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RELATIVE POINCARE LEMMA, CONTRACTIBILITY,
QUASI-HOMOGENEITY AND VECTOR FIELDS TANGENT

TO A SINGULAR VARIETY

W. DOMITRZ, S. JANECZKO, AND M. ZHITOMIRSKII

Abstract. We study the interplay between the properties of the germ
of a singular variety N ⊂ Rn given in the title and the algebra of vec-

tor fields tangent to N . The Poincare lemma property means that any
closed differential (p+1)-form vanishing at any point ofN is a differential

of a p-form which also vanishes at any point of N . In particular, we show
that the classical quasi-homogeneity is not a necessary condition for the
Poincare lemma property; it can be replaced by quasi-homogeneity with

respect to a smooth submanifold of Rn or a chain of smooth submani-
folds. We prove that N is quasi-homogeneous if and only if there exists a

vector field V, V (0) = 0, which is tangent to N and has positive eigenval-

ues. We also generalize this theorem to quasi-homogeneity with respect
to a smooth submanifold of Rn.

1. Introduction

Let N be the germ at 0 of a singular variety in Rn. We study the interplay
between the properties of N given in the title and the algebra of vector fields
tangent to N .

We work with germs in either the analytic category or the C∞ category.
By the Poincare lemma property we mean the following property of N : Any
closed differential (p+ 1)-form vanishing at any point of N is a differential of
a p-form which also vanishes at any point of N .

The proof of the classical (global) Poincare lemma uses contraction to a
point; see, for example, [5]. This method also can be applied to singular varie-
ties N ⊂ Rn. The main corollary of the results in [18] is as follows (Theorem
2.3): If Rn is analytically contractible to 0 along N then N has the Poincare
lemma property. The analytic contraction of Rn to 0 along N is an analytic
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family of maps Ft : Rn → R
n such that F1 is the identity map, F0(Rn) = 0,

and Ft(N) ⊂ N for all t. In Section 2 we show (Theorem 2.6) that the
Poincare lemma property holds under weaker assumptions: It is enough to
require that Rn is analytically contractible to N along N (i.e., F0(Rn) ⊂ N
instead of F0(Rn) = 0). Also, the analytic contraction can be replaced by the
piece-wise analytic contraction with respect to the parameter t. This result
remains true in the C∞ category.

The Poincare lemma property of N can be expressed as the triviality of the
de Rham cohomology groups of N . Such cohomology groups were constructed
in [12], [13]. See also [18], [4], [14] and Section 3 of the present paper. In
Section 3 we present a reduction theorem (Theorem 3.1), which helps to study
the cohomology groups and to distinguish the cases when they are trivial.

Checking if there exists a smooth or analytic contraction to 0 along N
is problematic. The simplest case where this is so is the case when N is
quasi-homogeneous. This means that in some local coordinate system N con-
tains, along with any point (x1, . . . , xn), the curve (tλ1x1, . . . , t

λnxn), where
λ1, . . . , λn are positive numbers, called weights. Is this the only case of smooth
(analytic) contractibility? This question was studied in many papers, in an
attempt to give a positive answer for a wide class of singular varieties N . In
[16] it was proved that analytic contractibility and quasi-homogeneity are the
same property if N is a singular plain curve, with an algebraically isolated
singularity. Moreover, in [16] it was shown that these properties are equiva-
lent to the Poincare lemma property. Later this result was generalized in [19],
where the same was proved in the case when N is a singular hypersurface
with an algebraically isolated singularity.

In Section 4 we show that the classical quasi-homogeneity is not a neces-
sary condition for contractibility (and consequently for the Poincare lemma
property). We give a definition of quasi-homogeneity of N with respect to
a smooth submanifold S ⊂ R

n, which may be regarded as the classical
quasi-homogeneity with some of the weights allowed to be 0. The classi-
cal quasi-homogeneity is the quasi-homogeneity with respect to S = {0}.
We prove (Theorem 4.7) that if N is quasi-homogeneous with respect to
S and S is contained in N then R

n is contractible to N along N (and
so, by our results in Section 2, N has the Poincare lemma property). We
give an example of an analytic singular set N which is quasi-homogeneous
with respect to a certain smooth submanifold S in some coordinate sys-
tem, but not quasi-homogeneous, i.e., not quasi-homogeneous with respect
to S = {0}, in any coordinate system. Theorem 4.11 generalizes Theorem
4.7. We define quasi-homogeneity with respect to a chain of smooth subman-
ifolds S1 ⊂ S2 ⊂ · · · ⊂ Sr and show that the quasi-homogeneity of N with
respect to the chain implies piece-wise smooth contractibility of Rn to S1

along N . If S1 ⊂ N then this implies contractibility to N and consequently
the Poincare lemma property. In the general case, when S1 is not contained
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in N , our reduction theorem (Theorem 3.1) reduces the cohomology groups
of N ⊂ Rn to the cohomology groups of (N ∩ S1) ⊂ S1 (Theorem 4.13).

The quasi-homogeneity or its generalizations (quasi-homogeneity with re-
spect to a smooth submanifold or a chain of smooth submanifolds) remain
the main tools to check the (piece-wise) smooth or analytic contractibility
and the Poincare lemma property. According to A. Givental’, positive quasi-
homogeneity should be regarded as an analytic analog of contractibility; see
[10].

