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GROUP PROPERTIES CHARACTERISED BY
CONFIGURATIONS

ALIREZA ABDOLLAHI, ALI REJALI, AND GEORGE A. WILLIS

Abstract. J. M. Rosenblatt and G. A. Willis introduced the notion
of configurations for finitely generated groups G. They characterised

amenability of G in terms of the configuration equations. In this paper
we investigate which group properties can be characterised by configu-
rations. It is proved that if G1 and G2 are two finitely generated groups
having the same configuration sets and G1 satisfies a semigroup law,
then G2 satisfies the same semigroup law. Furthermore, if G1 is abelian

then G1 and G2 are isomorphic.

1. Introduction and definitions

The notion of a configuration for a finitely generated group, G, was intro-
duced in [5]. It was shown in that paper that amenability of G is characterised
by its configurations. In this paper we investigate which properties of groups
can be characterised by configurations and whether in fact G is determined
up to isomorphism by its configurations. The configurations of G are defined
in terms of finite generating sets and finite partitions of G.

Definition 1.1. Let G be a finitely generated group. Let g = (g1, . . . , gn)
be an ordered set of generators for G and E = {E1, . . . Em} be a finite partition
of G.

A configuration corresponding to this generating sequence and partition is
an (n+ 1)-tuple C = (C0, C1, . . . , Cn), where Ci ∈ {1, . . . ,m} for each i, such
that there is x in G with

x ∈ EC0 and gix ∈ ECi for each i ∈ {1, . . . , n}.
The set of configurations corresponding to the generating sequence g and
partition E of G will be denoted by Con(g, E). The set of all configuration
sets of G is

(1.1) Con(G) = {Con(g, E) : G = 〈g〉 and E is a finite partition of G} .
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A configuration is thus an (n+ 1)-tuple of positive integers and a configu-
ration set is a finite set of such (n+1)-tuples. The configuration set Con(g, E)
records how the generators in g multiply between sets in the partition E .

Configurations are defined in terms of left-translations of G. Hence for any
partition E and element x ∈ G we have Con(g, E) = Con(g, E ′), where E ′ =
{E1x, . . . , Emx} is the right-translate of E by x. This justifies the following
remark that is sometimes useful when working with configurations.

Remark 1.2. Let Con(g, E) be a configuration set for the group G and
let y ∈ G and Ei ∈ E . Then it may be supposed that y ∈ Ei.

The configuration C = (C0, C1, . . . , Cn) may be described equivalently as a
labelled tree. The tree has one vertex of degree n, labelled by C0. Emanating
from this vertex are edges labelled 1, . . . , n, and the other vertex of the ith
edge is labelled Ci. When the generators are distinct, this tree is a subgraph of
the Cayley graph of the finitely generated group G = 〈g1, . . . , gn〉. The edge
labels indicate which generator gives rise to the edge and the vertex labels
show which set of the partition E the vertex belongs to.

From this perspective the configuration set Con(g, E) is a set of rooted trees
having height 1; see [6]. This finite set carries information about G and the
present paper addresses the question of which properties of G can be recovered
from such information.

2. Configurations and amenability

The present paper is motivated by a result from [5] that characterises
amenable groups by their configuration sets. For completeness, this section
summarises the main ideas.

The statement of the result involves the notion of the system of configu-
ration equations corresponding to a configuration set Con(g, E). There are
|Con(g, E)| variables in the system of configuration equations. They are de-
noted by fC , where C ∈ Con(g, E). These are |E||g| = mn equations in the
system.

Definition 2.1.

(i) The configuration equations corresponding to the configuration set
Con(g, E) are the equations

(2.1)
∑
{fC : C ∈ Con(g, E), Cj = i} =

∑
{fC : C ∈ Con(g, E), C0 = i} ,

where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. This system of equations
will be denoted Eq(g, E).

