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VARIATIONALLY COMPLETE ACTIONS ON
NONNEGATIVELY CURVED MANIFOLDS

ALEXANDER LYTCHAK AND GUDLAUGUR THORBERGSSON

Abstract. As an application of a more general result on singular Rie-
mannian foliations we prove that variationally complete actions on non-
negatively curved manifolds are hyperpolar.

1. Introduction

We shall prove the following theorem.

Theorem A. A variationally complete action on a complete Riemannian
manifold with nonnegative sectional curvature is hyperpolar.

The concepts used in the announcements of the two theorems stated in the
introduction will be defined in Section 2.

Theorem A was proved in [6] for actions on Euclidean spaces and in [9]
for actions on compact symmetric spaces. In the trivial case when the group
acting only consists of the identity, Theorem A reduces to the well known
fact that a complete Riemannian manifold without conjugate points and with
nonnegative sectional curvature is flat. The proof below can be seen as a
generalization of the proof of this case.

The proof of Theorem A uses very little about group actions. In Section 3
we will prove the following theorem that immediately implies Theorem A.

Theorem B. A singular Riemannian foliation without horizontal conju-
gate points in a complete Riemannian manifold with nonnegative sectional
curvature admits flat sections.

We would like to thank Burkhard Wilking for pointing out to us his preprint
[14], which contains the essential tools used to prove the above theorems.

Received June 23, 2005; received in final form February 13, 2006.
2000 Mathematics Subject Classification. 53C20.
The second author was supported in part by the DFG-Schwerpunkt Globale Differen-

tialgeometrie and by the FaMAF of the Universidad Nacional de Córdoba, Argentina.
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2. Isometric actions and singular Riemannian foliations

Variationally complete actions were first introduced by Bott in [2] and later
in a slightly different way in [3]. We will use the definition in [2].

Let M be a complete Riemannian manifold and G a connected Lie group
acting on M by isometries. Let N be an orbit of the action and let γ be a
geodesic that is orthogonal to N at time t0. An N -Jacobi field along γ is a
Jacobi field that is the variational vector field of a variation through geodesics
all meeting N orthogonally at time t0. The action of G on M is said to
be variationally complete if the following holds for all orbits N of G and all
geodesics γ meeting N orthogonally: Any N -Jacobi field J along γ that is
tangent to some orbit of G different from N is the restriction to γ of a Killing
field induced by the action of G.

Hyperpolar actions were introduced by Conlon in [5] using a terminology
that is different from the one that we will adopt here.

Again let M be a complete Riemannian manifold and G a connected Lie
group acting on M by isometries. Then the action of G on M is said to be
polar if there is a complete submanifold Σ in M meeting all orbits in such
a way that all intersections between Σ and an orbit are orthogonal. The
submanifold Σ is called a section. It follows that a section is totally geodesic
and that its dimension is equal to the cohomogeneity of the action. If there
is a flat section, one says that the action is hyperpolar. Note that we assume
neither that Σ is properly embedded nor that it is free of self-intersections.

Conlon proved in [5] that hyperpolar actions are variationally complete.
The converse is not true. A trivial example of a variationally complete action
that is not hyperpolar is the action of G = {e} on a Riemannian manifold
without conjugate points which is not flat.

We will now introduce singular Riemannian foliations and show how the
concepts of variationally complete and hyperpolar actions can be generalized.

Following [11, p. 189], we say that a partition F of a Riemannian manifold
M into disjoint connected submanifolds, called leaves, is a singular Riemann-
ian foliation if it satisfies the following two conditions.

(1) The tangent space of the leaf through p is equal to {Xp |X ∈ ΞF} for
all p in M , where ΞF denotes the space of vector fields X on M with
the property that Xp lies in the tangent space of the leaf through p
for all p in M .

(2) A geodesic that hits one leaf perpendicularly remains perpendicular
to all leaves it passes through.

A partition F of M that only satisfies the condition in (2) is called a
transnormal system.

Now let G be a connected Lie group acting on a Riemannian manifold M
by isometries and let F be the partition of M into the orbits of G. Then



VARIATIONALLY COMPLETE ACTIONS 607

it is not difficult to show that F is a singular Riemannian foliation; see [11,
p. 188–189].