How can one check if N is quasi-homogeneous? Assume that the set of non-
singular points of N is dense and that the ideal I(N) of functions vanishing
on N is p-generated (p < ∞) and can be identified with N (this is always
so for analytic varieties). Then the simplest way to prove that N is quasi-
homogeneous is to prove that the ideal I(N) is quasi-homogeneous, i.e., there
exist (a) a local coordinate system x and (b) a tuple of generators H1, . . . ,Hp

such that in the coordinate system x each of the generators H1, . . . ,Hp is
quasi-homogeneous with the same weights. How can one check that (a) and (b)
exist or prove that they do not exist if one works with arbitrary generators and
an arbitrary local coordinate system? One should not expect an algorithm,
but it is important to give an answer in terms of some canonical object.

It is clear that the quasi-homogeneity of N (or the ideal I(N)) is related
to the following property of the algebra of all smooth or analytic vector fields
V tangent to N (or to the ideal I(N), which means that V (f) ∈ I(N) for
any f ∈ I(N)). If N is quasi-homogeneous then one of these vector fields
must have positive eigenvalues. In fact, it follows from the definition of quasi-
homogeneity of N that in suitable coordinates the Euler vector field E =
λ1x1

∂
∂x1

+ · · · + λnxn
∂
∂xn

, where λ1, . . . , λn are the weights, is tangent to
N . If we change the coordinate system then E will be transformed to a
vector field of another form, but the new vector field has the same eigenvalues
λ1, . . . , λn. Therefore the quasi-homogeneity of N implies the existence of
a smooth (analytic) vector field V which is tangent to N and has positive
eigenvalues at the singular point 0. Is this also a sufficient property for quasi-
homogeneity?

We answer this question in Section 5, which contains the main contribu-
tion of the present paper. Theorem 5.1 gives a positive answer: N is quasi-
homogeneous if and only if there exists a smooth (analytic) vector field V ,
V (0) = 0, which is tangent to N and has positive eigenvalues at the singu-
lar point 0. Theorem 5.2 generalizes Theorem 5.1 from the classical quasi-
homogeneity (i.e., quasi-homogeneity with respect to {0}) to the quasi-ho-
mogeneity with respect to a smooth submanifold S ⊂ Rn. A necessary and
sufficient condition for such quasi-homogeneity is the existence of a vector
field V which vanishes at any point of S and has at any point of S the same
positive eigenvalues corresponding to directions transversal to S.
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Theorem 5.7 is a reformulation of Theorem 5.1 in terms of the ideal I(N),
but it also contains an additional statement on the degree of quasi-homogeneity
of the ideal. The tangency of a vector field V to the ideal I(N) implies that
V (H) = R(·)H, where H = (H1, . . . ,Hp)t is any tuple of generators of I(N)
and R(·) is a matrix function. It is easy to see that the eigenvalues d1, . . . , dp
of the matrix R(0) do not depend on the choice of generators, i.e., they are
the invariants of a vector field V tangent to I(N). Theorem 5.7 states that if
V has positive eigenvalues then there exists a coordinate system and a tuple
of generators Ĥ1, . . . , Ĥp such that in this coordinate system Ĥi is quasi-
homogeneous of degree di.

Theorem 5.8 generalizes, in the same way, Theorem 5.2. Theorems 5.1,
5.2, 5.7, and 5.8 imply Theorem 5.10, which looks obvious, but in fact is not.
Theorem 5.10 states that if N can be identified with I(N) and the set of
non-singular points of N is dense then the quasi-homogeneity (with respect
to a smooth submanifold) of N and the quasi-homogeneity (with respect to a
smooth submanifold) of I(N) is the same property.

Like all other results in this paper, Theorems 5.1, 5.2, 5.7, and 5.8 hold in
either the analytic or the C∞ category. In the analytic category the particu-
lar case p = 1 of Theorem 5.7 can be compared with the distinguished Saito
theorem [19] stating that a function germ H with algebraically isolated singu-
larity is quasi-homogeneous if and only if it belongs to the ideal generated by
its partial derivatives. Recently the Saito theorem was generalized in [20] (see
also the references in [20]) to complete intersection singularities. The relation
between the results in [20] and Theorem 5.7 is yet to be understood.

We prove the results of Section 5 in Section 6. (The theorems in Sections
2–4 are proved right after their formulations.) The proof of the results of
Section 5 consists of several steps; therefore we divide Section 6 into several
subsections.

In the Appendix we compare the Poincare lemma property used in this
paper with a different version of this property studied in [9], [10]: The property
of an analytic set N that any closed (p+ 1)-form with vanishing pullback to
the regular part of N is a differential of a p-form satisfying the same condition.
The corresponding de Rham complex is a priori different from the complex in
Section 3. The conditions (certain types of contractibility) given in Sections
2 and 3 are sufficient for exactness of both complexes. Nevertheless, we do
not know if the cohomology groups of the two complexes are isomorphic for
any analytic varieties.

Note that in the present paper we work with germs of smooth or analytic
differential forms defined on the whole neighborhood of 0 ∈ Rn. There are also
definitions of de Rham complexes of a singular variety N based on differential
forms of certain functional categories defined on N only. A survey of results
and references can be found in the paper [6] and the book [15]; see also the
recent work [7].
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2. Relative Poincare lemma and contractibility

Convention. We work in either the C∞ or the analytic category. All
objects (varieties, maps, differential forms, etc.) are germs at 0.