(ii) A solution to Eq(g, E) satisfying
∑
{fC : C ∈ Con(g, E)} = 1 and

fC ≥ 0 for all C ∈ Con(g, E) will be called a normalised solution
of the system.
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Amenability is characterised in [5] as follows.

Proposition 2.2. Let G be a finitely generated group. Then G is amenable
if and only if Eq(g, E) has a normalised solution for every configuration set
Con(g, E).

Thus if G is not amenable, then there is a configuration set that witnesses
the fact. This link between amenability and normalised solutions of the con-
figuration equations is seen via a refinement of the partition E .

Definition 2.3. Let C be a configuration in Con(g, E). Call x0 ∈ G a
base point of C if there is a sequence of elements x0, x1, . . . , xn such that
xi = gi x0 for each i ∈ {1, 2, . . . , n} and xi ∈ ECi for each i ∈ {0, 1, . . . , n}. In
this case x1, . . . , xn are called branch points of C. Define

x0(C) = {x ∈ G : x is a base point of C} .

That C is a configuration in Con(g, E) means that x0(C) is not empty.
Note that for each Ei ∈ E we have

(2.2) Ei =
⋃
{x0(C) : C ∈ Con(g, E), C0 = i} .

Thus {x0(C) : C ∈ Con(g, E)} is a refinement of E . Moreover, for each gj ∈ g,

(2.3) g−1
j Ei =

⋃
{x0(C) : C ∈ Con(g, E), Cj = i} .

Let M be an invariant mean for G and set fC = M(χx0(C)), for C ∈
Con(g, E). Since M is a mean we have

∑
{fC : C ∈ Con(g, E)} = 1. Since M

is translation invariant, (2.2) and (2.3) imply that∑
{fC : C ∈ Con(g, E), Cj = i} =

∑
{fC : C ∈ Con(g, E), C0 = i}

because the left hand side equals M(χg−1
j Ei

) and the right hand side equals
M(χEi). Hence {fC : C ∈ Con(g, E)} is a normalised solution of the configu-
ration equations.

The converse is proved in [5, Proposition 2.4]. Briefly, a normalised solu-
tion, f , to Eq(g, E) is used to define a probability measure, mf , on G such
that

(2.4) mf (g−1
j Ei) = mf (Ei) for each i, j.

An invariant mean on `∞(G) is then produced as a weak?-limit of these prob-
ability measures.

Amenability may also be characterised by the non-existence of paradoxical
decompositions; see [1]. We consider next how paradoxical decompositions are
related to configurations. Let E = {E1, E2, . . . , Er;Er+1, . . . , Er+s} be a par-
tition of a group G and g = (g1, g2, . . . , gr; gr+1, . . . , gr+s) be a sequence in G
giving rise to a paradoxical decomposition, so that {g−1

1 E1, g
−1
2 E2, . . . , g

−1
r Er}
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and {g−1
r+1Er+1, . . . , g

−1
r+sEr+s} are partitions of G. Suppose that g generates

G.
The fact that {g−1

1 E1, g
−1
2 E2, . . . , g

−1
r Er} is a partition of G implies that

for each configuration C ∈ Con(g, E) there is exactly one j ∈ {1, 2, . . . , r} such
that Cj = j. Hence∑

{fC : C ∈ Con(g, E)} =
r∑
j=1

{fC : C ∈ Con(g, E), Cj = j} .

Substituting the appropriate configuration equation from (2.1) into the right
hand expression yields

(2.5)
r∑
j=1

{fC : C ∈ Con(g, E), C0 = j} =
∑
{fC : C ∈ Con(g, E)} .

Similarly, that {g−1
r+1Er+1, . . . , g

−1
r+sEr+s} is a partition and the configuration

equations imply that

(2.6)
r+s∑
j=r+1

{fC : C ∈ Con(g, E), C0 = j} =
∑
{fC : C ∈ Con(g, E)} .

On the other hand, for each configuration C0 takes exactly one of the values
in {1, . . . , r, r + 1, . . . , r + s} and so

(2.7)
r+s∑
j=1

{fC : C ∈ Con(g, E), C0 = j} =
∑
{fC : C ∈ Con(g, E)} .

