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ON PROJECTIVE VARIETIES OF DIMENSION n+ k

COVERED BY k-SPACES

E. MEZZETTI AND O. TOMMASI

Abstract. We study families of linear spaces in projective space whose
union is a proper subvariety X of the expected dimension. We establish

relations between configurations of focal points and the existence or non-
existence of a fixed tangent space to X along a general element of the
family. We apply our results to the classification of ruled 3-dimensional
varieties.

0. Introduction

Since the publication of [GH] there has been a renewal of interest in the
study of differential geometric properties of algebraic varieties. This study
has its origins in classical works, such as several papers by C. Segre (in par-
ticular, [S1] and [S2]). There, topics such as the second fundamental form of
projective varieties, varieties with degenerate Gauss mapping, and in general
varieties ruled by linear subspaces, are introduced and discussed. Recently,
contributions to these topics have been made by Akivis, Goldberg, Landsberg,
and Rogora (see [AG], [L], [AGL], [R]). These papers highlight the importance
of the study of the focal scheme.

Foci are a classical tool for studying families of linear spaces (see [S2]),
which in modern algebraic geometry has been reformulated by Ciliberto and
Sernesi [CS] by means of the focal diagram and has been applied to the study
of congruences of lines (see [ABT], [Arr], [D]).

In this paper we will deal with families of linear spaces that generate proper
subvarieties of the expected dimension in the projective space. For instance,
consider a family B of k-spaces in the projective space PN , the variety X
ruled by B, and assume that dimB = n and dimX = n + k < N . Then
we will study the relationship between the existence and the properties of the
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focal scheme on a general space of B, and the existence of spaces of dimension
≤ n+ k tangent to X along a general space of B. A complete description of
this relationship for a family of lines is given in the following theorem:

Theorem 0.1. Let B ⊂ G(1, N) be a family of lines in PN of dimension
n, n ≤ N−2. Suppose that the union of the lines belonging to B is an algebraic
variety X of dimension n + 1. Then, for all k in the range 0 ≤ k ≤ n, the
following conditions are equivalent:

(i) The focal locus on the general element r ∈ B has length k.
(ii) X has a fixed tangent Pk+1 along every general r ∈ B.

There is an analogue of Theorem 0.1 for varieties with degenerate Gauss
mapping:

Theorem 0.2. Let B be a family of linear subspaces of PN of dimension
k, and denote by n the dimension of B. Suppose that the union of the k-planes
of the family B is an algebraic variety X ⊂ PN of dimension n+k < N . Then
the following conditions are equivalent:

(i) The tangent space to X is constant along general elements of B.
(ii) For all Λ belonging to an open set of B the focal subvariety of B is a

hypersurface of Λ of degree n; otherwise all points of Λ are focal.

We will apply Theorem 0.1 and Theorem 0.2 to the study of ruled varieties
of dimension 3. Our results comprise and complete results proved in earlier
papers, such as [GH], [R], [AGL]. It should be noted, however, that the result
in [GH] about varieties with degenerate Gauss mapping is not precisely stated,
and that [R] considers only necessary conditions and not sufficient ones.

In the following two theorems we give the classification of threefolds with
a tangent 2-plane constant along lines, and that of threefolds with degenerate
Gauss mapping.

Theorem 0.3. Let B be a surface in the Grassmannian G(1, N), with
N ≥ 4. Suppose that the union of the lines belonging to B is an algebraic
variety X of dimension 3, and that the Gauss image of X has dimension 3.
Then, along a general line of B there is a fixed tangent 2-plane not contained
in X if and only if X is one of the following:

(1) a union of lines, all tangent to a surface S ⊂ PN , whose direction
at the tangency point is not in general a conjugate direction for the
second fundamental form of S;

(2) the union of a one-dimensional family of 2-dimensional cones, whose
vertices sweep a curve.

Theorem 0.4. Let X be a variety of dimension 3 with degenerate Gauss
mapping. Then one of the following cases holds:
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(1) The Gauss image of X has dimension 2, and X is one of the following:
(a) a union of lines bitangent to a surface;
(b) a union of lines tangent to two surfaces;
(c) a union of lines tangent to a surface, and meeting a fixed curve;
(d) the union of asymptotic tangent lines of a surface;
(e) the join of two curves;
(f) the variety of secant lines of a curve;
(g) a band (see Definition 2.4);
(h) the cone over a surface, with a point as vertex.

(2) The Gauss image of X has dimension 1, and X is built up by a com-
posite construction of cones and varieties ruled by osculating spaces
over some curve.

All of these cases are possible, and each of them always represents a class of
varieties with degenerate Gauss mapping.

The plan of the paper is as follows. In Section 1 we introduce the notion of
foci for a family of linear spaces and we give an interpretation of foci in terms
of tangent spaces to the Grassmannian.

In Section 2 we prove the two classification theorems for ruled varieties
of dimension 3. We prove, moreover, that all surfaces S appearing in cases
(a)–(d) of Theorem 0.3 are not general, but must satisfy the condition that
the osculating space to S at a general point has dimension at most 4.

In Section 3 we prove Theorem 0.1 and establish the properties of the focal
locus in the case of varieties ruled by lines. In the final section we consider
varieties ruled by subspaces of higher dimension. We give an example showing
that Theorem 0.1 cannot be extended to a family of subspaces of dimension ≥
2. However, Theorem 0.2 shows that a description is still possible for varieties
with degenerate Gauss mapping. This result has already been established by
Akivis and Goldberg [AG] using differential geometry techniques; we give now
an algebraic proof.

Notation. We will study projective algebraic varieties over the complex
field or, more generally, over an algebraically closed field K with charK = 0.
V will denote a linear space of dimension N + 1 over K, and PN = P(V )

the projectivization of V . Analogously, AN+1 = A(V ) will denote the affine
space associated to V .

If Λ ⊂ PN is a projective linear subspace, Λ̂ ⊂ V will denote the linear
subspace associated to Λ such that Λ = P(Λ̂). [v] ∈ P(V ) will denote the
point of PN corresponding to the equivalence class of v ∈ V r {0}.
TxX will denote the Zariski tangent space to the variety X at its point x,

while we will denote by TxX ⊂ PN the embedded tangent space to X at x.
G(h, V ) will denote the Grassmannian variety of linear subspaces of dimen-

sion h in V . G(k,N) will denote the Grassmannian of projective subspaces
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of dimension k of PN . We will use the same symbol to denote the points of
the Grassmannian and the corresponding linear subspaces.