Definition 2.1. We say that a set N ⊂ R
n has the Poincare lemma

property if any closed differential (p+ 1)-form vanishing at any point of N is
a differential of a p-form which also vanishes at any point of N .

By saying that a differential p-form ω vanishes at a point x ∈ Rn we mean
that the algebraic form ω|x annihilates any tuple of p-vectors in TxR

n. This
of course implies that the pullback of ω to the regular part of N (the set of
points near which N is a smooth submanifold of Rn) is zero, but the inverse
is not true. For example, the 1-form dx1 on R2(x1, x2) has zero pullback to
the line x1 = 0, but it does not vanish at points of this line.

Definition 2.2. Let N be a subset in Rn. We say that Rn is smoothly
(analytically) contractible to 0 along N if there exists a family Ft of smooth
(analytic) maps from R

n to Rn depending smoothly (analytically) on t ∈ [0, 1]
such that F1 is the identity map, F0(Rn) = {0}, and Ft(N) ⊂ N for all
t ∈ [0, 1]. The family Ft is called a smooth (analytic) contraction.

Theorem 2.3 (Main corollary of the results in [18]). Let N ⊂ Rn. If Rn

is smoothly (analytically) contractible to 0 along N then N has the Poincare
lemma property.

This theorem holds globally, not only locally, and one can replace Rn by a
smooth manifold. Though in [18] only the holomorphic case was considered,
the proof remains the same in the analytic and the C∞ categories. It is similar
to one of the proofs of the classical Poincare lemma (see, for example, [5]).
The key point is the following lemma.

Lemma 2.4. Let Ft : Rn → R
n, t ∈ [a, b], be a family of maps depending

smoothly (analytically) on t such that Ft(N) ⊂ N for any t ∈ [a, b]. Let ω be
a closed differential (p + 1)-form on Rn vanishing at any point of N . Then
F ∗b ω − F ∗aω = dα, where α is a differential p-form vanishing at any point of
N .

Theorem 2.3 follows from Lemma 2.4 applied to a contraction Ft of Rn to
0 along N because F ∗1 ω = ω and F ∗0 ω = 0.

Proof of Lemma 2.4. We have F ∗b ω−F ∗aω =
∫ b
a

(F ∗t ω)′dt, where the deriv-
ative is taken with respect to t. It is well known that

(F ∗t ω)′ = F ∗t (LVtω), LVtω = Vtcdω + d(Vtcω), Vt =
dFt
dt

.
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Here LVt is the Lie derivative along the vector field Vt. Since ω is closed we
get

F ∗b ω − F ∗aω = dα, α =
∫ b

a

F ∗t (Vtcω)dt.

Since the (p + 1)-form ω vanishes at any point of N , so does the form Vtcω
and, due to assumption that Ft(N) ⊂ N , the form F ∗t (Vtcω) also vanishes at
any point of N . Consequently, the p-form α vanishes at any point of N . �

Theorem 2.3 can be generalized. The Poincare lemma property of a subset
N ⊂ Rn holds with weaker assumptions: It suffices to have contractibility
along N to N (not necessarily to 0), and the smooth (analytic) contractibility
can be replaced by piece-wise smooth (analytic) contractibility with respect
to t.

Definition 2.5 (cf. [18]). Let N and Y be subsets of Rn. We say that Rn

is piece-wise smoothly (analytically) contractible to Y along N if there exists
a family Ft, t ∈ [0, 1], of smooth (analytic) maps Rn → R

n which is piece-
wise smooth (analytic) in t such that F1 is the identity map, F0(Rn) ⊂ Y and
Ft(N) ⊂ N for all t ∈ [0, 1].

In the present section this definition will be used with Y = N and in
the next section, on de Rham cohomology groups, with Y being a smooth
submanifold of Rn.

Theorem 2.6. Let N ⊂ Rn. If Rn is piece-wise smoothly (analytically)
contractible to N along N then N has the Poincare lemma property.

Like Theorem 2.3 , this theorem also holds globally and Rn can be replaced
by a smooth manifold.

Proof. Let Ft be the contraction of Rn to N along N . The proof is also
based on Lemma 2.4. Fix points 0 = t0 < t1 < · · · < tr = 1 such that Ft is
smooth (analytic) in t when t ∈ [ti, ti+1]. Take any closed differential (p+ 1)-
form ω on Rn vanishing at any point of N . Applying Lemma 2.4 r times (with
Ft restricted to [tr−1, tr] = [tr−1, 1], then to [tr−2, tr−1], and so on until we
reach the interval [t0, t1] = [0, t1]), we obtain that F ∗1 ω−F ∗0 ω = dα1+· · ·+dαr,
where the αi are differential p-forms vanishing at any point of N . It remains
to note that F ∗1 ω = ω and F ∗0 ω = 0. The latter is true because F0(Rn) ⊂ N
and ω vanishes at any point of N . �

3. De Rham cohomology of a singular set

The Poincare lemma property can be expressed in terms of the de Rham
cohomology of a singular set: A set N has the Poincare lemma property if
and only if the de Rham cohomology groups are all trivial.
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The de Rham cohomology were defined in [12], [13]. See also [18], [4], [14].
They are related with the following objects (recall that we work throughout
the paper with germs):

Ωp(Rn): The space of smooth (analytic) differential p-forms (functions
when p = 0) on Rn.

Kp
N (Rn): The subspace of Ωp(Rn) consisting of p-forms of the form
α + dβ, where α and β are p-forms and (p − 1)-forms, respectively,
vanishing at any point of the set N .