The three equations (2.5), (2.6) and (2.7) are inconsistent with the existence
of a normalised solution to the configuration equations.

It is not shown in [5] how to obtain a paradoxical decomposition directly
from a configuration set for which the corresponding configuration equations
do not have a normalised solution. This seems to be a more difficult problem
than its converse. The partition giving rise to the configuration set need not
itself be paradoxical and yet a paradoxical decomposition must be constructed
from it.

The criterion for amenability is weakened in [7], where it is shown that for G
to be amenable it suffices that there exist a non-zero (possibly discontinuous)
translation-invariant functional on L∞(G). It may be, therefore, that non-
amenable groups have configuration equations for which there is no non-zero
solution, let alone a normalised one.

Question 2.4. Can ‘normalised solution’ be replaced by ‘non-zero solu-
tion’ in the statement of Proposition 2.2?

Configuration sets for which the configuration equations have no normalised,
or non-zero, solutions may provide a useful tool for investigating non-amenable
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groups because they allow a comparison of the ways in which groups fail to
be amenable. Two groups would be non-amenable for different reasons if they
have different systems of configuration equations which don’t have normalised
solutions. Configuration sets may provide a finer invariant for non-amenable
groups than the Tarski number.

3. Finiteness properties of groups

A paradoxical decomposition of a group, G, shows thatG is infinite in a very
strong sense: G is put into one-to-one correspondence with multiple copies
of itself by a function which is a piecewise translation. Amenability, that
is, the impossibility of such a paradoxical decomposition, is thus a finiteness
condition on G. Other characterisations of amenability such as existence of an
invariant mean, weak containment of the trivial representation in the regular
representation and cohomological characterisations [2], also support the view
that it is a finiteness condition.

A single configuration set Con(g, E) will show that G = 〈g〉 is not amenable.
It is not clear to us whether the same is true of the property of being finite.

Question 3.1. Is there an infinite finitely generated group G such that for
every Con(g, E) ∈ Con(G) there is a finite group, F , with Con(g, E) ∈ Con(F )?

Should there be such a group, no single configuration set of the group
will show that it is infinite. The group would necessarily be amenable. On
the other hand, Con(G) 6= Con(F ) for any fixed finite group F because, G
being infinite, there is a partition E of G with |E| > |F |. Then, whatever
the generating set g, Con(g, E) 6∈ Con(F ). The set of all configuration sets,
Con(G), thus shows that G is not finite.

We now see that various finiteness properties of groups can be characterised
by configurations. In each case, a single configuration set Con(g, E) does show
that G = 〈g〉 does not have the finiteness property.

The first such condition is that of being periodic, that is, every element of
G has finite order. There are finitely generated, infinite, periodic groups [4,
p. 35].

Proposition 3.2. Let G be a finitely generated group having an element
of infinite order. Then there is a partition, E, of G and a generating set
g = (g1, . . . , gn) such that Con(g, E) is not a configuration set of any periodic
group.

Proof. Let g1 ∈ G have infinite order. Choose further elements g2, . . . , gn
such that G = 〈g1, . . . , gn〉. Put E1 = {gn1 : n > 0} and E2 = G \ E1.
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Then Con(g, E) consists of configurations of three types,

A = (2, 2, A2, . . .),

B = (2, 1, B2, . . .),

and C = (1, 1, C2, . . .).

There are no configurations of the form (1, 2, . . .) because g1E1 ⊂ E1.
Let H = 〈h1, . . . , hn〉 be a group and F = {F1, F2} be a partition of H

so that Con(g, E) = Con(h,F). Since Con(h,F) contains a configuration of
the form (2, 1, b2, . . .), there is y ∈ H such that y ∈ F2 and h1 y ∈ F1. Since
Con(h,F) does not contain a configuration of the form (1, 2, . . .), hn1 y ∈ F1

for all n ≥ 1. Hence hn1 y 6= y for all n ≥ 1. Therefore hn1 6= e for all n ≥ 1
and h1 has infinite order. �

The second finiteness condition is a special case of Theorem 5.1 and a
weaker version of Proposition 6.4 but the proof is much shorter in this case.