1. The focal diagram

Let B ⊂ G(k,N) be a family of dimension n of k-spaces in PN . Denote
by B′ a desingularization of B and by I the incidence correspondence of B′,
with the natural projections

B′
p1←−−−− B′ × PN p2−−−−→ P

N

∪
B

g←−−−− I f−−−−→ P
N

In what follows, we will restrict ourselves to families B such that the image
of f (i.e., the union of the lines belonging to B) is a variety X of dimension
n + k. This is the same as assuming that the general fibre of f : I −→ X is
finite.

Definition 1.1. A point x ∈ X is said to be a fundamental point of the
family B if the fibre f−1(x) has positive dimension. This condition defines a
closed subset of X called the fundamental locus Φ of B.

With this setup, we can construct a commutative diagram of exact se-
quences, called the focal diagram of B:

0y
(p∗1(TB′)) |I

χ−−−−→ NI|B′×PNy ∥∥∥
0 −−−−→ TI −−−−→ TB′×PN |I −−−−→ NI|B′×PN −−−−→ 0

df

y y
f∗(TPN ) (p∗2(TPN )) |Iy

0
The focal diagram is built up by crossing the exact sequence defining the
normal sheaf to I inside B′×PN with the sequence (restricted to I) expressing
the tangent sheaf of the product variety B′ × PN as a product of tangent
sheaves.

Definition 1.2. The map denoted by χ in the focal diagram is called the
characteristic map of the family B. For every Λ ∈ Bns the restriction of χ
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to g−1(Λ) is called the characteristic map of B relative to Λ; it lies in the
following diagram:

χ(Λ) : TΛB
′ ⊗OΛ −−−−→ NΛ|PN

o
∥∥∥ o

∥∥∥
OnΛ −−−−→ ON−kΛ (1)

Definition 1.3. The condition

rankχ(Λ, x) < min{rank((p∗1(TB′)) |I), rank(NI|B′×PN )}

defines a closed subscheme V (χ) ⊂ I which will be called the subscheme of
first order foci (or, simply, the focal subscheme) of the family B. Analogously,
F = f(V (χ)) is called the locus of first order foci, or the focal locus of B in
P
N .

By the commutativity of the focal diagram, the focal locus has a second
interpretation. Indeed, the kernel of χ and the kernel of df must coincide
(as subsheaves of TB×PN |I). Then the focal locus is the ramification locus of
f . As a consequence, the fundamental locus is contained in the focal locus.
These considerations can be rephrased as follows.

Proposition 1.4. The following conditions are equivalent:

(1) The rank of χ is maximal.
(2) The rank of df is maximal.
(3) V (χ) is a closed proper subscheme of I.

We have assumed that the union of the k-spaces belonging to B is a variety
X of dimension n + k. By Proposition 1.4 this implies that a general point
on a general space of B is not a focus. Nevertheless, some particular spaces
of B can be contained in the focal locus: they are called focal spaces.

The characteristic map is closely connected with the structure of the tan-
gent space to the Grassmannian variety as a space of homomorphisms (see
[H]). Let B be a subvariety of G(k,N). We can identify this Grassmannian
with the Grassmannian of linear subspaces of dimension k+1 of V , G(k+1, V ).
Then, by associating to each Λ ∈ B the affine cone Λ̂ ⊂ A(V ) = A

N+1, we can
construct a new incidence correspondence I ′ ⊂ B′ × AN+1 and projections
f ′, g′ as follows:

B′
q1←−−−− B′ × AN+1 q2−−−−→ A

N+1

∪
B

g′←−−−− I ′ f ′−−−−→ A
N+1
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Considering B as a family of subspaces in AN+1 yields an affine version of the
focal diagram:

0y
(q∗1(TB′)) |I′

χ′−−−−→ NI′|B′×AN+1y ∥∥∥
0 −−−−→ TI′ −−−−→ TB′×AN+1 |I′ −−−−→ NI′|B′×AN+1 −−−−→ 0

df ′
y y

f ′
∗(TAN+1) (q∗2(TAN+1)) |I′y

0
As in the projective case, we can define the characteristic map χ′ relative to
Λ, a non-singular element of B, by

χ′(Λ) : TΛB ⊗OΛ̂ −→ NΛ̂|AN+1 .

If we compare the definition of the focal diagram and the characterization of
TΛB as a space of homomorphisms, we easily get the following proposition.

Proposition 1.5. Let Λ be a non-singular point of B ⊂ G(k,N) =
G(k + 1, V ). Let us consider TΛB as a linear subspace of TΛG(k,N) ∼=
Hom(Λ̂, V/Λ̂). Then the characteristic map χ′ relative to Λ, considered as
a morphism of vector bundles, for all v ∈ Λ̂ associates to η ∈ TΛB the normal
vector η(v).

The projectivization of the usual characteristic map χ coincides with that
of the affine version χ′, so we have:

Corollary 1.6. Let Λ be a non-singular point of B ⊂ G(k,N). Let
us consider TΛB as a linear subspace of TΛG(k,N) ∼= Hom(Λ̂, V/Λ̂). Then
the projectivization of the characteristic map χ relative to Λ, considered as a
morphism of vector bundles, for all p ∈ Λ associates to [η] ∈ P(TΛB) the point
[η(v)] ∈ P(V/Λ̂), where v ∈ V is such that [v] = p.

This corollary yields an interpretation of focal points which is particularly
clear in the case of a family of lines.

Remark 1. Consider a variety B ⊂ G(1, N) and a general line r ∈ B.
Then the foci on r are the points p = [v] such that v ∈ ker η for a non-trivial
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η ∈ TrB. Since under our hypotheses the rank of the general η ∈ TrB is 2, the
existence of focal points depends on the existence of rank 1 homomorphisms
in TrB. Focal points with multiplicity represent a special case. A point
p = [v] ∈ r is a focal point of multiplicity ≥ 2 if and only if there exist two
linearly independent tangent vectors η1, η2 ∈ TrB satisfying

η1(v) = 0, Im(η1) 6= 0,
η2(v) ∈ Im(η1), Im(η2) 6= Im(η1),

since the condition on the multiplicity is that the composition of the charac-
teristic map relative to r with the natural map V/r̂ −→ (V/r̂)/ Im(η1) does
not have maximal rank. Iteration of this construction yields a characterization
for focal points of higher multiplicity.