ΩpN (Rn): The factor-space Ωp(Rn)/Kp
N (Rn).

Note that if ω ∈ Kp
N (Rn) then dω ∈ Kp+1

N (Rn). Therefore the operator
dp : ΩpN (Rn) → Ωp+1

N (Rn), dp(ω) = dω, is well-defined, and one has the
complex (called the Grauert-Grothendieck complex)

d0 d1 d2 d3

Ω0
N (Rn) → Ω1

N (Rn) → Ω2
N (Rn) → Ω3

N (Rn) → · · ·

This complex is the factor-complex of the classical de Rham complex. The
classical de Rham sequence is exact because we work with germs. There-
fore the Grauert-Grothendieck sequence is exact if and only if the sequence
K1
N (Rn) → K2

N (Rn) → K3
N (Rn) → · · · is exact. It is easy to see that exact-

ness of the sequence Kp−1
N (Rn)→ Kp

N (Rn)→ Kp+1
N (Rn) is the same condition

as the Poincare lemma property for closed p-forms vanishing at any point ofN .
It follows that exactness of the sequence Ωp−1

N (Rn) → ΩpN (Rn) → Ωp+1
N (Rn)

is the same condition as the Poincare lemma property for closed (p+ 1)-forms
vanishing at any point of N . Therefore the set N has the Poincare lemma
property if and only if the Grauert-Grothendieck sequence is exact.

In general, the Grauert-Grothendieck sequence defines the cohomology
groups

Hp
N (Rn) = Kernel(dp)/ Image(dp−1),

which are invariants of N . If N does not have the Poincare lemma property
then at least one of the cohomology groups is not trivial. Namely, the group
Hp
N (Rn) is trivial if and only if N has Poincare lemma property for closed

(p+ 1)-forms vanishing at any point of N .
The following theorem allows us to reduce the study of the cohomology

groups Hp
N (Rn) to the study of the cohomology groups Hp

N∩S(S), where S is
a smooth submanifold of Rn, provided that one has a type of contraction of
R
n to S along N ; see Definition 2.5.

Theorem 3.1. Let N ⊂ Rn, and let S be a smooth submanifold of Rn.
If Rn is piece-wise smoothly (analytically) contractible to S along N then the
cohomology group Hp

N (Rn) is isomorphic to the cohomology group Hp
N∩S(S),

for any p.
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Note that Theorem 2.3 is a simple particular case of Theorem 3.1: It can
be obtained from Theorem 3.1 by taking S = {0}. Theorem 3.1 holds only
locally; a global analog of Theorem 3.1 requires additional assumptions.

Proof. Let i : S → R
n be the natural embedding. It is clear that

i∗(Kp
N (Rn)) ⊂ Kp

N∩S(S).

Therefore the map i∗ : ΩpN (Rn) → ΩpN∩S(S) is well-defined. Since d ◦ i∗ =
i∗ ◦d, i∗ induces the map i∗ : Hp

N (Rn)→ Hp
S∩N (S). Any germ of a differential

form on S can be obtained as the pullback i∗ of a germ of a differential form on
R
n. Therefore the map i∗ is a surjective homomorphism. It remains to prove

that it is injective, i.e., that it has trivial kernel. Analyzing this condition one
can reduce Theorem 3.1 to the following lemma.

Lemma 3.2. Let S be a smooth submanifold of Rn such that Rn is piece-
wise smoothly (analytically) contractible to S along a subset N ⊂ R

n. Let
i be the natural embedding S → R

n. Let ω be a closed (p + 1)-form on Rn

vanishing at any point of N . If i∗ω is a differential of a p-form on S vanishing
at any point of N ∩ S then ω is a differential of a p-form on Rn vanishing at
any point of N .

Proof of Lemma 3.2. Let Ft be a piece-wise smooth (analytic) contraction
of Rn to S along N . We use Lemma 2.4 in the same way as in the proof of
Theorem 2.6. This gives us the relation ω = F ∗0 ω + dα, where α is a p-form
vanishing at any point of N . To prove the lemma we have to show that F ∗0 ω
is a differential of a p-form vanishing at points of N . �

Since F0(Rn) ⊂ S, one has F0 = i ◦ F0 and consequently F ∗0 ω = F ∗0 ◦ i∗ω.
The p-form i∗ω vanishes at any point of the set N ∩ S. By the assumption of
the lemma i∗ω = dα, where α is a p-form on S vanishing at any point of the
set S ∩ N . We obtain F ∗0 ω = d(F ∗0 α) (on the left hand side of this relation
we consider F0 as a map from R

n to Rn and on the right hand side as a map
from R

n to S). Since F0 takes N to N ∩S and α vanishes at any point of the
set N ∩ S, F ∗0 α is a p-form on Rn vanishing at any point of N . �

In the next section we will present some corollaries to Theorem 3.1. An
immediate corollary is as follows.

Corollary 3.3. If Rn is contractible to a smooth k-dimensional subman-
ifold along N then for any p ≥ k the cohomology group Hp

N (Rn) is trivial and
the Poincare lemma property holds for closed (p + 1)-forms vanishing at any
point of N .
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4. Contractibility and quasi-homogeneity

In general, it is hard to determine if there exists a piece-wise smooth or
analytic contraction. Nevertheless, in certain cases the existence of a smooth
(analytic) contraction is obvious.