Proposition 3.3. Let G be a finitely generated non-abelian group. Then
there is a partition, E, of G and a generating set {g1, g2, . . . , gn} such that the
corresponding configuration set cannot arise from an abelian group, that is,
configurations show that a group is not abelian.

Proof. Let g1, g2 ∈ G such that g1g2 6= g2g1. Choose further elements
g3, . . . , gn so that G = 〈g1, g2, . . . , gn〉. Put E1 = {e}, E2 = {g1}, E3 = {g2},
E4 = {g1g2}, E5 = {g2g1} and E6 = G\{e1 g1, g2, g1g2, g2g1}.

Since E1, E2 and E3 are singletons, there are unique configurations,

A = (1, 2, 3, A3, . . . , An) with A0 = 1,

B = (2, B1, 4, B3, . . . , Bn) with B0 = 2,

and C = (3, 5, C2, C3, . . . , Cn) with C0 = 3.

Let H = 〈h1, . . . , hn〉 be a group and F = {F1, F2, . . . , F6} be a par-
tition of H such that Con(g, E) = Con(h,F), where g = (g1, . . . , gn) and
h = (h1, . . . , hn). Let x ∈ F1. Then h1x ∈ F2 and h2x ∈ F3 because
A = (1, 2, 3, . . .) is the unique configuration with A0 = 1. Also, h2h1x ∈ F4

because B = (2, B1, 4, . . . ) is the unique configuration with B0 = 2 and
h1h2x ∈ F5 because C = (3, 5, C2, . . . ) is the unique configuration with
C0 = 3. Hence h1 h2x 6= h2 h1x. Therefore h1 h2 6= h2 h1 and H is not
abelian. �

Question 3.4. Which other finiteness conditions can be characterised by
configuration sets?
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4. Groups with the same configuration sets

It is seen in the above examples that configuration sets can distinguish
group properties such as being infinite or non-amenable. The remaining sec-
tions of the paper begin to examine the question of what it means for two
groups to have the same configuration sets. Recall from Definition 1.1 that
Con(G) denotes the set of all configuration sets for G resulting from all fi-
nite generating sets and all finite partitions. We begin with some further
terminology and notation.

Definition 4.1.

(i) The finitely generated groupG is configuration contained in the finitely
generated group H, written G� H, if

Con(G) ⊂ Con(H).

(ii) The groups G and H are configuration equivalent, written G ≈ H, if

Con(G) = Con(H).

If G can be generated by a set of n elements, then it has a configuration set
of (n+ 1)-tuples. Hence, if Con(G) ⊂ Con(H) for some H, then H also has a
configuration set of (n+ 1)-tuples and it follows that H has a generating set
of n elements. This proves the following assertion.

Proposition 4.2. Let G and H be finitely generated groups with G� H.
If n is the minimum number of elements needed to generate H, then at least
n elements are required to generate G.

The next result and Propositions 6.1 and 6.4 show that in some classes of
groups configuration equivalence implies isomorphism.

Proposition 4.3. Let G be a finite group and suppose that H ≈ G. Then
H is isomorphic to G.

Proof. The singleton sets partition H into |H| sets. It follows that G has
a partition into |H| sets. Hence |H| ≤ |G|. Similarly |G| ≤ |H|, so |G| = |H|.

Suppose that |G| = n and let G = {x1, . . . , xn}. Then E = {{xj} : 1 ≤ j
≤ n} is a partition of G and g = (x1, x2, . . . , xn) is a generating sequence of G.
Clearly the n configurations in Con(g, E) are the rows of the multiplication
table for G. There is a generating set h for H and partition F of H such
that Con(g, E) = Con(h,F). The correspondence between g and h is an
isomorphism between G and H. �

The isomorphism results rely on extra properties of groups in the class
being considered. It may be that configuration equivalence always implies
isomorphism but that seems unlikely.
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Question 4.4. Suppose that G1 and G2 are finitely generated and that
G1 ≈ G2.