By means of the Plücker embedding, we can consider the embedded tangent
space to B ⊂ G(1, N) at a point Λ. In the case of lines, there is a connection
between the existence of focal points on r ∈ B and the existence of a line in
TrB ∩G(1, N).

Proposition 1.7. Le B ⊂ G(1, N) be a family of lines. Let r be a general
element of B and suppose r is not focal. Then there is a bijection between
the focal points on r and the lines in the intersection of the Grassmannian
G(1, N) with TrB (embedded in P(

∧2
V )).

Proof. We know that [v] ∈ r is a focal point if and only if v ∈ ker η, where
η ∈ TrB has rank 1. With a simple computation, it is possible to prove that
if a homomorphism η ∈ TrG(1, N) has rank 1 then the pencil of lines passing
through P(ker η) and lying in Im(η)⊕ r is a line contained in the intersection
of TrB with the Grassmannian. The converse is also true: if there is a line in
the intersection, then we can find a homomorphism η of rank 1 and hence a
focal point. �

2. Varieties of dimension 3

We now apply the study of the focal locus to the specific problem of clas-
sifying ruled varieties of dimension 3 with degenerate tangential properties.
More precisely, we consider:

(1) varieties ruled by lines with a constant tangent 2-plane along any line
of the ruling;

(2) varieties ruled by lines with a constant tangent space of dimension 3
along every line;

(3) varieties ruled by planes with a constant tangent space of dimension
3 along every plane.

Note that the last two cases yield the classification of varieties of dimension
3 with degenerate Gauss mapping. For the proofs we will use some results to
be proved in Sections 3 and 4.
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The classical references for our approach to classification are the works of
C. Segre. In particular, a classical proof of the classification of case (1) can be
found in [S2]. The classification of varieties of dimension 3 with degenerate
Gauss mapping has recently been given in the papers [R] and [AGL]. In both
papers, the classification is based on the study of the focal scheme of the
family of fibres of the Gauss map, but there is no distinction between strict
focal locus and (total) focal locus (see Definition 3.1). In [R] the classification
is outlined without a study of the second fundamental form of focal surfaces.
Therefore, there is no description of how to construct a variety with degenerate
Gauss mapping. In [AGL] one of the cases (that of bands) is not completely
solved.

In what follows, the concept of conjugate directions for the second funda-
mental form will naturally arise. We will denote by

IIy : TyY ⊗ TyY −→ NyY

the second fundamental form of a variety Y at a non-singular point y (see
[H] for the definition). It is a symmetric bilinear form, and hence can be
interpreted as a linear system of quadrics |IIy| in P(TyY ). The dimension of
the linear system is connected with the dimension of the second osculating
space to Y in y, T (2)

y Y , by the relation

dim |IIy| = dimT (2)
y Y − dimTyY − 1.

Definition 2.1. Let Y ⊂ PN be a variety, and let y be a non-singular
point of Y . Then two tangent vectors v, w ∈ TyY are said to represent
conjugate directions at y if IIy(v, w) = 0. This means that the points [v]
and [w] are conjugate with respect to all quadrics in |IIy|. If there is a self-
conjugate tangent vector, its direction is called an asymptotic direction at
y.

The existence of conjugate directions at every non-singular point is not true
in general, but depends on the dimension of the second osculating space to
the variety at the general point. We are interested in the study of conjugate
directions for surfaces. For general surfaces at general points the dimension of
the second osculating space is 5. In this case, at a general point there are no
conjugate directions. Conjugate directions exist only if the dimension of the
second osculating space is ≤ 4. If the dimension is 3, every direction possesses
a conjugate direction. It is well known that in PN , N ≥ 4, this property holds
only for developable surfaces, i.e., cones and varieties swept out by tangent
lines to a curve.

Definition 2.2 ([S1]). A surface is called a Φ surface if and only if the
dimension of its second osculating space at the general point is 4.
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Proposition 2.3. For a surface S ⊂ PN , N ≥ 5, the following properties
are equivalent:

(i) S is a Φ surface.
(ii) At a general point of S there is exactly one couple of conjugate direc-

tions, or one asymptotic direction.
(iii) The union of the tangent planes to S is a variety of dimension 4 with

tangent space fixed along those planes.

Proof. The equivalence of the first two properties is a consequence of the
fact that a linear system of quadrics in P1 admits exactly one couple of con-
jugate points if and only if its dimension is 1. Let now S ⊂ PN be a surface,
and let us denote by V the closure in PN of the union of the tangent planes
to S at its non-singular points. Then the dimension of V is 4 if and only if S
is not a developable surface or a plane. Let us consider the osculating space
T

2
pS to S at a general point p, embedded in PN . Using a local parametric

representation of S, it is easy to show the following equality:

T
2
pS =

⋃
q∈TpS∩Vns

TqV .

This implies that the tangent space to V is constant along planes if and only if
the dimension of the osculating space to S equals the dimension of V . Hence
the equivalence of (i) and (iii) is established. �

Remark 2. The general situation for the union of tangent planes to a
surface is that the fibres of the Gauss map are 1-dimensional.

When we have a Φ surface S, we can always construct an irreducible family
Σ of dimension 2, whose elements are lines tangent to S, such that for each
general point p ∈ S there is exactly one line of Σ tangent to S at p, and,
moreover, its tangent direction at p is conjugate to some (other) tangent
direction. In this case, we will say that the lines of Σ admit a conjugate
direction on S. If at the general point of S the two conjugate directions
coincide, i.e., there is an asymptotic direction, then the lines of Σ are called
asymptotic lines on S.

Let us first consider case (1). Then we have a 3-dimensional variety X
which is covered by the lines belonging to a surface B in the Grassmannian
G(1, N), such that X has a constant tangent plane along a general line of B.
A classification of these families is provided by Theorem 0.3 (see also [M]).