Example 4.1. Let us prove, using Theorem 2.3, that the germ N at 0 of
a smooth submanifold of Rn has the Poincare lemma property. Take a local
coordinate system x1, . . . , xn such that N = {x1 = · · · = xs = 0}. Then the
family Ft : (x1, . . . , xn)→ (tx1, . . . , txn) is an analytic contraction of Rn to 0
along N . Consequently, the germ of any smooth submanifold of Rn has the
Poincare lemma property.

If N is a singular variety then the existence of a smooth (analytic) contrac-
tion of Rn to 0 or N along N depends on the singularity of N .

Example 4.2 (from [18]). Let N be the singular plane curve given by the
equation H(x1, x2) = x4

1 + ax1x
4
2 + x5

2 = 0, a ∈ R. It follows from results in
[18] that N does not have the Poincare lemma property if a 6= 0. For example,
the closed 2-form H(x1, x2)dx1 ∧ dx2 vanishes at any point of N , but if a 6= 0
it is not a differential of any 1-form vanishing at any point of N . Therefore
there is no smooth or analytic contraction of R2 to 0 (and, by Theorem 2.6,
to N) along N if a 6= 0. Such a contraction exists if a = 0; it is given by the
maps (x1, x2) → (t5x1, t

4x2). Therefore, if a = 0 then N has the Poincare
lemma property.

In fact, Example 4.1 is based on the local homogeneity of any smooth sub-
manifold N ⊂ Rn (in suitable coordinates the map x→ tx takes N to itself),
and Example 4.2 with a = 0 is based on the local quasi-homogeneity: In
suitable coordinates the map (x1, x2) → (t5x1, t

4x2) takes N to itself. The
quasi-homogeneity generalizes homogeneity. The close relation between the
analytic contractibility to 0 along N and the quasi-homogeneity of N was
shown in [16], [17], [19], [10]. We will use the following definition of quasi-
homogeneity of a priori an arbitrary set.

Definition 4.3. A subset N ⊂ Rn is called quasi-homogeneous if there
exists a local coordinate system x1, . . . , xn and positive numbers λ1, . . . , λn
(called weights) such that for all t the map Ft : (x1, . . . xn) → (tλ1x1, . . . ,
tλnxn) takes any point p ∈ N to a point Ft(p) ∈ N provided that p and Ft(p)
are sufficiently close to 0.

If N is quasi-homogeneous then the family Ft in this definition is a smooth
(analytic) contraction of Rn to 0 along N . Therefore Theorem 2.3 implies the
following corollary.
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Theorem 4.4. Any quasi-homogeneous germ of a subset of Rn has the
Poincare lemma property.

Example 4.5. (a) The image of any smooth curve in Rn of the form
s → (si1 , . . . , sin) has the Poincare lemma property because it is a quasi-
homogeneous set with the weights i1, . . . , in.

(b) The image of any smooth plane curve germ of the form (s2, o(s2)),
except for infinitely degenerate curves whose Taylor series is RL-equivalent
to (s2, 0), has the Poincare lemma property. The same is true for any plane
curve of the form (s3, s4 + o(s4)) or (s3, s5 + o(s5)), because any such curve
is RL-equivalent to one of the curves (s2, s2k+1), (s3, s4), (s3, s5); see [8].

In Section 2 we showed that the Poincare lemma property also holds under
a weaker type of contractibility. This suggests that the quasi-homogeneity
is not a necessary condition for the Poincare lemma property. We will show
that if a subset N ⊂ R

n contains a smooth submanifold S of Rn then N
has the Poincare lemma property provided that N is quasi-homogeneous with
respect to S according to the definition given below. We will also give an
example showing that in general the quasi-homogeneity with respect to S
does not imply the classical quasi-homogeneity (in any coordinate system),
and therefore the classical quasi-homogeneity is not a necessary condition for
the Poincare lemma property.

Definition 4.6. Let N be a subset of Rn, and let S be a smooth sub-
manifold of Rn of codimension k. We say that N is quasi-homogeneous
with respect to S if there exists a local coordinate system (x, y) of Rn,
x = (x1, . . . , xk), y = (y1, . . . , yn−k), and positive numbers λ1, . . . , λk such
that S is given by the equations x = 0 and such that for all t the map
Ft : (x1, . . . xk, y1, . . . , yn−k) → (tλ1x1, . . . , t

λnxk, y1, . . . , yn−k) takes any
point p ∈ N to a point Ft(p) ∈ N provided that p and Ft(p) are sufficiently
close to 0.

This definition generalizes the definition of the classical quasi-homoge-
neity, which is the quasi-homogeneity with respect to S = {0}. The quasi-
homogeneity with respect to S can be understood as the classical quasi-
homogeneity with some of the weights allowed to be 0.

If N is quasi-homogeneous with respect to S then Rn is smoothly (analy-
tically) contractible to N along N provided that S ⊂ N . Therefore Theorem
2.6 implies the following corollary.

Theorem 4.7. Let N ⊂ Rn. Assume that S ⊂ N , where S is a smooth
submanifold of Rn. If N is quasi-homogeneous with respect to S then N has
the Poincare lemma property.
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Remark 4.8. Theorem 4.7 can also be obtained as a corollary of Theorem
3.1. In fact, the quasi-homogeneity ofN with respect to S implies, by Theorem
3.1, that the cohomology groups Hp

N (Rn) are isomorphic to the cohomology
groups Hp

N∩S(S). Since S ⊂ N , N ∩ S = S and Hp
N∩S(S) = Hp

S(S) = {0}.

