the additive group Q generated by the fundamental weights λ1, . . . , λl.
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Any element of P is an integral combination of λ1, . . . , λl. (More precisely,
ai =

∑
1≤j≤lAjiλj , where (Aij) is the Cartan matrix of L.) Thus P is a

subgroup of Q. Every Fq-character of Q gives rise to an Fq-character of P
by restriction. However, an Fq-character of P need not be the restriction
of some Fq-character of Q. More precisely, if an Fq-character of P, say χ,
can be extended to an Fq-character of Q, then the automorphism h(χ) is
inner, and vice versa. In the following we will often apply the above cri-
terion to decide whether a diagonal automorphism h(χ) is inner; this will
be done using the information coming from the Cartan matrix. Namely, if
χ(ai) = λαi , 1 ≤ i ≤ l, then χ can be extended to a Fq-character of Q by
setting χ(λi) = λβi for 1 ≤ i ≤ l if and only the integers β1, . . . , βl satisfy the
conditions αi ≡

∑
1≤j≤lAjiβj mod q − 1 for 1 ≤ i ≤ l.

We denote by H the group of the diagonal automorphisms that are inner
and by d the order of the abelian group Ĥ/H. The value of d is given by the
following table.

L(q) d
Al(q) (l + 1, q − 1)
Bl(q) (2, q − 1)
Cl(q) (2, q − 1)
Dl(q) (4, ql − 1)
E6(q) (3, q − 1)
E7(q) (2, q − 1)
E8(q) 1
G2(q) 1
F4(q) 1

The main result about the automorphism group of L(q) is as follows:

For each automorphism θ ∈ AutL(q) there exist an inner automorphism i,
a diagonal automorphism h, a field automorphism f and a graph automor-
phism ε, such that θ = ihfε; moreover,

L(q) E 〈L(q), Ĥ〉 E 〈L(q), Ĥ, φ〉 E AutL(q).

We will prove the following result:

Theorem 3.1. Suppose that q = pm and let L(q) be an untwisted group
of Lie type. Define q̃ = ql if L = Dl, and q̃ = q otherwise. Then L(q) has a
complement in AutL(q) if and only if the following condition is satisfied:

(∗)
(
q̃ − 1
d

, d,m

)
= 1.
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We have already proved that this is true for Al(q) ∼= PSL(l + 1, q). In this
section we discuss the remaining cases.

The subgroup 〈L(q), Ĥ〉 of inner-diagonal automorphisms is always com-
plemented in AutL(q), so we only have to deal with the cases when d 6= 1.

We first prove that the condition (∗) is necessary in order for L(q) to have
a complement.

As had already been noticed by Pandya [6, Lemma 3.5], Lang’s Theorem
implies the following result.

Lemma 3.2. Suppose that L(q) has a complement X in AutL(q). Then
there exists g ∈ L(q) such that the Frobenius automorphism φ belongs to Xg.

Thus, if L(q) has a complement X in AutL(q), we may assume without
loss of generality that φ ∈ X. In particular, Y = 〈L(q), Ĥ〉 ∩X is a subgroup
of X isomorphic to Ĥ/H and normalized by φ. We will show that this is
possible only if (q̃ − 1/d, d,m) = 1. To this end we use the Bruhat Decom-
position. As is well known, if N is the normalizer of H in L(q), then there
exists a homomorphism from N onto the Weyl group W of L, with kernel
H. For each w ∈ W we fix an element nw ∈ N which maps to w under this
homomorphism and such that [nw, φ] = 1. Let U = 〈Xr | r ∈ Π〉 and let Uw
be the subgroup generated by those root subgroups Xr for which r is positive
and rw is negative. Each element x of 〈L(q), Ĥ〉 has a unique representation
in the form x = u1h(χ)nwu, where u1 ∈ U, h(χ) ∈ Ĥ, w ∈W, u ∈ Uw.

Lemma 3.3. Suppose that L(q) = Bl(q), Cl(q), or E7(q) and that there
exists a complement Y of L(q) in 〈L(q), Ĥ〉 normalized by the Frobenius au-
tomorphism φ. Then (∗) is satisfied.

Proof. We may assume d 6= 1. Hence d = (q − 1, 2) = 2 and q = pm

with p an odd prime. In this case Y = 〈x〉, with |x| = 2. Using the Bruhat
Decomposition we may write x in the form x = u1h(χ)nwu with u1 ∈ U and
u ∈ Uw. Then

x = xφ = uφ1h(χ)φnφwu
φ = uφ1h(χ)φnwuφ.