Proof of Theorem 0.3. We can apply Theorem 0.1 to the family B. The
existence of the tangent plane implies then that on the general line belonging
to B there exists one focal point (with multiplicity 1). This focus cannot be
a fixed point p, for then there would be a 2-dimensional subfamily of lines of
B passing through p, and p would be a focal point of multiplicity 2, which is
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not allowed. Thus, the closure of the union of the focal points on such lines
(the strict focal locus, in the terminology to be introduced in Section 3) can
be either a surface S or a curve C. In the former case, the first part of the
claim follows from Theorem 3.2. The exception considered in our statement is
necessary in order to exclude varieties with degenerate Gauss mapping, as we
will see later. In the latter case C lies in the fundamental locus of B, which
yields the second part of the claim. By a direct calculation, we can check that
the union of tangent lines to a surface S has a constant tangent plane along a
general line r. This plane is the tangent plane to S at the point of tangency of
r. Analogously, the fixed tangent plane along the lines of a cone is contained
in the tangent space to the union of cones. �

Remark 3. In the hypotheses of Theorem 0.3 we have excluded the (triv-
ial) case of varieties X ruled by planes. In this case the Fano variety of lines
has dimension > 2, but it is always possible to find a subvariety B of this va-
riety, with dimB = 2, such that the lines of B cover X. There are two ways
of constructing B. We can choose a unisecant curve C to the family of planes
and consider for every plane the pencil of lines, with the corresponding point
of C as center. The points of C are fundamental points of B, and in general
they are not singular points of X. Note that a general ruled surface in G(1, N)
gives an example of this situation. Alternatively, inside every plane we can
fix a curve (varying algebraically with the plane) and consider the family of
its tangent lines. Also, in this case the focal points are not in general singular
for X. In fact, in both cases the focal points have no real geometric meaning
for X.

We next prove Theorem 0.4, giving the classification of varieties of dimen-
sion 3 with degenerate Gauss mapping.

Proof of Theorem 0.4. The second part is well known and classical. We
give here a simple proof based on the analysis of foci. Let us suppose that X ⊂
P
N is a 3-dimensional variety with Gauss map whose fibres have dimension

2. Let us consider the family B ⊂ G(2, N) of the fibres of the Gauss map of
X. Then, by Theorem 0.2, there is a focal line on every general plane of B.
If there is a fundamental line L, X must be a cone over a curve, with vertex
L. Otherwise, the focal locus is a ruled surface S, and by Theorem 3.2 every
plane of B is tangent to S along a line of its ruling. Hence S is a surface with
degenerate Gauss mapping, so S is a cone or the tangent developable to a
curve. In the first case, X is a cone, with a point as vertex, over the tangent
developable to a curve. In the second case, X is the union of osculating planes
to a curve.

We next prove the first part of the theorem. For more details we refer to
[T].
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Let B ⊂ G(1, N) be the family of fibres of the Gauss map of X. By
Theorem 0.1, on a general line of B there are two foci (counting multiplicity).
We now consider the number of distinct focal points on a general line belonging
to B, the number (1 or 2) and the dimension of the irreducible components of
the strict focal locus (see Definition 3.1), i.e., the variety obtained as closure of
the union of focal points on non-focal lines of B. This is a general procedure,
which will be extended to varieties of higher dimension in Section 3.

If the focal points on a general line of B are distinct, Theorem 3.2 gives us
the classification of all possible cases, as shown in Table 1.

foci on a general line strict focal locus description
each point sweeps a
surface

union of lines bitan-
gent to a surface
union of lines tan-
gent to two surfaces

two distinct points a point sweeps a
surface, the other
point sweeps a
curve

union of lines tan-
gent to a surface
and meeting a
curve

each point sweeps a
curve

secant variety of a
curve
join of two curves

Table 1. Two distinct foci

If on a general line of B there is one focal point with multiplicity 2, we
need additional information. This information is obtained by considering the
interpretation, given in Section 1, of the characteristic map of B relative to a
general r ∈ B as describing the subspace TrB ⊂ TrG(1, N) ∼= Hom(r̂, V/r̂).

Using this, we now prove that if the strict focal locus is a surface S, then a
general line of B represents an asymptotic direction of S, i.e., a self-conjugate
direction with respect to the second fundamental form of S. Let r be a general
fibre of the Gauss map and let F = [v] be the (double) focus on r. Then by
Remark 1 there exist two linearly independent tangent vectors η1, η2 in TrB
such that η1(r) = 0 in V/r̂ and η2(v) ∈ Im(η1). Let {b1(t)} be an arc of a
smooth curve in B, parametrized by an open disc containing the origin, with
b1(0) = r and b′1(0) = η1, and let {c1(t)} be a lifting of {b1(t)} through F ,
i.e., any regular curve in X such that c1(t) ∈ b1(t) for all t and c1(0) = F .
Then r is the tangent line to the curve {c1(t)} at F . In particular, the curve
C (⊂ S) generated by the unique focus of b1(t) as t varies in the disc is such
a lifting. If {g1(t)} is another lifting of {b1(t)}, but with g1(0) 6= F , then the
tangent vector g′1(0) is not parallel to r, and so, together with r, generates
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the tangent plane at g1(0) to the ruled surface Y , the union of the lines b1(t).
Since dim Im(η1) = 1, this plane is constant along r, so it coincides with the
osculating plane to the curve C at F . Let now {b2(t)} be a regular curve
in B such that b2(0) = r and b′2(0) = η2. If {d2(t)} is a lifting of {b2(t)}
through F , then its tangent line at F is contained in the osculating plane to
C at F . In particular, we can choose as lifting the curve D of the foci of the
lines b2(t). Because of the generality assumptions, the tangent plane to S at
F is generated by the tangent lines to C and D, so it is the osculating plane
to C. We have thus proved that through a general point F of S there is a
curve C whose osculating plane at F coincides with the tangent plane to S.
The tangent line to C, which is a general line of B, is therefore an asymptotic
tangent line of S. This proves our claim.

If the strict focal locus is a curve C, then we will show that X is not just a
union of cones, as in the case in which the focal point has multiplicity 1, but a
union of planes tangent to C. We proceed as in the previous case. Let r ∈ B
be a general line and let F = [v] be its focus. Since F is a fundamental point
for the family B, there is a curve Z in the Grassmannian passing through
r, which represents the lines of B through F . It is easy to show that every
lifting of Z through F has r as tangent line at F , so η1, the tangent vector
to Z at r, is such that η1(v) = 0. But F is a focus with multiplicity two
and dim TrB = 2, so it follows that every regular curve contained in B,
passing through r, but with tangent vector η2 different from η1, is such that
η2(v) belongs to the image of η1. The focal curve C can be interpreted as
a lifting of such a curve. Let w be its tangent vector at F . Then the plane
generated by r and w contains also the tangent line to any lifting of Z at
its intersection point with r. Let ϕ(t) be a local parametrization of such a
lifting, with ϕ(0) = P ∈ r. Then ϕ′(0) lies in the plane generated by w and
the direction of r. By repeated derivations, we see that all derivatives ϕ(k)(0),
and hence the whole curve, are in this plane. Therefore every lifting of Z is a
plane curve, which proves that the lines of B passing through F form a pencil,
contained in the plane generated by r and by the tangent line to C at F .