Example 4.9. Let

N = {(x1, x2, y) ∈ R3 : H(x1, x2, y) = (x2
1 − x2

2)2 + yx2
1x

2
2 = 0}.

The set N is quasi-homogeneous with respect to the curve S : {x1 = x2 = 0}
with weights (1, 1): If (x1, x2, y) ∈ N then (tx1, tx2, y) ∈ N . Since S ⊂ N , by
Theorem 4.7 the set N has the Poincare lemma property. In the next section
we will show that N is not quasi-homogeneous (in any coordinate system) in
the classical sense; see Example 5.11.

The quasi-homogeneity of N with respect to a smooth submanifold of Rn

contained in N is also not a necessary condition for the Poincare lemma
property, as we will show in Example 4.12 below. It can be weakened by
replacing the quasi-homogeneity with respect to S by the quasi-homogeneity
with respect to a chain of smooth submanifolds S1 ⊂ S2 ⊂ · · · ⊂ Sr such that
S1 ⊂ N .

Definition 4.10. A subset N ⊂ R
n is called quasi-homogeneous with

respect to the chain S1 ⊂ S2 ⊂ · · · ⊂ Sr of smooth submanifolds of Rn if
N is quasi-homogeneous with respect to Sr, and the intersection N ∩ Si is
quasi-homogeneous with respect to Si−1, i = r, r − 1, . . . , 2. The weights of
the quasi-homogeneity of N ∩ Si with respect to Si−1 are allowed to depend
on i.

It is easy to see that the quasi-homogeneity of N with respect to a chain
S1 ⊂ S2 ⊂ · · · ⊂ Sr implies the existence of a contraction of Rn to S1 along N ,
but now this contraction is piece-wise smooth (analytic). If S1 ⊂ N then we
have a piece-wise smooth (analytic) contraction to N along N . Using again
Theorem 2.6 we obtain the following corollary.

Theorem 4.11. Let N ⊂ Rn. If N is quasi-homogeneous with respect to
a chain S1 ⊂ S2 ⊂ · · · ⊂ Sr of smooth submanifolds of Rn and S1 ⊂ N then
N has the Poincare lemma property.

Example 4.12. Let N be the subvariety of R14(x1, . . . , x8, y1, . . . , y4,
z1, z2) given as the common zero level of the 6 functions

H1(x, y, z) = (x2
1 − x2

2)2 + y1x
2
1x

2
2, H2(x, y, z) = (x2

3 − x2
4)2 + y2x

2
3x

2
4,

H3(x, y, z) = (x2
5 − x2

6)2 + y3x
2
5x

2
6, H4(x, y, z) = (x2

7 − x2
8)2 + y4x

2
7x

2
8,

G1(x, y, z) = (y2
1 − y2

2)2 + z1y
2
1y

2
2 , G2(x, y, z) = (y2

3 − y2
4)2 + z2y

2
3y

2
4 .
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Let us show that N has the Poincare lemma property using Theorem 4.11. Let
S1 be the smooth 2-dimensional submanifold of R14 given by the equations
x = y = 0 and let S2 be the smooth 6-dimensional submanifold given by
the equations x = 0. It is clear that N is quasi-homogeneous with respect
to S2 with weights 1, 1, 1, 1, 1, 1, 1, 1 and the set N ∩ S2 = {G1(x, y, z) =
G2(x, y, z) = x = 0} is quasi-homogeneous with respect to S1 with weights
1, 1, 1, 1. Therefore N is quasi-homogeneous with respect to the chain S1 ⊂
S2. Since S1 is a subset of N , by Theorem 4.11 N has the Poincare lemma
property.

One can show that in this exampleN is not quasi-homogeneous with respect
to any single smooth submanifold of R14 contained in N . In fact, any smooth
submanifold of R14 contained in N is either the plane S1 or a non-singular
curve in this plane. It is easy to see that N is not quasi-homogeneous with
respect to any of such submanifolds.

The assumption S1 ⊂ N in Theorem 4.11 cannot be removed; see Example
4.14. In the general case, without the assumption S1 ⊂ N , we have the
following corollary to Theorem 3.1.

Theorem 4.13. Let N be the germ at 0 of a subset of Rn. If N is quasi-
homogeneous with respect to a chain S1 ⊂ S2 ⊂ · · · ⊂ Sr of smooth sub-
manifolds of Rn then the cohomology groups Hp

N (Rn) and Hp
N∩S1

(S1) are
isomorphic.

Theorem 4.13 generalizes Theorem 4.11. In fact, if S1 ⊂ N then

Hp
N∩S1

(S1) = Hp
S1

(S1) = {0}.
Therefore N has the Poincare lemma property.

Example 4.14. Let Na be the subvariety of R14(x1, . . . , x8, y1, . . . , y4,
z1, z2) defined as the common zero level of the functionsH1,H2,H3,H4, G1, G2

given in Example 4.12 and the function

F (x, y, z) = z4
1 + az1z

4
2 + z5

2 .