We now generalize the notion of variationally complete actions to singular
Riemannian foliations.

Let M be a Riemannian manifold with a singular Riemannian foliation F.
We say that F is without horizontal conjugate points if the following is true
for all leaves N and all geodesics γ meeting N perpendicularly. Any N -Jacobi
field J along γ that is tangent to a leaf of F different from N is tangent to
all leaves γ passes through.

The following proposition shows that Theorem A is a consequence of The-
orem B.

PROPOSITION 2.1. Let G be a Lie group acting on a complete Rie-
mannian manifold by isometries and let F be the singular Riemannian fo-
liation on M induced by the action. Then the action of G is variationally
complete if and only if F is without horizontal conjugate points.

Proof. Let N be an orbit of G that a geodesic γ meets perpendicularly,
and let J be an N -Jacobi field that is tangent to an orbit different from N .

We first assume that the action is variationally complete. Then it is clear
that F does not have horizontal conjugate points since J is the restriction to
γ of a Killing field and hence tangent to all orbits that γ meets.

Conversely, assume that F is without horizontal conjugate points. Then we
know that J is tangent to all orbits. We have to prove that J is the restriction
of a Killing field induced by the action. Let γ(t0) be a point on γ that is not
a focal point of N and let J̃ be a restriction of a Killing field to γ with the
property that J̃(t0) = J(t0). Then J̃ is an N -Jacobi field along γ, and it
follows that the difference S = J − J̃ is an N -Jacobi field which vanishes in
t0. This implies that S vanishes identically since γ(t0) is not a focal point of
N and it follows that J is the restriction of a Killing field to γ. �

We will say that a singular Riemannian foliation F admits sections (see
[1] and [13]) if for every p in M there is a complete submanifold Σ in M
containing p and meeting all leaves in F in such a way that all intersections
between Σ and a leaf are orthogonal. It is clear that a hyperpolar group action
gives rise to a singular Riemannian foliation admitting flat sections. It is also
clear from the terminology that the submanifolds Σ will also here be called
sections. It follows that the dimension of a section is equal to the minimal
codimesnion of a leaf in F .

A leaf in a singular Riemannian foliation F is said to be singular if its
dimension is not maximal in F , and regular otherwise. A point in M is said
to be singular if it lies in a singular leaf, and regular otherwise. The set Mr

of regular points is open, connected and dense; see [11, p. 197].
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It is clear that the set Σr of regular points in a section Σ is open and one
can prove that it is also dense. As a consequence it follows that Σ is totally
geodesic. We omit the proofs since these facts will not be used here.

The following theorem is a slight generalization of the theorem of Conlon
in [5].

THEOREM 2.2. Let F be a singular Riemannian foliation in a complete
Riemannian manifold admitting flat sections. Then F is without horizontal
conjugate points.

We omit the proof of Theorem 2.2 since it is easy. Notice that we could as
well have assumed in the theorem that F admits sections without conjugate
points.

We will now discuss some results that will be used in the proof of Theo-
rem B.

For p in Mr we let Hp denote the normal space at p of the leaf through
p. Note that the dimension of Hp does not depend on p in Mr since we
are restricting ourselves to the set of regular points. It is also clear that Hp

depends differentiably on p in Mr. The collection of subspaces {Hp | p ∈ Mr}
is therefore a distribution over Mr, which we denote by H. The tangent
space of the orbit through a point p in Mr will be denoted by Vp and the
corresponding distribution over Mr by V. We will refer to H and V as the
horizontal and vertical distributions of the singular foliation F .

If the singular Riemannian foliation F admits sections, then the distribu-
tion H is clearly integrable and the integral manifolds are the intersections
of the sections of F with Mr. We will prove in Section 3 that the horizontal
distribution of a singular Riemannian foliation without horizontal conjugate
points is integrable and then extend the integral manifolds through the sin-
gular points to complete sections.