Thus B is a ruled surface. In this case, X is called a 3-dimensional band.
The precise definition is as follows (see [AG]):

Definition 2.4. A variety X ⊂ PN is said to be a 3-dimensional band
if there exist two distinct curves C,D ⊂ X, not belonging both to the same
space P3, and a birational equivalence ψ : C −→ D, such that X is the closure
of the union of the planes lying in the image of the morphism

f : C0 −→ G(2, N)
p −→ 〈TpC,ψ(p)〉,

where C0 is a non-singular open subset of C contained in the domain of
definition of ψ.
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Table 2 describes all varieties ruled by a 2-dimensional family of lines with
a focal point of multiplicity 2 on the general line. �

foci on a general line strict focal locus description
the focal point
sweeps a surface

union of asymptotic
lines

a point with multiplicity 2 the focal point
sweeps a curve band

the focal point is
fixed cone over a surface

Table 2. One double focus

By a direct calculation, it is possible to show that every variety obtained
in Theorem 0.3 is a variety with degenerate Gauss mapping. The interesting
point is that, whereas any curve can be obtained as the focal curve of a 3-
dimensional variety with degenerate Gauss mapping, the focal surfaces must
verify some special conditions. For instance, it is not true in general that for
a surface there always exists a family of dimension 2 of bitangent lines.

Theorem 2.5. Let X ⊂ PN be a variety of dimension 3 with Gauss im-
age of dimension 2, satisfying one of the conditions (a)–(d) in Theorem 0.4.
Suppose that the strict focal locus of the family B of the fibres of the Gauss
map of X has an irreducible component S of dimension 2. Then S is either
a developable surface or a Φ surface. Moreover, the lines of B are tangent
to S and they are either asymptotic tangent lines or they admit a conjugate
direction.

Proof. If X is as in (d), then the assertion is clearly true. Hence we can
assume that on a general fibre of the Gauss map there are two distinct foci.
Let F1 ∈ S be general. Then F1 is a focus on a non-focal line r, which contains
also a second focus F2. Thus there exist two tangent vectors η1, η2 ∈ TrB such
that, for all regular curves {bi(t)} ⊂ B, i = 1, 2, with bi(0) = r and b′i(0) = ηi,
every lifting through Fi has r as tangent line at Fi. As a lifting of {b1(t)}, we
can choose a curve C1 ⊂ S, with local parametrization {c1(t)}, such that c1(t)
is a focus of the line b1(t) for all t. Note that Im(η1), which is 1-dimensional,
is generated by the tangent vector x′(0) for all choices of a lifting x(t) of b1(t)
with x(0) 6= F1. Hence, as in the proof of Theorem 0.4, it follows that x′(0)
belongs to the osculating plane of the curve C1.

Next, assume that X satisfies conditions (a) or (b). Then the above con-
struction can be repeated for the second focus F2 on r relative to the focal
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surface S′ to which it belongs, which coincides with S in case (a) or is the
second component of the strict focal locus of X in case (b). This gives a
second curve C2 ⊂ S′ passing through F2 and with TF1C1 = r = TF2C2.
Let now D2 be the curve generated by the second focus of the lines b1(t).
Similarly let D1 be the curve generated by the second focus of the lines b2(t).
Note that C1 6= D1 and C2 6= D2. We can choose a local parametrization for
S of the form ψ(t, s), where ψ(0, 0) = F1, and ψ(t, 0) and ψ(0, s) are local
parametrizations of C1 and D1, respectively. By considering the other focus,
we get a parametrization ϕ(t, s) of the second surface S′ near F2 such that
ϕ(t, 0) and ϕ(0, s) are local parametrizations of D2 and C2, respectively. By
comparing the tangent vectors, we get ψt = ϕs, ϕt ∈ 〈ψt, ψtt〉, ψs ∈ 〈ϕs, ϕss〉,
and also ψtt ∈ 〈ϕt, ϕs〉, ϕss ∈ 〈ψt, ψs〉, so that ψts ∈ 〈ψt, ψs〉. Hence the pair
of vectors (ψt, ψs) annihilates the second fundamental form of S, and these
vectors represent conjugate directions.

If we are in case (c), F2 is a fundamental point for the family B, so there
are infinitely many lines of B through F2. Each of them contains also a second
focus, describing a curve E. In this case we can find a local parametrization
of S, ψ(t, s), centered at F1 and such that ψ(t, 0) describes C1 and ψ(0, s)
describes E. Note that ψt(0, s) is the direction of the line of the ruling passing
through ψ(0, s), and ψts is tangent at F1 to the cone of vertex F2 on the curve
E, and therefore is contained in the tangent plane to this cone along r. But
this plane is generated by ψt and ψs, so it coincides with the tangent plane
to S at the point F1. We conclude then as in the previous case. �

We close this section with a remark on the second fundamental form. It
is known (see [GH]) that the second fundamental form of the varieties with
degenerate Gauss mapping has non-empty singular locus. In particular, this
singular locus is a point in the case of varieties of dimension 3 with Gauss
image of dimension 2. Assume that X is such a variety, which is not a hy-
persurface. Then there is a connection between the properties of the second
fundamental form and the configuration of focal points on the general fibre
of the Gauss map of X. Indeed, if X is a variety with distinct focal points of
multiplicity 1, then the dimension of the second osculating space is 5 and the
second fundamental form is a pencil of conics with a point both as base and
as singular locus. If X has one focal point of multiplicity 2 on the general
line and is not a cone, then the dimension of the second osculating space is
also 5, but the pencil of conics of the second fundamental form has a line as
base locus. In the case of cones over a surface, the dimension of the second
osculating space is 6 (in general), so the second fundamental form is a net of
conics and the base locus can only be a point, coinciding with the singular
point.
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3. Varieties covered by lines

Let B ⊂ G(1, N) be a family of lines in PN of dimension n ≤ N − 2.
Suppose that the union of the lines belonging to B is an algebraic variety X
of dimension n + 1. When this condition holds, we do not expect in general
to find any focal points. In particular, a general line of B cannot be focal.
This allows us to consider the length of the focal locus on the general r ∈ B.
It turns out that this length has a geometric interpretation in terms of fixed
tangent spaces along r. Theorem 0.1 states that the length of the focal locus
on r ∈ B is k if and only if X possesses a fixed tangent space of dimension
k + 1 along a general line r. We now prove this result.