(i) Is G1 isomorphic to G2?
(ii) Do there exist normal subgroups Ni of Gi (i = 1, 2) such that G1

∼=
G2/N2 and G2

∼= G1/N1?
(iii) Can (i) or (ii) be answered affirmatively if G1 and G2 are finitely

presented?

Part (ii) of the question is asked as a less optimistic version of part (i) and
also because in some circumstances an affirmative answer to part (ii) would
imply isomorphism of G1 and G2; see Question 5.3. It should not be taken
to suggest that G/N is configuration contained in G. Proposition 4.2 shows
that this is not possible if G/N can be generated by fewer elements than G.

5. Configurations of groups satisfying semigroup laws

Proposition 3.3 shows that if a group G has the same configuration sets
as an abelian group, then G is abelian. The condition for G to be abelian,
namely xy = yx for every x and y in G, is an example of a semigroup law.
The proposition will be extended to all semigroup laws in this section.

First, we recall the definition of a semigroup law. Let S be the free semi-
group on the set {x1, . . . , xn}, where n is a positive integer. Suppose that
µ = µ(x1, . . . , xn) and ν = ν(x1, . . . , xn) are two elements in S. We say that
µ = ν is a semigroup law in a group G if for every n-tuple (g1, . . . , gn) of
elements of G, we have µ(g1, . . . , gn) = ν(g1, . . . , gn).

The main result of this section is:

Theorem 5.1. Let G1 and G2 be two finitely generated groups with G2 �
G1 and suppose that G1 satisfies the semigroup law u(x1, . . . , xn) = ν(x1,
. . . , xn). Then G2 satisfies the same law.

In [3] Neumann and Taylor proved that there exist sequences of words
λn and ρn in the free semigroup on a countable set such that a group G is
nilpotent of class c if and only if c is the least positive integer such that G
satisfies the semigroup law λc = ρc. As a consequence of Theorem 5.1 and
this result of Neumann and Taylor we have:

Corollary 5.2. Let G1 and G2 be two finitely generated groups with
G2 � G1 and suppose that G1 is nilpotent of class c. Then G2 is nilpotent of
class c.

Proof of Theorem 5.1. Let

µ(x1, . . . , xn) = xα1
i1
· · ·xαkik and ν(x1, . . . , xn) = xβ1

j1
· · ·xβ`j` ,
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where αi and βj are positive integers, be two words in the free semigroup and
suppose that G2 does not satisfy the semigroup law µ = ν. Then there exist
n elements g1, . . . , gn ∈ G2 such that

(5.1) µ(g1, . . . , gn) 6= ν(g1, . . . , gn).

We will show that there exist n elements h1, . . . , hn ∈ G1 such that µ(h1,
. . . , hn) 6= ν(h1, . . . , hn) and this will complete the proof.

Set α = α1 + · · ·+ αk. Then each integer ξ ∈ {1, 2, . . . , α} may be written
uniquely as ξ = r +

∑k
a=s+1 αa, where r ∈ {1, . . . , αs} and, if ξ ≤ αk, s is

taken to be k and the sum to be empty. Define

yξ = grisg
αs+1
is+1

· · · gαkik for each ξ ∈ {1, 2, . . . , α}.

For example, y1 = gik and yαk+2 = g2
ik−1

gαkik . Then

gisyξ = yξ+1 if
k∑

a=s+1

αa ≤ ξ <
k∑
a=s

αa

and so 1, y1, . . . , yα is a path of length α in the Cayley graph of G2 from 1 to
gα1
i1
· · · gαkik . Put Y = {1, y1, . . . , yα}—the set of vertices visited by this path.