O’Neill associated two tensors to Riemannian submersions in [12], one of
which will turn out to be very convenient for us in proving the integrability
of the horizontal distribution in the proof of Theorem B. In our case the
Riemannian submersion in question will be the canonical projection of Mr

onto the space Mr/F of leaves endowed with the quotient metric.
We now define the O’Neill tensor that is relevant for the proof. Let X be

a tangent vector in TMr. Then X can be written as an orthogonal sum of a
vector Xv in V and a vector Xh in H. We will call Xv the vertical and Xh

the horizontal component of X. Now let X and Y be vector fields (locally
defined) on Mr. Then we set

AXY = (∇XhY h)v + (∇XhY v)h.

It is easy to see that A is a tensor of type (1, 2). It is one of the two funda-
mental tensors that O’Neill associated to a Riemannian submersion. We list
some properties of the O’Neill tensor A from [12].
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(1) AX(H) ⊂ V and AX(V) ⊂ H for all X.
(2) AX is a skew symmetric operator on the tangent spaces of Mr.
(3) If X and Y are horizontal vector fields, then

AXY =
1
2
[X, Y ]v.

Property (3) implies that H is integrable if and only if AX(H) = 0 for
horizontal X. It follows from (1) and (2) that AX(H) = 0 if and only if
AX(V) = 0.

3. The proof of Theorem B

We will assume in this section that F is a singular Riemannian foliation of
M without horizontal conjugate points. Our first goal will be to show that
the O’Neill tensor AX vanishes on Mr. For the proof we will need the tensor
Aγ̇(t) along a geodesic γ that passes through Mr. If γ(t) is singular, then
Aγ̇(t) is not yet defined. This difficulty was overcome by Wilking in [14] in a
more general setting.

Let γ be a complete geodesic in M that is orthogonal to one and hence
to all leaves of F it meets. We will denote the leaf through γ(t) by Nt and
assume that N0 is regular. We let J denote the set of all Nt-Jacobi fields
along γ for all t. Let K denote the subset of J consisting of Jacobi fields J
with the property that J(t) is tangent to Nt for all t.

PROPOSITION 3.1. We have

Tγ(t)Nt = {J(t) |J ∈ K}
for all t.

Proof. In the following let Ut denote a sufficiently small neighborhood of
γ(t) in Nt. Let v be a tangent vector in Tγ(t0)Nt0 and let α(s) in Ut0 be a curve
passing through γ(0) tangent to v. Let Ut1 for t1 > t0 be within a tubular
neighborhood of Ut0 and let π : Ut1 → Ut0 be the orthogonal projection. Let
β(s) be a curve in Ut1 that π projects onto α(s). Let γs be the variation of γ
defined by letting γs|[t0,t1] be the shortest connection between α(s) and β(s)
with ||γ̇s|| = ||γ̇||. Let J be the corresponding Jacobi field. Clearly v = J(t0)
and J ∈ J . The Jacobi field J is an Nt0-Jacobi field that is also tangent to
the leaf Nt1 . Hence J is in K and the claim in the proposition follows. �

If γ(t) lies in Mr, then the vertical space Vγ(t) was defined above as the
tangent space Tγ(t)Nt. We set Vγ(t) = Vt. By Proposition 3.1 we have

Vt = {J(t) | J ∈ K}
Following Wilking [14] we now extend the definition of Vt to all real numbers
t by setting

Vt = {J(t) | J ∈ K} ⊕ {J ′(t) | J ∈ K, J(t) = 0}.
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PROPOSITION 3.2. The dimension of Vt does not depend on t and Vt =
Tγ(t)Nt when γ(t) is regular. In particular, dimVt = dimK. Furthermore,
the bundle Vγ over R with fibers Vt is smooth.

Proof. We only make a few remarks on the proof.
The space {J ′(t0) | J ∈ K, J(t0) = 0} is trivial if γ(t0) is regular. To see

this assume that there is a J ∈ K such that J(t0) = 0, J ′(t0) 6= 0 and γ(t0) is
regular. Then γ(t0) is a focal point along γ of all leaves Nt. This leads to a
contradiction since Nt0 is regular.