Proof of Theorem 0.1. We can suppose without loss of generality that X
is a hypersurface, i.e., N = n+ 2. Indeed, if X is not a hypersurface, we can
project it to Pn+2, and a general projection will not affect either its tangential
properties or its focal properties. Let r be a general point of B. Suppose that
on r there are exactly k focal points, counting multiplicity. These are the
points where the characteristic map relative to r,

χ(r) : TrB ⊗Or −−−−→ Nr|PN

o
∥∥∥ o

∥∥∥
Onr Or(1)n+1

does not have maximal rank. If we choose projective coordinates x0, x1 on r,
by means of the natural identification given above, we can represent χ(r) by
an (n+ 1)× n matrix

A =

 l1,1 . . . l1,n
... · · ·

...
ln+1,1 . . . ln+1,n

 ,

whose entries li,j are linear forms in x0, x1. Let us consider the minors (with
sign) of A of maximal order,

ϕi = (−1)i+1 det



l1,1 . . . l1,n
... · · ·

...
l̂i,1 . . . l̂i,n
... · · ·

...
ln+1,1 . . . ln+1,n

 , i = 1, . . . , n+ 1.

The existence of k focal points implies that ϕ1, . . . , ϕn+1 have a common
factor F of degree k, so we have ϕi = Fψi, where ψ1, . . . , ψn+1 are suitable
polynomials of degree n − k in x0, x1. We are interested in finding vectors
that are tangent to X at every point of r. Thus we seek normal vectors of
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coordinates (v1, . . . , vn+1) belonging to the image of χ(r) in every point of r.
This can be expressed by the condition

det

 v1 l1,1 . . . l1,n
...

... · · ·
...

vn+1 ln+1,1 . . . ln+1,n

 = 0,

or, equivalently,

(∗) v1ψ1 + · · ·+ vn+1ψn+1 = 0.

As there are n − k + 1 monomials of degree n − k in x0, x1, equation (∗)
is equivalent to a system of n − k + 1 homogeneous linear equations in the
indeterminates v1, . . . , vn+1. Thus there are at least k linearly independent
solutions. Denote by V ′ a linear subspace of dimension k of the space of
solutions. If we identify V/r̂ with a subspace W that is complementary to r̂,
the vectors of V ′ ⊂ V/r̂ are tangent to X at every point of r. Then P(V ′) is
a tangent subspace of dimension k + 1 contained in the tangent space to X
at every point of r. This proves the implication (i) =⇒ (ii).

Let r be a general point of B. We now prove that if there is a constant
tangent space of dimension k + 1 along r, then there are k focal points on
r (counting multiplicity). As in the previous part, we denote by A = (li,j)
the matrix representing χ(r). We want to show that the minors ϕ1, . . . , ϕn+1

have a common factor of degree k. We know that the condition

det

 v1 l1,1 . . . l1,n
...

... · · ·
...

vn+1 ln+1,1 . . . ln+1,n

 = 0

is satisfied for every v = (v1, . . . , vn+1) belonging to a normal subspace of
dimension k. We can assume without loss of generality that this normal
subspace is

V ′ = 〈(
n−k+1︷ ︸︸ ︷

0, . . . , 0, 1,

k−1︷ ︸︸ ︷
0, . . . , 0), (

n−k+2︷ ︸︸ ︷
0, . . . , 0, 1,

k−2︷ ︸︸ ︷
0, . . . , 0), . . . , (

n︷ ︸︸ ︷
0, . . . , 0, 1)〉.

This is the same as supposing that the last k minors of order n of A are 0,
i.e.,

ϕn−k+2 = · · · = ϕn+1 = 0.

In the following, we denote by Aj1,...,jhi1,...,ih
the determinant of the square subma-

trix of A formed of rows j1, . . . , jh and columns i1, . . . , ih. Let us consider the
remaining forms ϕ1, . . . , ϕn−k+1. Since they are minors of the matrix A, they
satisfy the following homogeneous system of degree 1: l1,1ϕ1 + l2,1ϕ2 + · · ·+ ln−k+1,1ϕn−k+1 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
l1,nϕ1 + l2,nϕ2 + · · ·+ ln−k+1,nϕn−k+1 = 0.
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Fix two equations of the system above by choosing two indices 1 ≤ i1 < i2 ≤ n.
We multiply the first equation by ln−k+1,i2 , and the second by ln−k+1,i1 and
subtract to get a homogeneous relation among ϕ1, . . . , ϕn−k with coefficients
of degree 2. Considering every possible choice of i1 and i2, we obtain the
homogeneous system{

A1,n−k
i1,i2

ϕ1 + · · ·+An−k,n−k+1
i1,i2

ϕn−k = 0,
1 ≤ i1 < i2 ≤ n.

Analogously, we can find homogeneous relations with coefficients of every
degree between 2 and n − k, involving successively fewer minors. For the
highest degree we have a system of

(
n
k

)
equations in 2 minors. For ϕ1, ϕ2, for

instance, we have{
A1,3,4,...,n−k+1
i1,...,in−k

ϕ1 +A2,3,...,n−k+1
i1,...,in−k

ϕ2 = 0,

0 ≤ i1 < i2 < · · · < in−k ≤ n.
As the relations belonging to this system cannot all be trivial, we conclude
that ϕ1 and ϕ2 must have a common factor of degree ≥ k. Moreover, it is
possible to prove that ϕ1, . . . , ϕn−k have a common factor of degree k. In
fact, consider the following system of relations (of degree n− k− 1) among 3
minors, say ϕ1, ϕ2, ϕ3:{

A1,4,...,n−k+1
i1,...,in−k−1

ϕ1 +A2,4,...,n−k+1
i1,...,in−k−1

ϕ2 +A3,4,...,n−k+1
i1,...,in−k−1

ϕ3 = 0,

0 ≤ i1 < i2 < · · · < in−k−1 ≤ n.
Denote by F a common factor of degree k of ϕ1, ϕ2. If F - ϕ3, then there is a
factor G of F such that G divides A3,4,...,n−k

i1,...,in−k−2
for any choice of i1, . . . , in−k−2.