Similarly, set β = β1 + · · ·+ β` and define

zξ = grjsg
βs+1
js+1
· · · gβ`j` for each ξ ∈ {1, 2, . . . , β},

where ξ = r +
∑`
j=s+1 βj and r ∈ {1, . . . , βs}. Then 1, z1, . . . , zβ is a

path of length β in the Cayley graph of G2 from 1 to gβ1
j1
· · · gβ`j` . Put

Z = {1, z1, . . . , zβ}.
Let w1 = 1, w2, . . . , wm−1 be an enumeration of the elements of Y ∪

Z, where m = |Y ∪ Z| + 1. Define a partition of G2 by Eζ = {wζ}, ζ ∈
{1, 2, . . . ,m−1} and Em = G2 \ (Y ∪Z). Two properties of the configuration
set Con(g, E) will be needed for the argument to follow:

(i) since each Eζ is a singleton when ζ ∈ {1, 2, . . . ,m− 1}, for each such
ζ there is a unique C(ζ) ∈ Con(g, E) with x0(C(ζ)) ⊂ Eζ ; and

(ii) by (5.1) we have gα1
i1
· · · gαkik 6= gβ1

j1
· · · gβ`j` and it follows that there

are distinct a, b ∈ {1, 2, . . . ,m− 1} such that Ea = {gα1
i1
· · · gαkik } and

Eb = {gβ1
j1
· · · gβ`j` }.

Since G2 � G1, there is a generating set {h1, . . . , hn} of G1 and a partition
F = {F1, . . . , Fm} of G1 such that Con(h,F) = Con(g, E). We will show that
hα1
i1
· · ·hαkik 6= hβ1

j1
· · ·hβ`j` , so that G1 does not satisfy the law µ = ν.

As in Remark 1.2, it may be assumed that 1 ∈ F1. Then, by (i), there is
a unique configuration C(1) such that x0(C(1)) ⊂ F1. Hence hik belongs to
the set Fi, where i = C

(1)
ik

. By (i) again, there is a unique configuration C(i)

such that x0(C(i)) ⊂ Fi and so (in the case when αk ≥ 2) h2
ik
∈ Fj , where
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j = C
(i)
ik

. Continuing in this way we find that 1, hik , . . . , hrish
αs+1
is+1
· · ·hαkik , . . . ,

hα1
i1
· · ·hαkik is a path of length α in G1 that starts in F1 and ends in Fa, where

a is the integer defined in (ii). Similarly, 1, hj` , . . . , hrjsh
βs+1
js+1
· · ·hβ`j` , . . . ,

hβ1
j1
· · ·hβ`j` is a path that starts in F1 and ends in Fb. Since, by (ii), Fa 6= Fb,

we have Fa ∩ Fb = ∅ and so hα1
i1
· · ·hαkik 6= hβ1

j1
· · ·hβ`j` , as required. �

It is a natural question whether a stronger result can be established.

Question 5.3. Let G1 and G2 be finitely generated groups and G1 be
nilpotent. If G1 ≈ G2, does it then follow that G1

∼= G2?

If the answer to part (ii) of Question 4.4 is positive, then the answer of
Question 5.3 is also positive. For by Corollary 5.2, G2 is also nilpotent, and
we know that every finitely generated nilpotent group is finitely presented,
hence by hypothesis there exist normal subgroups Ni / Gi, for i = 1, 2, such
that G1

∼= G2/N2 and G2
∼= G1/N1. But G1 and G2 are finitely generated

residually finite and so they are hopfian (see page 40 of [4]). It follows that
G1
∼= G2.

That the answer to Question 5.3 is positive when G1 is abelian is shown in
the next section.

6. Configuration equivalence and isomorphism

It is shown in this section that configuration equivalence implies isomor-
phism in the two extreme cases when the groups are free or abelian. In the
case of free groups an even stronger result obtains.

Proposition 6.1. Let Fn be the free group of rank n > 0. If H is a
finitely generated group such that H � Fn, then H ∼= Fn.