Note that uφ1 ∈ U and uφ ∈ Uw, so by the uniqueness of the representation of
x we deduce h(χ)φ = h(χ), and this implies χp = χ. Since x /∈ L(q), we have
h(χ) ∈ Ĥ \H, which implies that there exists 1 ≤ i ≤ l with χ(ai) = λs for
an odd integer s. Therefore sp ≡ smod q − 1. Hence (q − 1)2 ≤ (p− 1)2, and
this is possible only if m is odd. To conclude the proof, it is enough to notice
that if d = 2, then (q − 1/d, d,m) = 1 if and only if m is odd. �

Lemma 3.4. Suppose that L(q) = Dl(q) with l even and that there exists a
complement Y of L(q) in 〈L(q), Ĥ〉 normalized by the Frobenius automorphism
φ. Then (∗) is satisfied.
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Proof. Again we may assume d 6= 1. In this case d = 4, Ĥ/H ∼= Z2 × Z2

and φ centralizes Ĥ/H. In particular, Y contains an element x of order 2
centralized by φ. Arguing as in Lemma 3.3, we deduce that m is odd, and this
is equivalent to the condition that (ql − 1/4, 4,m) = 1. �

Lemma 3.5. Suppose that L(q) = Dl(q) with l odd and that there exists a
complement Y of L(q) in 〈L(q), Ĥ〉 normalized by the Frobenius automorphism
φ. Then (∗) is satisfied.

Proof. Again it is enough to prove that either d = 1 or m is odd. Assume
d 6= 1. Then Ĥ/H is cyclic of order d ∈ {2, 4}. Let x be a generator of Y. If
[φ, x] = 1 we may repeat the argument of Lemma 3.3 to deduce that m is odd.
So assume that φ does not centralize x. This occurs only if d = 4, p ≡ 3 mod 4,
and m is even. In this case we take an element y ∈ Y of order 2 and write y in
the form y = u1h(χ)nwu with u1 ∈ U and u ∈ Uw. As φ centralizes y, using
the uniqueness of this representation, we deduce χp = χ. Since y /∈ L(q), we
have h(χ) ∈ Ĥ \H, which implies that there exists 1 ≤ i ≤ l with χ(ai) = λs,
for some integer s not divisible by 4. Therefore sp ≡ smod q − 1. Hence
(q − 1)2 ≤ (s(p− 1))2 ≤ 4, but this is impossible, since if p ≡ 3 mod 4 and m
is even, then q ≡ 1 mod 8. �

Lemma 3.6. Suppose that L(q) = E6(q) and that there exists a comple-
ment Y of L(q) in 〈L(q), Ĥ〉 normalized by the Frobenius automorphism φ.
Then (∗) is satisfied.

Proof. In this case d = (3, q − 1) and (∗) is equivalent to the condition
that either d = 1 or (3,m) = 1. Suppose that d 6= 1. Ĥ/H is cyclic of order
3. Let x be a generator of Y and write x in the form x = u1h(χ)nwu with
u1 ∈ U and u ∈ Uw. Since φ2 centralizes x, arguing as in the proof of Lemma
3.3 we deduce h(χ)φ

2
= h(χ), and this implies χp

2
= χ. Since x /∈ L(q), we

have h(χ) ∈ Ĥ \H, which implies that there exists 1 ≤ i ≤ 6 with χ(ai) = λs

for an integer s not divisible by 3. Therefore sp2 ≡ smod q − 1. Hence
(q − 1)3 ≤ (p2 − 1)3, which implies (3,m) = 1. �

It remains to prove that if (∗) is satisfied, then L(q) has a complement in
AutL(q). As we have already noticed, 〈L(q), Ĥ〉 is always complemented in
AutL(q), so we only have to consider the case when d 6= 1.

We first recall the following useful result (see [1, Theorem 7.2.2]):

Lemma 3.7. If n ∈ N and n maps to w under the natural homomorphism
from N onto W, then h(χ)n = h(χw), where χw(r) = χ(rw) for each r ∈ Φ.

For any r ∈ Φ let wr be the reflection in the hyperplane orthogonal to r
and let nr = xr(1)x−r(−1)xr(1). Then nr ∈ N and nr maps to wr under the
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natural homomorphism from N onto W. In the following we write wi, ni in
place of wai , nai , for any ai ∈ Π.

Lemma 3.8. If L(q) = Bl(q) and (∗) is satisfied, then there is a comple-
ment X of L(q) in AutL(q).