In the proof of the smoothness of the bundle Vγ the following observation is
essential. If J(t) is a smooth vector field along γ that vanishes in t0, then the
vector field I defined by setting I(t) = 1

t−t0
J(t) if t 6= t0 and I(t0) = J ′(t0)

is smooth. (Assume that u is a Ck-function defined on a neighborhood I
of t0 satisfying u(t0) = 0. Then there is a Ck−1-function v on I such that
u(t) = (t− t0)v(t) for all t ∈ I.) �

We let Ht denote the orthogonal complement of Vt in Tγ(t)M for every t in
R and denote the corresponding bundle by Hγ . We extend the definition of
vertical and horizontal components to the splitting Tγ(t)M = Vt ⊕Ht for all
t and continue to denote the components of X by Xv and Xh, respectively.

If γ(t) lies in Mr we set At = Aγ̇(t), where A is the O’Neill tensor defined
in Section 2. We now extend the definition of At to all t. Let X(t) be a vector
field along γ. We set

At(X(t)) = ((Xh)′(t))v + ((Xv)′(t))h.

This definition clearly agrees with the one above if γ(t) is regular. The tensor
At is clearly skew symmetric for all t.

Now let J be a Jacobi field in J and set

Y = Jh.

If J is in K, then Y vanishes identically. If Y vanishes at two different regular
points, then it vanishes everywhere and J belongs to K by the definition of
singular Riemannian foliations without horizontal conjugate points. (Notice
that if Y vanishes at two different points, one of which, say t0, is singular,
then it does not necessarily follow that J(t0) lies in Tγ(t0)Nt0 , only that it is
contained in the larger space Vt0 .)

The strategy of the proof will be the following. If At is not identically
zero, then there is a Jacobi field J in J such that the corresponding field Y
does not vanish identically although it vanishes at two different regular points,
contradicting that F does not have horizontal conjugate points.

We will need a differential equation that a vector field of the type Y = Jh

satisfies. Such an equation is derived in [14]. If we let ∇h
t denote the induced

connection in Hγ , then the equation is

(∇h
t )2Y (t) + (R(Y (t), γ̇(t))γ̇(t))h − 3A2

t Y (t) = 0.
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This formula can be best understood by comparing it with the O’Neill formula
for the sectional curvature of the quotient space M/G. Let X and Y form an
orthonormal basis of the two-plane σ in Hp, where p is a regular point. We
set σ∗ = dπ(σ), where π : M → M/G is the canonical projection. Then by
[12, p. 465] the sectional curvature of σ∗ is

〈(R(Y, X)X)h − 3A2
XY, Y 〉 = 〈R(Y, X)X, Y 〉+ 3‖AXY ‖2,

where we have used the skew symmetry of AX . We now define a differentiable
family R(t) of endomorphisms of Rk that are self-adjoint with respect to
the canonical inner product on Rk. Let X1, . . . , Xk be vector fields in Ht

along γ which are parallel with respect to ∇h
t and form an orthonormal basis

of Hγ(t) together with γ̇(t) for every t. Now let v(t) = (v1(t), . . . , vk(t))
be a curve in Rk. We associate to v(t) the horizontal vector field Φv(t) =
v1(t)X1(t) + · · · + vk(t)Xk(t) along γ. We get a map Φ which is clearly a
bijection between curves in Rk and horizontal vector fields along γ. Now we
set

R(t)v(t) = Φ−1[(R(Y (t), γ̇(t))γ̇(t))h − 3A2
t Y (t)],

where we have set Y (t) = Φv(t). It is clear that R(t) is self-adjoint and that

〈R(t)v(t), v(t)〉 ≥ 0

for all t and all v. The differential equation

v′′(t) +R(t)v(t) = 0

is an example of a Morse-Sturm system; see [7] and [8]. Associated to the
Morse-Sturm system is the index form

Ia,b(v, w) =
∫ b

a

〈v′, w′〉 − 〈R(t)v, w〉 dt,

where we assume v and w to belong to H1
0 ([a, b];Rk), the space of absolutely

continuous paths with square integrable derivative and vanishing in a and b.
The idea is now to show that the index of Ia,b is positive on an appropriate

interval [a, b] if At does not vanish identically, and then use that to arrive at the
contradiction that there is a Jacobi field J in J such that the corresponding
vector field Y vanishes in two different regular points without J belonging
to K.