The set Na is quasi-homogeneous with respect to a chain of submanifolds
S1 ⊂ S2, where S1 is a smooth 2-dimensional submanifold of R14 given by
the equations x = y = 0 and S2 is a smooth 6-dimensional submanifold given
by the equations x = 0 (see Example 4.12). Let Ca be a subset of R2(z1, z2)
given by the equation F (0, 0, z) = 0. Then the cohomology groups Hp

Na
(R14)

and Hp
Na∩S1

(S1) = Hp
Ca

(R2) are isomorphic by Theorem 4.13. If p > 2 then
any p-form on R2 is zero and therefore Hp

Ca
(R2) = 0 for p > 1; see Section 3.

By Example 4.2, H1
Ca

(R2) = 0 if and only if a = 0. Therefore if p > 1 then
Hp
Na

(R14) is trivial and H1
Na

(R14) is trivial if and only if a = 0. Consequently
Na has the Poincare lemma property if and only if a = 0, and if a 6= 0 then
the Poincare lemma property holds for closed p-forms if and only if p 6= 2.
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5. Quasi-homogeneity and vector fields tangent to a singular
variety

In this section we present our main results relating the quasi-homogeneity
of a variety N ⊂ Rn with the algebra of smooth (analytic) vector fields tangent
to N . We will work with germs of subsets N ⊂ Rn satisfying the following
conditions:

(a) N = {H1 = · · · = Hp = 0}, where (H1, . . . ,Hp) is a tuple of genera-
tors of the ideal of all smooth (analytic) function germs vanishing at
any point of N .

(b) The set of non-singular points of N (the points near which N has the
structure of a smooth submanifold of Rn) is dense in N .

By saying that a vector field V on Rn is tangent to a set N ⊂ Rn we mean
that V is tangent to N at any non-singular point of N .

Theorem 5.1. The germ N at 0 of a subset of Rn satisfying the assump-
tions (a) and (b) is quasi-homogeneous if and only if there exists a vector field
V , V (0) = 0, which is tangent to N and whose eigenvalues at 0 are positive
real numbers.

A generalization of this theorem to the quasi-homogeneity with respect
to a smooth submanifold S ⊂ Rn is as follows. Note that if V is a vector
field which vanishes at any point of S then at any point x ∈ S it has zero
eigenvalues corresponding to directions in TxS, i.e., V always has (dimS) zero
eigenvalues. The other (codimS) eigenvalues corresponding to directions in
T0R

n transversal to S are, in general, arbitrary.

Theorem 5.2. Let S be a smooth submanifold of Rn. The germ N at 0 of
a subset of Rn satisfying the assumptions (a) and (b) is quasi-homogeneous
with respect to S if and only if there exists a vector field V which is tangent to
N , vanishes at any point x ∈ S, and whose eigenvalues at x ∈ S corresponding
to directions transversal to S do not depend on x and are positive real numbers.

The implication from quasi-homogeneity to the existence of a vector with
the required properties is simple. In fact, if N is quasi-homogeneous with
respect to S (the classical quasi-homogeneity is the case S = {0}) then in
some coordinate system S is given by the equations x1 = · · · = xk = 0 and
there exists a tuple (λ1, . . . , λk) of positive numbers such that for any non-
singular point a = (x1, . . . , xk, y1, . . . , yn−k) ∈ N one has (tλ1x1, . . . , t

λnxk,
y1, . . . , yn−k) ∈ N provided that t is close to 1. Differentiating this inclusion
with respect to t at t = 1, we obtain that the vector

Eλ = λ1x1
∂

∂x1
+ · · ·+ λkxk

∂

∂xk
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is tangent to N (belongs to the space TaN). Consider now Eλ as a vector field
in Rn. It is tangent to N , vanishes at any point of S, and has at any point
of S the same positive eigenvalues λ1, . . . , λk corresponding to the directions
transversal to S (all positive eigenvalues if S = {0} and consequently k = n).

To prove the difficult part of Theorems 5.1 and 5.2 we will work with
quasi-homogeneous function germs and quasi-homogeneous ideals in the ring
of function germs.

Definition 5.3. Let S be a smooth submanifold of Rn of codimension k.

(a) A function germ f : Rn → R is called quasi-homogeneous with re-
spect to S in a coordinate system (x1, . . . , xk, y1, . . . yn−k) if S is given
by the equations x1 = · · · = xk = 0 and there exist positive num-
bers λ1, . . . , λk (called weights) and a real number d (called the de-
gree) such that f(tλ1x1, . . . , t

λkxk, y1, . . . , yn−k) = tdf(x1, . . . , xk, y1,
. . . , yn−k) for all t such that the points (x1, . . . , xk, y1, . . . , yn−k) and
(tλ1x1, . . . , t

λkxk, y1, . . . , yn−k) are sufficiently close to 0.
(b) A p-generated ideal in the ring of function germs is quasi-homogeneous

with respect to S if there exists a tuple of generators H1, . . . ,Hp

and a local coordinate system in which these generators are quasi-
homogeneous with respect to S with the same weights λ1, . . . , λk.
The degrees d1, . . . , dp of quasi-homogeneity of H1, . . . ,Hp may be
different. The numbers λ1, . . . , λk are called the weights of the quasi-
homogeneity of the ideal, and (d1, . . . , dp) is called the tuple of degrees
of quasi-homogeneity.

The usual quasi-homogeneity corresponds to the case S = {0}. In this case
k = n. In Section 6.1 we will present two other, equivalent, definitions of
quasi-homogeneity of function germs.

Example 5.4. Consider the ideal I in the ring of function germs H(x1, x2,
x3) generated by the functions

H1 = x2
1 − x3

2, H2 = x5
2 − x14

3 + x2
1x2 − x4

2.