Proof. We may assume d = 2 (in which case L(q) has no graph automor-
phism). Let µ be a generator of the 2-Sylow subgroup of F∗q and define χ
by χ(a1) = µ, χ(a2) = µ−1, and χ(ai) = 1 for i > 2. Consider the ele-
ment x = h(χ)n1. We have n2

1 = h1(−1) = 1 (see [4, p. 20]), χw1(a1) =
χ(a1w1) = χ(−a1) = µ−1 and χw1(a2) = χ(a1w1) = χ(2a1 + a2) = µ. Hence
x2 = h(χ)h(χ)n1 = h(χ)h(χw1) = 1. Moreover, since (∗) is satisfied, we have
(q − 1)2 = (p − 1)2, so µp = µ and [x, φ] = 1. We claim that x /∈ L(q).
Indeed, if x ∈ L(q), then h(χ) ∈ H, and χ could be extended to an Fq-
character of Q; as 2λ1 = la1 + (l − 1)a2 + · · · + al, we would then have
χ(λ1)2 = χ(la1 + (l − 1)a2) = µ ∈ F2

q, a contradiction. But then X = 〈x, φ〉
is a complement for L(q) in AutL(q). �

Lemma 3.9. If L(q) = Cl(q) and (∗) is satisfied, then there is a comple-
ment X of L(q) in AutL(q).

Proof. We may assume d = 2. Let µ be a generator of the 2-Sylow subgroup
of F∗q and define χ by χ(ai) = µ if i ≡ 1 mod 4, χ(ai) = µ−1 if i ≡ 3 mod 4,
χ(ai) = 1 if i is even and i 6= l, and χ(al) = χ(al−1)−1 if l is even. Let
n = n1n3 . . . nk with k = 2

[
l−1
2

]
+ 1 and consider the element x = h(χ)n.

Let w = w1w3 . . . wk. Then χw(ai) = χ(aiw) = χ(−ai) if i is odd, χw(ai) =
χ(aiw) = χ(ai−1 +ai+ai+1) = 1 if i is even and i 6= l, and χw(al) = χ(alw) =
χ(2al−1 + al) = χ(al)−1 if l is even. Since n2 = h1(−1)h3(−1) . . . hk(−1) = 1
(see [4, p. 20]), we have x2 = h(χ)h(χ)n = h(χ)h(χw) = 1. Moreover, since
(∗) is satisfied, (q − 1)2 = (p − 1)2, so µp = µ and [x, φ] = 1. We claim that
x /∈ L(q). Indeed, if x ∈ L(q), then h(χ) ∈ H, and χ could be extended to
an Fq-character of Q; as 2λ1 − al ∈ 〈2a1, 2a2, . . . , 2al−1〉 we would then have
χ(al) ≡ χ(λ1)2 mod F2

q, and hence χ(al) ∈ F2
q, a contradiction. But then

X = 〈x, φ〉 is a complement for L(q) in AutL(q). �

Lemma 3.10. If L(q) = E7(q) and (∗) is satisfied, then there is a comple-
ment X of L(q) in AutL(q).

Proof. We may assume d = 2. Let µ be a generator of the 2-Sylow subgroup
of F∗q and define χ by χ(a1) = χ(a7) = µ, χ(a3) = µ−1, and χ(ai) = 1
otherwise. Let n = n1n3n7 and consider the element x = h(χ)n. Let w =
w1w3w7. Then χw(ai) = χ(aiw) = χ(−ai) if i ∈ {1, 3, 7}, χw(ai) = χ(aiw) =
χ(ai) = 1 if i ∈ {5, 6}, χw(a2) = χ(a2w) = χ(a1 +a2 +a3) = 1, and χw(a4) =
χ(a4w) = χ(a3 + a4 + a7) = 1. Since n2 = h1(−1)h3(−1)h7(−1) = 1 (see
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[4, p. 20]), we have x2 = h(χ)h(χ)n = h(χ)h(χw) = 1. Moreover, since (∗)
is satisfied, (q − 1)2 = (p − 1)2, so µp = µ and [x, φ] = 1. We claim that
x /∈ L(q). Indeed, if x ∈ L(q), then h(χ) ∈ H, and χ could be extended to an
Fq-character of Q; as 2λ1 = 3a1 + 4a2 + 5a3 + 6a4 + 4a5 + 2a6 + 3a7, we would
then have χ(λ1)2 = χ(3a1 + 5a3 + 3a7) = µ ∈ F2

q, a contradiction. But then
X = 〈x, φ〉 is a complement for L(q) in AutL(q). �

Lemma 3.11. If L(q) = E6(q) and (∗) is satisfied, then there is a comple-
ment X of L(q) in AutL(q).