Proof. Suppose that f1, . . . , fn are free generators for Fn and consider the
following subsets of Fn:

E1 = {1},
E2k = {reduced words starting with fk},

and E2k+1 = {reduced words starting with f−1
k },

where k = 1,. . . , n. Clearly E = {Ei : 1 ≤ i ≤ 2n + 1} is a partition for Fn.
Let f = (f1, . . . , fn). If x ∈ Fn and the reduced word for x does not begin
with f−1

k , then fkx ∈ E2k. On the other hand, if the reduced word for x does
begin with f−1

k , then fkx may belong to any Ei except E2k. It follows that
Con(f, E) consists of the 1 + n+ 2n2 configurations:

(1) (1, 2, 4, . . . , 2n);
(2) (2k, 2, 4, . . . , 2n), where k ∈ {1, . . . , n}; and
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(3) (2k + 1, 2, . . . , 2k − 2, i, 2k + 2, . . . , 2n), where k ∈ {1, . . . , n} and
i ∈ {1, 2, . . . , 2n, 2n+ 1} \ {2k}.

By hypothesis there exist a generating sequence h = (h1, . . . , hn) and a
partition D = {Di | 1 ≤ i ≤ 2n + 1} of H such that Con(h,D) = Con(f, E).
We prove that there is no non-trivial relation between h1, . . . , hn to complete
the proof.

The following properties of multiplication by hi’s transfer from Fn to H.
(P1) If α is a positive integer and x ∈ H \ D2k+1, where k ∈ {1, . . . , n},

then hαkx ∈ D2k. (For this, observe that the only configuration that
does not have 2k in the kth position is the one that has 2k+ 1 in the
0th position.)

(P2) If α is a positive integer and x ∈ H \D2k, where k ∈ {1, . . . , n}, then
h−αk x ∈ D2k+1. (For if h−αk x 6∈ D2k+1, then, by (P1), x = hαk (h−αk x) ∈
D2k, which is impossible.)

Let X = hα1
i1
· · ·hαtit , where ik 6= ik+1 for k = 1, . . . , t − 1 and the αk’s

are non-zero integers. We must show that X 6= 1. By Remark 1.2 it may
be supposed that 1 ∈ D1. Then to show that X 6= 1 it suffices to show
that X ∈ D2i1 if α1 > 0 and X ∈ D2i1+1 if α1 < 0. This may be done by
induction on t. If t = 1, then X = hα1

i1
. Since 1 6∈ Ds for all s > 1, (P1)

shows that X ∈ D2i1 if α1 > 0 and (P2) shows that X ∈ D2i1+1 if α1 < 0.
Now suppose inductively that t > 1 and the result is true for t − 1. Thus
Y = hα2

i2
· · ·hαtit ∈ D2i2 if α2 > 0 and Y ∈ D2i2+1 if α2 < 0. In either case

we have Y 6∈ D2i1+1 because i1 6= i2 and so, if α1 > 0, X = hα1
i1
Y ∈ D2i1 by

(P1). Also in either case we have Y 6∈ D2i1 because i1 6= i2 and so, if α1 < 0,
X = hα1

i1
Y ∈ D2i1+1 by (P2). This completes the proof. �

The next couple of lemmas are needed for the proof that configuration
equivalence of abelian groups implies isomorphism. However Lemma 6.3 could
be used to study configurations of any residually finite group.

Lemma 6.2. Let G be a finitely generated group and G/N be a quotient
group. Suppose that {g1N, . . . , gkN} generates G/N . Then there are elements
h1, . . . , h` in N such that G = 〈g1, . . . , gk, h1, . . . , h`〉.

Proof. Let x1, . . . , x` be a generating set for G. Then, since N is normal,
there is for each i ∈ {1, 2, . . . , `} an element yi ∈ 〈g1, . . . , gk〉 such that xiy−1

i ∈
N . Put hi = xiy

−1
i . Then G = 〈g1, . . . , gk, h1, . . . , h`〉. �

Lemma 6.3. Let G1 and G2 be finitely generated groups with G2 � G1

and suppose that G1 has a normal subgroup, N1, with finite index. Then G2

has a normal subgroup N2 with G2/N2
∼= G1/N1.