This means that G divides both A1,3,4,...,n−k
i1,...,in−k−1

and A2,3,...,n−k
i1,...,in−k−1

. Then ϕ1 and
ϕ2 have a common factor of degree ≥ k + degG, and we can check whether
this new polynomial of higher degree and ϕ3 have a common factor of degree
k or not. If the answer is negative, we can repeat the construction until
we find such a factor, after deleting all common factors of A1,3,4,...,n−k

i1,...,in−k−1
and

A2,3,...,n−k
i1,...,in−k−1

. �

Remark 4. If there are more than n focal points on a line r ∈ B, then r
is a focal line.

Theorem 0.1 allows us to give a rough description of the focal locus of
a variety X ruled by an n-dimensional family of lines, once we know the
dimension of the constant tangent space along a general line.

Definition 3.1. Let B ⊂ G(1, N) be a subvariety of the Grassmannian
such that its general element is not focal. Let k be the degree of the focal locus
on a general element r ∈ B. Let us denote by U ⊂ B the open set consisting
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of the lines on which the focal locus is a proper subscheme of length k. Then
the closure in PN of the union of the focal loci on the lines of U is called the
strict focal locus of B.

Remark 5. If B ⊂ G(1, N), dimB = n, and n = k, then U is the open
set of non-focal lines, and the strict focal locus is simply the closure in PN of
the union of focal points on the non-focal lines of B.

The study of the strict focal locus enables us to formulate a pattern of
classification of varieties of dimension n+ 1 ruled by an n-dimensional family
of lines. First, any such variety is characterized by the number and the mul-
tiplicity of the distinct focal points on a general line. Then we can study the
strict focal locus of X and, in particular, the number of components and their
dimensions. The maximal possible dimension for a component of the strict
focal locus is n. If there is a component of dimension < n, then for every point
of it there are infinitely many lines of B passing through this point. Hence
this component must be contained in the fundamental locus of the family B.
If there are components of dimension n of the focal locus, then every line of
B is tangent to them. This is a particular case of a property of the focal locus
that also holds for varieties ruled by linear subspaces of dimension ≥ 1. We
will establish this property in the general case.

Theorem 3.2. Let B ⊂ G(k,N) be a family of k-spaces in PN of dimen-
sion n ≤ N − k. Suppose that the union of the k-planes belonging to B is a
variety X of dimension k + n, and that the focal locus has codimension 1 in
X. Then every general subspace Λ belonging to B is tangent to F at all the
focal points on Λ that are not fundamental points.

Proof. Let us consider I, the desingularization of the incidence correspon-
dence of B, and the natural projections f, g defined by the following diagram:

I f−−−−→ P
N

g

y
B

Let p be a general point of g−1(Λ), belonging to the focal subvariety V (χ) ⊂ I.
By definition, the differential of f in p,

dpf : TpI −→ Tf(p)P
N ,

has a non-trivial kernel. Let us consider the restriction of f to the focal
subvariety,

f : I −−−−→ P
N

∪ ∪

V (χ) −−−−→ F.
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As we assumed charK = 0, the algebraic geometry analogue of Sard’s The-
orem holds ([H, p. 176]), so for a general p ∈ V (χ) the homomorphism
dpf |V (χ) : TpV (χ) −→ Tf(p)F is surjective. Since not all focal points are
fundamental points and f has finite fibres, dimV (χ) = dimF . Thus dpf |V (χ)

is an isomorphism. Now consider again the differential of f in a general point
p of V (χ) ∩ g−1(Λ),

dpf : TpI → Tf(p)P
N .

We know that dpf has a non-trivial kernel and that its image contains Tf(p)F .
Since V (χ) is a codimension 1 subvariety of I, TpV (χ) is a linear subspace of
codimension 1 in TpI. Hence dpf(TpI) = TpF . As g−1(Λ) ⊂ TpI, we have
Λ = dpf(g−1(Λ) ⊂ Tf(p)F . �

Returning to varieties with constant tangent space along lines, assume
that on a general line r ∈ B there are focal points which are not fundamental
points. Then the strict focal locus has a component Y of pure codimension 1
in X, and every line in U is tangent to Y at its focal, non-fundamental points.
In Theorem 0.1 we can consider the two extremal cases, namely, k = 0 and
k = n. In the first case, the theorem implies that a variety ruled by lines has no
focal point on a general line if and only if the only fixed tangent space along a
general line is the line itself. In the second case, we obtain a characterization
of the varieties whose degenerate Gauss map has 1-dimensional fibres, i.e.,
varieties of dimension n+ 1 with tangent space constant along lines.

Corollary 3.3. Let B ⊂ G(1, N) be a family of lines in PN of dimension
n, n ≤ N−2. Suppose that the union of the lines belonging to B is an algebraic
variety X of dimension n+ 1. Then the following conditions are equivalent:

(i) The focal locus on the general element r ∈ B consists of n points
(counting multiplicity).

(ii) The tangent space to X is constant along the lines of B.

Remark 6. If X is not ruled by linear subspaces of dimension ≥ 2, then
condition (i) implies that B is the family of the fibres of the Gauss map. If X
possesses a higher dimensional ruling, then the fibres of the Gauss map can
have dimension greater than 1.