Proof. We may assume d = 3. Consider the subgroup S = 〈Xai , X−ai |
1 ≤ i ≤ 5〉 of E6(q) and let T be the subgroup of AutE6(q) consisting of
the elements of the form sh(χ) with s ∈ S and χ(a6) = 1. Let Z = Z(S).
Then Z is cyclic of order 2, generated by z = ha1(−1)ha3(−1)ha5(−1). More-
over, S ∼= SL(6, q)/〈ω〉 with ω a primitive 3rd root of unity in Fq, S/Z ∼=
A5(q) ∼= PSL(6, q), T normalizes S and acts by conjugation on S/Z ∼= A5(q)
as the group of the inner-diagonal automorphism of A5(q). We have proved in
Proposition 1.11 that if (∗) is satisfied, then there exist g1 ∈ GL(6, q)\SL(6, q)
and g2 ∈ SL(6, q) such that (ιg2)2 = 1, [ιg2, φ] = 1, φ and ιg2 normalize 〈g1〉
and g3

1 ∈ Z(SL(6, q)). Thus there exist an element y ∈ S, centralized by φ
and such that yε has order 2 (where ε is the graph automorphism of L(q)),
and an element x = sh(χ) ∈ T such that x /∈ S, x3 ∈ Z, and 〈x〉 is normal-
ized by φ and by yε. We claim that X = 〈x2, φ, yε〉 is a complement for L(q)
in AutL(q). We only have to prove that x2 /∈ L(q). Since x /∈ S, we have
χ(a1)χ(a2)−1χ(a4)χ(a5)−1 /∈ F3

q . If x2 ∈ L(q), then h(χ2) ∈ H, and χ2 could
be extended to a Fq-character χ̄ of Q; as 3λ1 = 4a1+5a2+6a3+4a4+2a5+3a6,

we would then have (χ(a1)χ(a2)−1χ(a4)χ(a5)−1)2 ≡ χ̄(λ1)3 mod F3
q, a contra-

diction. �

Lemma 3.12. If L(q) = Dl(q) with l even and (∗) is satisfied, then there
is a complement X of L(q) in 〈L(q), Ĥ〉, which is normalized by the Frobenius
and the graph automorphisms.

Proof. We may assume d 6= 1. In this case Ĥ/H ∼= Z2 × Z2. Moreover,
if χ is an Fq-character of P with χ(ai) = 1 for i > 4 then h(χ) ∈ H only if
χ(ai)χ(aj) ∈ F2

q for each (i, j) ∈ {(1, 2, 4)}2. Let µ be a generator of the Sylow
2-subgroup of the multiplicative group of the field Fq . For i ∈ {1, 2, 4} let χi
be the Fq-character of P defined by χi(a3) = µ−1, χi(ai) = 1, and χi(aj) = µ
if j /∈ {i, 3}. Consider the elements x1 = h(χ1)n2n4, x2 = h(χ2)n1n4, and
x4 = h(χ4)n1n2, It can be easily verified that x1, x2, x4 generate a complement
X of L(q) in 〈L(q), Ĥ〉. Since (q − 1/2, 2,m) = 1, (q − 1)/(p − 1) is odd and
µφ = µ. This implies that X is centralized by the field automorphisms. Any
graph automorphism ε of Dl(q) arises from a permutation of the roots a1, a2

when l 6= 4, and from a permutation of the roots a1, a2, a4 when l = 4. This
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automorphism ε permutes in the same way the three generators x1, x2, x4 of
X, so X is normalized by the graph automorphisms. �

Lemma 3.13. If L(q) = Dl(q) with l odd and (∗) is satisfied, then there is
a complement X of L(q) in AutL(q).