Proof. Let the index of N1 in G1 be m and let E = {N1, x2N1, . . . , xmN1}
be the partition of G1 into N1-cosets. Denote by πj the permutation of
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{1, 2, . . . ,m} such that xj(xiN1) = xπj(i)N1. Then {π1 = id, π2, . . . , πm} is a
group of permutations isomorphic to G1/N1.

By Lemma 6.2, there are elements n1, . . . , n` in N1 such that

g = (x2, . . . , xm;n1, . . . , n`)

is an ordered generating set for G1. Then Con(g, E) consists of m configura-
tions

C(i) = (i, π2(i), . . . , πm(i); i, . . . , i), i ∈ {1, 2, . . .m}.
Since G2 � G1, there are a partition F = {F1, . . . , Fm} and a generating
set h = (y2, . . . , ym; k1, . . . , k`) of G2 such that Con(h,F) = Con(g, E). These
configurations imply that for each j we have yjFi ⊂ Fπj(i), i ∈ {1, . . . ,m}.
Since {F1, . . . , Fm} is a partition of G2, it follows that in fact for each j ∈
{1, . . . ,m}

yjFi = Fπj(i), i ∈ {1, . . . ,m} .
Similarly, the configurations imply that for each j ∈ {1, . . . , `}

kjFi = Fi, i ∈ {1, . . . ,m} .
Thus left multiplication by each of y2, . . . , ym; k1, . . . , k` permutes {F1,
. . . , Fm}. Since these elements generate G2, we thus obtain a permutation
representation, ϕ, of G2 on {1, . . . ,m}. Clearly ϕ(G2) = {π1, π2, . . . , πm}.
Hence, setting N2 = ker(ϕ), we obtain G2/N2

∼= G1/N1. �

Proposition 6.4. Let G1 and G2 be finitely generated abelian groups such
that G1 ≈ G2. Then G1

∼= G2.

Proof. We have G1
∼= Z

r × F1 and G2
∼= Z

s × F2, for some finite abelian
groups F1, F2 and some integers r and s. We show that r = s and F1

∼= F2,
from which the result follows.

Without loss of generality, it may be assumed that r ≥ s. We may also
assume that G1 = Z

r × F1 and G2 = Z
s × F2. Choose n ∈ Z so that

gcd(n, |F2|) = 1. Put H1 = (nZ)r × F1, a subgroup with finite index in G1.
By Lemma 6.3, there is a normal subgroup H2 of G2 such that

G2/H2
∼= G1/H1

∼= (Z/nZ)r.

Since gcd(n, |F2|) = 1, it follows that F2 ≤ H2 and so Zs/ (Zs ∩H2) ∼=
(Z/nZ)r. Since Zs/ (Zs ∩H2) is generated by s elements and (Z/nZ)r can be
generated by no fewer than r elements, we have r = s.

That F1
∼= F2 may be shown by a similar method. As before, choose n ∈ Z

so that gcd(n, |F2|) = 1 and this time put H1 = (nZ)r × {0}. By Lemma 6.3,
there is a normal subgroup H2 of G2 such that

G2/H2
∼= G1/H1

∼= (Z/nZ)r × F1.

Let ϕ : G2 � (Z/nZ)r × F1 be the surjective homomorphism induced by this
isomorphism. Since gcd(n, |F2|) = 1, it follows that ϕ−1((Z/nZ)r)∩F2 = {0}



GROUP PROPERTIES 873

and so ϕ induces a surjective homomorphism ϕ̃ : F2 � F1. By symmetry,
there is also a surjective homomorphism ψ̃ : F1 � F2 and so, since F1 and F2

are finite abelian groups, F1
∼= F2. �
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