4. Varieties ruled by linear subspaces

In this section we investigate whether the results established in the previous
section can be extended to varieties ruled by linear subspaces of dimension
> 1. In particular, we expect that in the case of a family of linear subspaces of
dimension k the existence of constant tangent spaces gives a focal hypersur-
face on the general k-space. This is true for varieties with degenerate Gauss
mapping, for which Theorem 0.2 yields a straightforward generalization of
Corollary 3.3.
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Proof of Theorem 0.2. Let X ⊂ PN be a projective variety of dimension
n+k, with Gauss map whose fibres have dimension k. We want to prove that
condition (ii) holds for the family B ⊂ G(k,N) of fibres of the Gauss map of
X. Let Λ be a general element of B. Let us consider the characteristic map
of B relative to Λ,

χ(Λ) : TΛB ⊗OΛ −−−−→ NΛ|PN

o
∥∥∥ o

∥∥∥
OnΛ −−−−→ ON−kΛ (1)

The map χ(Λ) is represented by an n × (N − k) matrix, whose entries are
linear forms on Λ. The columns of this matrix evaluated in a point p ∈ Λ
can be regarded as vectors L1(p), . . . , Ln(p) in V/Λ̂. Let us denote by Π the
fixed tangent space to X along Λ. Then the image of χ(Λ) in any point p ∈ Λ
is contained in Π̂/Λ̂, which is a fixed subspace of V/Λ̂ of dimension n. If we
consider the coordinates of the normal vectors L1(p), . . . , Ln(p) in Π̂/Λ̂, we
get a matrix (mij)i,j=1,...,n. Then the condition defining the focal locus on Λ
is

det(mij) = 0,

which in general gives a hypersurface on Λ of degree n, even though in special
cases it is possible that all of Λ is focal. Suppose now that B ⊂ G(n, k)
satisfies condition (ii). If we fix a general Λ ∈ B, the focal variety on Λ is a
hypersurface of degree n. Then on the general line r ⊂ Λ there are n (not
necessarily distinct) focal points, which are the points where the morphism

λ : TΛB ⊗Or −→ (NΛ|PN )|r,

given by the restriction of the characteristic map, has not maximal rank. We
can adapt to λ the procedure applied in the proof of the implication (ii) =⇒
(i) of Theorem 0.1. In this way, we see that there is a fixed subspace W (r) of
dimension n contained in the image of the characteristic map in any point of
r. Now choose a general point p in Λ, so that, in particular, p is non-focal and
smooth. We restrict to an affine open set U0 ⊂ PN and consider a system of
affine coordinates on U0 such that p is the point (0, . . . , 0). Then Λ0 = Λ∩U0

is a linear space of dimension k. We can fix k lines r1, . . . , rk through p
spanning Λ0, such that for all j on rj there are n focal points (considered
with multiplicity). On any rj there is a fixed tangent subspace, spanned by
rj and W (rj). Thus the tangent space to X in p contains all lines r1, . . . , rk
(spanning Λ0) and all linear subspaces W (r1), . . . ,W (rk). For dimensional
reasons, this implies that all the spaces W (rj) must coincide. We thus have
found a fixed linear space W of dimension n, such that in any smooth point
of Λ0 the tangent space to X is spanned by Λ0 and W . �
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In the general case of varieties ruled by lines it was possible to find non-
focal lines on which there were more than the general number of focal points.
Under the hypotheses of Theorem 0.2, the open set of subspaces on which
the focal locus has degree k coincides with the set of non-focal subspaces.
Thus Theorem 0.2 allows us to describe the possible characterizations of the
strict focal locus for varieties with degenerate Gauss mapping. In this case,
the strict focal locus is defined as the closure in PN of the union of the focal
points on non-focal subspaces. For varieties with degenerate Gauss mapping,
the focal locus is contained in the singular locus of the variety. The converse
is not true in general.

Theorem 4.1. Let X be a variety with degenerate Gauss mapping, and
denote by B the family of fibres of the Gauss map of X. Then the focal points
of B are singular points of X.

Proof. Recall that the focal points are the ramification points of the projec-
tion f : I −→ X from the desingularization of the incidence correspondence
of B to X. As the degree of f is 1, either the focal points are points where
f is not finite, or they are necessarily non-normal points of X. In the former
case, they are fundamental points of B; in the latter case, they are a fortiori
singular points of X. Since through a fundamental point there pass at least
two different fibres of the Gauss map, the fundamental points are also always
singular. �

Remark 7. This theorem can be extended to every variety X ruled by
a family B, such that the projection from the desingularized incidence corre-
spondence to X has degree 1. In this case all focal points not belonging to
the fundamental locus are non-normal points, but nothing can be said about
fundamental points.

Theorem 0.2 suggests that the following more general equivalence holds:
Given a variety X of dimension n+ k covered by a family B of k-spaces with
dimB = n, X possesses a constant tangent space of dimension k + h along
a general Λ ∈ B if and only if the focal locus of B on a general Λ ∈ B is a
hypersurface of degree h. Unfortunately, there are counterexamples to this
equivalence even for the first possible non-trivial case, namely for varieties
ruled by a family of planes with focal lines. Observe that this case is the
simplest possible case that is not covered by Theorem 0.1 or by Theorem 0.2.

Example 4.2. We give two examples of varieties of dimension 4 ruled by
a 2-dimensional family B of planes, with a focal line on the general Λ ∈ B.
We show that the tangential properties along the planes of the ruling are not
the same in the two cases.

Let us consider a variety Y of dimension 3 ruled by lines, with a fixed
tangent plane along the general line of the ruling, but no higher dimensional
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constant tangent space. Then the family of tangent planes has a focal line on
the general element, and this line is precisely the line of the ruling of Y . In
this case it is possible to prove that the union of the family of tangent planes is
a variety X of dimension 4 with a fixed tangent P3 along every plane. Hence,
for the variety X the relationship between the dimension of the fixed tangent
space along the planes of the ruling and the degree of the focal locus holds.

Now, let Z be a variety of dimension 3 ruled by lines, with constant tangent
space along the lines of the ruling. Denote by B the 2-dimensional family of
such lines, i.e., (in general) the family of the fibres of the Gauss map. Then
we can choose a family C ⊂ G(2, N) of planes such that, for every line r in B,
there is a plane in C containing r and lying in the constant tangent space to
Z along r. On a general plane Π in C the line r of B such that r ⊂ Π is a focal
line. Assume that the union of the planes of C is a variety X of dimension
4. It is possible to prove that along a general line in Π there is a constant P3

tangent to X, but that this P3 depends on the chosen line, so that there is
no constant P3 tangent to X along Π. This example shows therefore that the
equivalence mentioned above is not always valid.

In conclusion, all we know in general cases is that if a varietyX of dimension
n+k, ruled by an n-dimensional family of k-spaces, possesses a fixed space of
dimension k + h tangent along a general k-space, then the focal locus on the
general k-space of the ruling must contain a hypersurface of degree ≥ h. If
we know the degree of the focal locus, we only know the maximal dimension
of a space tangent to X along the general line lying in a space of the ruling,
which can vary with the choice of the line.
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