Proof. We may assume d = (4, q − 1) 6= 1. We first deal with the case
d = 2. Consider the subgroup S = 〈Xai , X−ai | 1 ≤ i ≤ 3〉 of Dl(q) and let
T be the subgroup of AutDl(q) consisting of the elements of the form sh(χ)
with s ∈ S and χ(ai) = 1 for i ≥ 4. Then S ∼= A3(q) ∼= PSL(4, q) and T
acts by conjugation on S as the group of the inner-diagonal automorphism
of S. We have proved in Theorem 1.12 that if (∗) is satisfied, then there
exists a complement 〈x〉 of PSL(4, q) in PGL(4, q), normalized by φ and ι.
When we identify PSL(4, q) with A3(q), the automorphism ι can be written
as the product of an inner automorphism centralized by φ with the graph
automorphism. Note that the graph automorphism ε of Dl(q) centralizes the
root subgroup Xai , 3 ≤ i ≤ l, and acts on T as the graph automorphism of
A3(q). Thus there exist an element y ∈ S, centralized by φ and such that
yε has order 2, and an element x = sh(χ) ∈ T of order d modulo S, which
generate a subgroup normalized by yε and φ. We claim that X = 〈x, φ, yε〉
is a complement for L(q) in AutL(q). We only have to prove that x /∈ L(q).
Since x /∈ S, we have χ(a1)χ(a2) /∈ F2

q . If x ∈ L(q), then χ could be extended
to a Fq-character χ̄ of Q; as 4λ1 ∈ a1 + a2 + 2〈a1, a2, a3, a4, . . . , al〉, we would
then have χ(a1)χ(a2) ≡ χ̄(λ1)4 mod F2

q, which implies χ(a1)χ(a2) ∈ F2
q, a

contradiction.
Now assume d = (q − 1, 4) = 4. Let µ be a generator of the 2-Sylow sub-

group of F∗q and define χ by χ(a2) = µ, χ(a1) = χ(a3) = 1, χ(ai) = 1 if i
is even and i 6= 2, χ(ai) = −µ−1 if i is odd, i > 3 and i ≡ 1 mod 4, and
χ(ai) = −µ if i is odd, i > 3 and i ≡ 3 mod 4. Let n = n1n3n2n5n7 . . . nl
and consider the element x = h(χ)n. Since n4 = 1, we have x4 = (h(χ)n)4 =
h(χ)h(χ)nh(χ)n

2
h(χ)n

3
= h(χχwχw

2
χw

3
), where w = w1w3w2w5w7 . . . wl.

But ai(1 + w + w2 + w3) = 0 if i is odd or i = 2, a4(1 + w + w2 + w3) =
2(a1 + a2 + 2a3 + 2a4 + a5) and ai(1 + w + w2 + w3) = 2(ai−1 + 2ai +
ai+1) if i is even and i > 4. Hence χχwχw

2
χw

3
= 1 and x4 = 1. More-

over, xεx = h(χ)εnεh(χ)n = h(χ)εh5(−1)h7(−1) . . . hl(−1)h(χ)n = h(χ̄ψχw),
where χ̄(a1) = χ(a2), χ̄(a2) = χ(a1), and χ̄(ai) = χ(ai) otherwise, ψ(a4) =
−1, and ψ(ai) = 1 otherwise. Now,

χ̄ψχ(a1) = χ(a2)χ(a1w) = χ(a2)χ(−a1 − a2 − a3) = 1,

χ̄ψχ(a2) = χ(a1)χ(a2w) = χ(a3) = 1,

χ̄ψχ(a3) = χ(a3)χ(a3w) = χ(a1) = 1,

χ̄ψχ(a4) = χ(a4)χ(a4w) = −χ(a2 + a3 + a4 + a5) = 1,

χ̄ψχ(ai) = χ(ai)χ(aiw) = χ(ai)χ(−ai) = 1 if i is odd, i ≥ 5,
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χ̄ψχ(ai) = χ(ai)χ(aiw) = χ(ai)χ(ai−1 + ai + ai+1) = 1
if i is even, i ≥ 6.

Hence we conclude xε = x−1. Moreover, since (∗) is satisfied, we have (q −
1)2 = (p − 1)2, so µp = µ and [x, φ] = 1. We claim that x2 /∈ L(q). Since
x2 /∈ S, we have χ(a1)χ(a2) /∈ F2

q . If x2 ∈ L(q), then χ2 could be extended
to a Fq-character χ̄ of Q; as 4λ1 ∈ a1 + a2 + 2〈a1, a2, a3, a4, . . . , al〉, we would
then have µ2 = χ(a1)2χ(a2)2 ≡ χ̄(λ1)4 mod F4

q, a contradiction. But then
X = 〈x, φ, ε〉 is a complement for L(q) in AutL(q). �

4. Twisted groups of Lie type

We begin with a short description of the twisted groups. Let G = L(qs)
be a group of Lie type whose Dynkin diagram has a non trivial symmetry
ρ of order s. If ε is the graph automorphism corresponding to ρ, let us
suppose that L(qs) admits a non trivial field automorphism α such that the
automorphism σ = εα satisfies σs = 1. If such an automorphism σ does exist,
the twisted group sL(q) is defined as the subgroup of the group L(qs) which
is fixed elementwise by σ. The structure of sL(q) is very similar to that of a
Chevalley group: if Φ is the root-system fixed in L(qs), the automorphism σ
determines a partition of Φ = ∪Si. If R is an element of the partition, we
denote by XR the subgroup 〈Xr | r ∈ R〉 of L(qs), and by X1

R the subgroup
{x ∈ XR, | xσ = x} of sL(q). The group sL(q) is generated by the groups
X1
Si

, Φ = ∪Si; in fact, the subgroups X1
R play the role of the root-subgroups.

An element R of the partition which contains a simple root is said to be a
simple set. We have Aut(sL(q)) = 〈sL(q), Ĥ1, φ〉, where φ is the Frobenius
automorphism and Ĥ1 = NĤ(sL(q)). Note that h(χ) ∈ Ĥ1 if and only if
χ(rρ) = χ(r)α for any s ∈ Φ. Moreover, a diagonal automorphism h ∈ Ĥ1 is
inner if and only if h ∈ H1 = H ∩ sL(q). Let d be the order of Ĥ1/H1. Then
d = 1 except in the following cases:

sL(q) d
2Al(q) (l + 1, q + 1)
2Dl(q) (4, ql + 1)
2E6(q) (3, q + 1)

We will prove the following result:

Theorem 4.1. Suppose that q = pm and let sL(q) a twisted group of Lie
type.

(1) If sL(q) 6= 2Dl(q), then sL(q) has a complement in Aut sL(q) if and
only if

(
q+1
d , d,m

)
= 1.

(2) If l is odd, then 2Dl(q) has a complement in Aut 2Dl(q) for any choice
of q.
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(3) If l is even, then 2Dl(q) has a complement in Aut 2Dl(q) if and only
if d = 1.

We have already shown that this is true for 2Al(q) ∼= PSU(l + 1, q). When
d = 1, 〈φ〉 is a complement for sL(q) in AutsL(q), so we only have to deal
with the cases 2Dl(q) and 2E6(q).

Lemma 4.2. If l is odd, there exists a complement X of 2Dl(q) in
Aut 2Dl(q).

Proof. We may assume d 6= 1. First suppose d = (ql + 1, 4) = 2 and note
that this implies ( q+1

2 , 2,m) = 1. Consider the simple sets R1 = {a1, a2},
R2 = {−a1,−a2}, R3 = {a3}, R4 = {−a3}. Let S = 〈X1

R1
, X1

R2
, X1

R3
, X1

R4
〉 ≤

2Dl(q) and let T be the subgroup of Aut 2Dl(q) consisting of the elements
of the form sh(χ) with s ∈ S, h(χ) ∈ Ĥ1 and χ(ai) = 1 for i ≥ 4. Then
S ∼= 2A3(q) ∼= PSU(4, q) and T acts by conjugation on S as the group of
the inner-diagonal automorphism of S. Since ( q+1

2 , 2,m) = 1, by Theorem
2.9 PSU(4, q) has a complement in Aut(PSU(4, q)). Therefore there exist t =
s1h(χ) ∈ T and s2 ∈ S such that 〈t〉 is a complement for S in T normalized
by s2φ and |s2φ| = |φ|. We claim that X = 〈t, s2φ〉 is a complement for 2Dl(q)
in Aut 2Dl(q). We only have to prove that t /∈ 2Dl(q). Since t /∈ S, we have
χ(a1) /∈ (Fq2)2. If t ∈ 2Dl(q), then χ could be extended to an Fq2-character χ̄
of Q satisfying χ̄(λ2) = χ̄(λ1)q. As 2(λ1 − λ2) = a1 − a2, we would then have
χ̄(λ1)2(q−1) = χ(a1)q−1, which implies χ(a1) ∈ (Fq2)2, a contradiction.