Now assume that there is a t0 such that At0 does not vanish. Then there
is a vector v0 in Rk such that 〈R(t0)v0, v0〉 > 0 and

C =
∫ t0+1

t0−1

〈R(t)v0, v0〉 dt > 0.

Now there is a possibly quite large number N > 0 and a smooth real-valued
function φ on R that vanishes outside of [t0 −N, t0 + N ], is identically equal
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to 1 on [t0 − 1, t0 + 1] and satisfies∫ t0+N

t0−N

φ′(t)2 dt < C.

Set v(t) = φ(t)v0. Then clearly

Ia,b(v, v) < 0,

where a = t0−N and b = t0 +N , and we have proved that Ia,b has a positive
index.

Now the Morse-Sturm Oscillation Theorem (see [7] and [8]), which is an
analogue of the Morse Index Theorem, tells us that there is a nonvanishing
solution v(t) of

v′′(t) +R(t)v(t) = 0
such that v(a) = 0 and v(c) = 0 for some c in the open interval (a, b). We let
Y denote the H-valued vector field Y = Φv(t) along γ. Then the nonvanishing
vector field Y satisfies the differential equation

(∇h
t )2Y (t) + (R(Y (t), γ̇(t))γ̇(t))h − 3A2

t Y (t) = 0

and vanishes in a and c. We can assume that both γ(a) and γ(c) are regular
after moving a slightly if necessary.

We will now show that there is a Jacobi field J in J such that Jh = Y .
We consider the leaf Na through γ(a). There is an Na-Jacobi field J along
γ such that J(a) = 0 and J ′(a) = ∇h

t Y (a). Set Ŷ = Jh. Then Y and Ŷ
are both solutions of the same second order differential equation and satisfy
Y (a) = Ŷ (0) as well as ∇h

t Y (a) = ∇h
t Ŷ (a). By the uniqueness of such

solutions we have that Y = Ŷ . This finishes the proof that At vanishes
identically and hence that the horizontal distribution H is integrable over Mr.

Before we continue we remark that the arguments we have been going
through can clearly be used to prove the following proposition.

PROPOSITION 3.3. A complete Riemannian manifold without conju-
gate points and with nonnegative curvature is flat.

We now need to extend the integral manifolds of H through the singular
points and show that the singular Riemannian foliation F admits sections. If
F is induced by an isometric action, then it is proved in Appendix A in [10]
that this can be done. There is also a similar result in [2] for general singu-
lar Riemannian foliations, but we cannot apply it because of a compactness
assumption which is not necessarily satisfied here.

We continue to assume that F is a singular Riemannian foliation without
horizontal conjugate points. We will also use the same notation as above.
In particular, we let γ denote a geodesic orthogonal to the leaves it meets,
we denote its horizontal bundle by Hγ , and so on. We assume that γ passes
through some regular points. Then we have the following proposition.
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PROPOSITION 3.4.
(i) A point γ(t0) is a focal point of Nt along γ if and only if Nt0 is a

singular leaf. In particular, the singular points on γ are isolated.
(ii) The induced covariant connection ∇h

t in Hγ coincides with the covari-
ant derivative ∇t along γ.

(iii) Let J be a Jacobi field along γ such that J(t0) and J ′(t0) lie in Ht0 .
Then J(t) ∈ Ht for all t.

(iv) The integral manifolds of the horizontal distribution H over Mr are
totally geodesic.

Proof. (i) Let J be an N -Jacobi field that vanishes in a point t0. Then J
is tangent to Nt0 and it follows from the definition of singular Riemannian
foliations without horizontal conjugate points that J is tangent to all leaves
γ passes through, i.e., J ∈ K. If γ(t0) is a regular point, then J ′(t0) = 0; see
the proof of Proposition 3.2. It follows that γ(t0) is a singular point if it is a
focal point.

Conversely assume that γ(t0) is a singular point. Then dim Nt0 < dimK;
see Proposition 3.2. Hence there is a nonvanishing Jacobi field J in K with
J(t0) = 0. It follows that γ(t0) is a focal point of Nt.

The focal points of Nt along γ are isolated as a consequence of the Morse
Index Theorem. It follows that the singular points are isolated along γ.