Now assume d = (ql + 1, 4) = 4. Let µ be a generator of the 2-Sylow
subgroup of F∗q2 and define χ by χ(a1) = µ, χ(a2) = µq, χ(a3) = −1, and
χ(ai) = 1 otherwise. Let n = n3n1n2n5n7 . . . nl and consider the element x =
h(χ)n. Since [n, φ] = [n, ε] = 1, we have x ∈ 2Dl(q). Arguing as in the proof
of Lemma 3.13 it can be shown that x4 = 1. Now let y = n1n2φ. We claim
that xy = x−1. Indeed, xyx = (h(χ)n)yh(χ)n = h(χ)n1n2φnn1n2h(χ)n =
h(χφ)n1n2h3(−1)h5(−1) . . . hl(−1)h(χ)n = h((χφ)w1w2ψχn), where ψ(a1) =
ψ(a2) = −1, and ψ(ai) = 1 otherwise, and w = w3w1w2w5w7 . . . wl. Let
χ̄ = (χφ)w1w2ψχn. Then

χ̄(a1) = −χ(a1w1w2)pχ(a1w) = −χ(−a1)pχ(a2 + a3) = µq−p = 1,

χ̄(a2) = −χ(a2w1w2)pχ(a2w) = −χ(−a2)pχ(a1 + a3) = µ1−pq = 1,

χ̄(a3) = χ(a3w1w2)pχ(a3w) = χ(a1 + a2 + a3)pχ(−a1 − a2 − a3)

= µ(q+1)(p−1) = 1,

χ̄(a4) = χ(a4w1w2)pχ(a4w) = χ(a4)pχ(a1 + a2 + a3 + a4 + a5)

= −µq+1 = 1,

χ̄(ai) = χ(aiw1w2)pχ(aiw) = χ(ai)pχ(−ai) = 1 if i is odd, i ≥ 5,
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χ̄(ai) = χ(aiw1w2)pχ(aiw) = χ(ai)pχ(ai−1 + ai + ai+1) = 1
if i is even, i > 4.

We claim that 〈x, n1n2φ〉 is a complement for 2Dl(q) in Aut 2Dl(q). We only
have to prove that x2 /∈ 2Dl(q). If x2 ∈ 2Dl(q), then χ2 could be extended to
a Fq2-character χ̄ of Q satisfying χ̄(λ2) = χ̄(λ1)q. As 2(λ1 − λ2) = a1 − a2,
we have χ̄(λ1)2(q−1) = µ2(q−1). Moreover, from λ1 + λ2 = l−1

2 (a1 + a2) + (l−
2)a3 + · · ·+ al we deduce χ̄(λ1)q+1 ∈ (Fq2)2(q+1), so

µ
q2−1

2 = µ2(q−1) q+1
4 = χ̄(λ1)2(q−1) q+1

4 = 1,

which is again a contradiction. �

Lemma 4.3. If l is even and q is odd, then 2Dl(q) has no complement in
Aut 2Dl(q).

Proof. Assume that X is a complement of 2Dl(q) in Aut 2Dl(q). We may
assume X = 〈x, φy〉, where y ∈ 2Dl(q) and x is an inner-diagonal automor-
phism of 2Dl(q) of order 2, centralized by φy. We may write x = h(χ)z,
with z ∈ 2Dl(q), χ(a1) = λ, χ(a2) = λq, and χ(ai) = 1 for i ≥ 3 (where λ
is a generator of F∗q2). The inner diagonal automorphism group 〈2Dl(q), Ĥ1〉
can be viewed as a subgroup of 〈Dl(q2), Ĥ〉. We claim that h(χ) /∈ H. In-
deed, if h(χ) ∈ H, then χ could be extended to an Fq2-character of Q; as
2λ1 ∈ a1 + 〈a1 + a2, a3, . . . , al〉 we would then have λ = χ(a1) ∈ (Fq2)2, a
contradiction. This implies that x /∈ Dl(q2). By Lang’s Theorem there exists
g ∈ Dl(q2) with (φy)g = φ. In particular, xg ∈ 〈Dl(q2), Ĥ〉 \ Dl(q2) and is
centralized by φ. Using the Bruhat Decomposition in Dl(q2) we may write xg

in the form xg = u1h(χ1)nwu with u1 ∈ U and u ∈ Uw. Then

xg = (xg)φ = uφ1h(χ1)φnφwu
φ = uφ1h(χ1)φnwuφ.

Note that uφ1 ∈ U and uφ ∈ Uw, so, by the uniqueness of the representation of
xg, we deduce h(χ1)φ = h(χ1), and this implies χp1 = χ1. Since xg /∈ Dl(q2), we
have h(χ1) ∈ Ĥ \H, which implies that there exists 1 ≤ i ≤ l with χ(ai) = λs,
for an odd integer s. Therefore sp ≡ smod q2− 1. Hence (q2− 1)2 ≤ (p− 1)2,
but this is impossible. �

Lemma 4.4. If 2E6(q) has a complement in Aut 2E6(q), then
(
q+1
d , d,m

)
= 1.

Proof. In this case d = (3, q + 1) and
(
q+1
d , d,m

)
= 1 is equivalent to the

condition that either d = 1 or (3,m) = 1. Suppose that d 6= 1. Assume that
X is a complement of 2E6(q) in Aut 2E6(q). We may assume X = 〈x, φy〉,
where y ∈ 2E6(q) and x is an inner-diagonal automorphism of 2E6(q) of order
3, centralized by (φy)2. We may write x = χ(h)z, with z ∈ 2E6(q), χ(a1) = λ,
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χ(a5) = λq, and χ(ai) = 1 otherwise (where λ is a generator of F∗q2). The inner
diagonal automorphism group 〈2E6(q), Ĥ1〉 can be viewed as a subgroup of
〈E6(q2), Ĥ〉. We claim that h(χ) /∈ H. Indeed, if h(χ) ∈ H, then χ could be
extended to an Fq2-character of Q; as 3λ1 = 4a1+5a2+6a3+4a4+2a5+3a6, we
would then have χ(λ1)3 = λ4+2q, which implies λ ∈ (Fq2)3, a contradiction.
This implies that x /∈ E6(q2). By Lang’s Theorem there exists g ∈ E6(q2)
with (φy)g = φ. In particular, xg ∈ 〈E6(q2), Ĥ〉 \E6(q2) and is centralized by
φ2. Using the Bruhat Decomposition in E6(q2) we may write xg in the form
xg = u1h(χ1)nwu with u1 ∈ U and u ∈ Uw. Arguing as in the previous lemma
we deduce that h(χ1)φ

2
= h(χ1), and this implies χp

2

1 = χ1. Since xg /∈ E6(q2),
we have h(χ1) ∈ Ĥ \ H, which implies that there exists 1 ≤ i ≤ 6 with
χ(ai) = λs for some integer s not divisible by 3. Therefore sp2 ≡ smod q2−1.
Hence (q2−1)3 ≤ (p2−1)3, which implies (m, 3) = 1 (for otherwise (q2−1)3 =
(q + 1)3 = (p+ 1)3(1− p+ · · ·+ pm−1)3 > (p+ 1)3 = (p2 − 1)3). �

Lemma 4.5. If
(
q+1
d , d,m

)
= 1, then there is a complement of 2E6(q) in

Aut 2E6(q).

Proof. We may assume d = 3. Consider the simple sets R1 = {a1, a5},
R2 = {−a1,−a5}, R3 = {a2, a4}, R4 = {−a2,−a4}, R5 = {a3}, R6 =
{−a3}. Let S = 〈X1

Ri
| 1 ≤ i ≤ 6〉 ≤ 2E6(q) and let T be the subgroup

of Aut 2E6(q) consisting of the elements of form sh(χ) with s ∈ S, h(χ) ∈ Ĥ1

and χ(a6) = 1. Let Z = Z(S). Then Z is cyclic of order 2, generated
by z = ha1(−1)ha3(−1)ha5(−1). Moreover, S ∼= SU(6, q)/〈ω〉 with ω a
primitive 3rd root of unity in Fq2 , S/Z ∼= 2A5(q) ∼= PSU(6, q), T normal-
izes S and acts by conjugation on S/Z ∼= A5(q) as the group of the inner-
diagonal automorphism of A5(q). We have proved in Proposition 2.8 that if(
q+1
d , d,m

)
= 1, then there exist g1 ∈ U(6, q) \ SU(6, q) and g2 ∈ SU(6, q)

such that |φg2| = |φ| = 2m, φg2 normalizes 〈g1〉 and g3
1 ∈ Z(SL(6, q)).

Thus there exist an element y ∈ S and an element x = sh(χ) ∈ T such
that x /∈ S, x3 ∈ Z, 〈x〉 is normalized by φy and |φy| = |φ| = 2m. We
claim that X = 〈x2, φy〉 is a complement for 2E6(q) in Aut 2E6(q). We only
have to prove that x2 /∈ L(q). Since x /∈ S, we have χ(a1)χ(a2)−1 /∈ F3

q . If
x2 ∈ L(q), then h(χ2) ∈ Ĥ, and χ2 could be extended to an Fq-character
χ̄ of Q; as 3λ1 = 4a1 + 5a2 + 6a3 + 4a4 + 2a5 + 3a6, we would then have
(χ2(a1)χ2(a2)−1)q−1 ≡ χ̄(λ1)3 mod F3

q, a contradiction. �
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