(ii) Let X be a vector field along γ with values in Hγ . Since At = 0 we
have that X ′(t)v = 0 for all t by the definition of At. This proves the claim.

(iii) It follows from (ii) that there are parallel vector fields X1, . . . , Xk along
γ with values in Hγ forming an orthonormal base of Ht for every t. It also
follows from (ii) that R(Xi, γ̇)γ̇ is a linear combination of the X1, . . . , Xk.
This implies that we can restrict the Jacobi equation along γ to vector fields
with values in Hγ . This implies the claim.

(iv) This follows from (ii). �

We are now in a position to finish the proof of Theorem B.
Let U ⊂ Mr be a connected integral manifold of H and let p ∈ U . We set

f = expp |Hp : Hp → M.

We will prove that f is a complete section of F , which is then clearly an
extension of U since U is totally geodesic by Proposition 3.4 (iv).

We first show that f is an immersion. We need to show that

(d expp)vw 6= 0

for all nonvanishing v and w in Hp. We use that J(t) = (d expp)tvtw is a
Jacobi field along the horizontal geodesic γ(t) = expp tv satisfying J(0) = 0
and J ′(0) = w in Hp. It follows from Proposition 3.4 (iii) that J(t) lies in
Ht for all t. Now it follows that J(t) 6= 0 for t 6= 0 since F does not have
horizontal conjugate points. This implies that f is an immersion.
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We now show that all intersections between f and leaves are perpendicular
or equivalently that

Tv = {(d expp)vw|w ∈ Hp}

is perpendicular to the leaf through q = expp v for all v in Hp. The arguments
that we used to prove that f is an immersion show that Tv = H1, where H1

is the horizontal space at γ(1) along the geodesic γ(t) = expp tv. The space
H1 is contained in the normal space of the leaf through q. Hence it follows
that all intersections between f and leaves are perpendicular.

We finally have to show that the image of f meets all leaves of F . The
reader should keep in mind that we do not assume that the leaves of F
are properly embedded, an assumption that would considerably simplify the
proof.

The discussion on p. 192 in [11] implies the following facts that we will use
below:

There is for every q in M an ε > 0 such that the following two properties
are satisfied.

(i) The distance function between a given point r in the open ball Bε(q)
and a connected component (Nr ∩ B3ε(q))◦ of Nr ∩ B3ε(q) takes on
its minimum for every leaf Nr through a point r in Bε(q).

(ii) The distance from r̂ to (N ∩ B3ε(q))◦ is constant as r̂ moves in the
connected component (Nr∩B3ε(q))◦ of Nr∩B3ε(q) containing r, where
r is an arbitrary point in Bε(q).

Let q be a point in M and let ε > 0 be as above. We assume that the
image of f contains a point in Bε(q). Our goal is to show that all leaves
that meet Bε(q) also meet the image of f . It follows from Proposition 3.4
(i) that there is a regular point r in Bε(q) ∩ image(f). Let s be an arbitrary
point in Bε(q) and let r̂ be a point in (Nr ∩ B3ε(q))◦ with minimal distance
to s. Set ρ = d(r̂, s) = d(s, (Nr ∩ B3ε(q))◦). Then by (ii) above there is a
point ŝ ∈ (Ns ∩B3ε(q))◦ such that the distance between r and (Ns ∩B3ε(q))◦

is ρ = d(r, ŝ). Let γ : R → M be a geodesic such that γ|[0,1] is a shortest
connection between r and ŝ and hence also between r and (Ns ∩ B3ε(q))◦.
Then γ meets Ns perpendicularly. It follows that γ meets all leaves it passes
through perpendicularly and that γ′(0) ∈ Hr since r is a regular point. The
geodesic γ lies in the image of f since its tangent space at r coincides with
Hr and f is totally geodesic. This means that f hits the leaf Ns and we have
proved that all leaves that meet Bε(q) are intersected by the image of f .

What we have just proved implies that the union U over the leaves that
the image of f meets is open. The same argument can be used to prove that
the complement of U is open since a ball Bε(q) as in (i) and (ii) is contained
in U if it meets it. It follows that M = U .

This finishes the proof of Theorem B. �
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ertal 86 - 90, 50931 Köln, Germany
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