It is easy to see that H1 and H2 are not quasi-homogeneous with the same
weights in the given coordinate system. Moreover, one can show that they
are not quasi-homogeneous with the same weights in any coordinate system.
On the other hand, one can choose other generators of the ideal I, namely
Ĥ1 = H1, Ĥ2 = H2 − x2H1 = x5

2 − x14
3 . Now we see that the ideal I is quasi-

homogeneous with weights (3, 2, 5/7). Consequently the set N = {H1 = H2 =
0} is quasi-homogeneous with the same weights.

Definition 5.5. Let I be an ideal in the ring of function germs. A vector
field V is tangent to I if V (f) ∈ I for any function f ∈ I.
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Let I be a p-generated ideal in the ring of function germs and let H =
(H1, . . . ,Hp)t (where the superscript t denotes the transpose) be a tuple of
generators. Then the tangency of a vector field V to I means a relation of
the form

V (H) = R(·)H,(5.1)

where R(·) is a p × p matrix function. The matrix R(·) depends of course
on the choice of generators, but the eigenvalues of the matrix R(0) do not.
In fact, when replacing the tuple H by H̃ = T−1(·)H, where T (·) is a non-
degenerate p× p matrix, the matrix R(0) is replaced by T−1(0)R(0)T (0) (the
whole matrix R(·) changes in a more complicated way; see Section 6.5).

Notation. Let V be a vector field tangent to a p-generated ideal I in the
ring of function germs. The invariants of V defined above (the eigenvalues of
the matrix R(0) in (5.1)) will be denoted by d1(V, I), . . . , dp(V, I).

Example 5.6. Let I be the ideal in Example 5.4. We showed that the
Euler vector field Eλ, λ = (3, 2, 5/7), is tangent to the ideal I(N). The
invariants d1(Eλ, I), d2(Eλ, I) are equal to 6 and 10.

Theorem 5.7. Let I be a p-generated ideal in the ring of function germs
on Rn. Let (λ1, . . . , λn) be a tuple of positive numbers. The following condi-
tions are equivalent:

(i) The ideal I is quasi-homogeneous with weights (λ1, . . . , λn).
(ii) There exists a vector field V, V (0) = 0, which is tangent to I and has

at 0 eigenvalues λ1, . . . , λn.
Moreover, if V is a vector field satisfying (ii) then

d1(V, I), . . . , dp(V, I)

are positive real numbers and the ideal I is quasi-homogeneous with the tuple
of degrees d1(V, I), . . . , dp(V, I).

Like Theorem 5.1, Theorem 5.7 can be generalized to the case of quasi-
homogeneity with respect to a smooth submanifold S ⊂ Rn.

Theorem 5.8. Let I be a p-generated ideal in the ring of function germs
on Rn. Let S ⊂ Rn be a smooth submanifold of codimension k. Let (λ1, . . . , λk)
be a tuple of positive numbers. The following conditions are equivalent:

(i) The ideal I is quasi-homogeneous with respect to S with weights (λ1,
. . . , λk).

(ii) There exists a vector field V which is tangent to I, vanishes at any
point of S, and has the same eigenvalues λ1, . . . , λk at any point of S
in the directions transversal to S.
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Moreover, if V is a vector field satisfying (ii) then the invariants

d1(V, I), . . . , dp(V, I)

are non-negative real numbers and the ideal I is quasi-homogeneous with the
tuple of degrees d1(V, I), . . . , dp(V, I).

Remark 5.9. One can ask why the invariants d1(V, I), . . . , dp(V, I) are
positive numbers in the case of Theorem 5.7 and non-negative numbers in the
case of Theorem 5.8. The answer is as follows. If V satisfies (ii) in Theorem
5.8 then the invariants d1(V, I), . . . , dp(V, I) are all positive if and only if S
belongs to the zero set N of the ideal I. Theorem 5.8 does not require this
assumption. But if S = {0} (as in Theorem 5.7) then this is of course so.

The implication (i) =⇒ (ii) in Theorems 5.7 and 5.8 is obvious: (i) implies
(ii) with V being the Euler vector field Eλ, and (5.1) holds with the R(·) being
constant and diagonal: R(·) = diag(d1, . . . , dp). The implication (ii) =⇒ (i)
will be proved in Sections 6.1–6.5.

The simple part of Theorems 5.1 and 5.2 (the quasi-homogeneity of N
implies the existence of a vector field V with the required properties) was
proved above in this section. The difficult part of these theorems (the existence
of a vector field V with the given properties implies the quasi-homogeneity)
is a corollary of Theorems 5.7 and 5.8. In fact, under the assumptions (a)
and (b) on the set N in the beginning of the present section any vector field
V tangent to N is also tangent to the ideal I = I(N) consisting of function
germs vanishing at any point of N and the quasi-homogeneity of the ideal
I(N) implies the quasi-homogeneity of N .

Theorem 5.8 implies one more result, which looks trivial, but in fact is
not. As we have just noticed, under assumptions (a) and (b) on N the quasi-
homogeneity of the ideal I(N) implies the quasi-homogeneity of N . This
statement is clear. The inverse statement is also true, but it is not trivial.

Theorem 5.10. Let N be the germ of a subset of Rn satisfying assump-
tions (a) and (b). Let I(N) be the ideal of smooth (analytic) function germs
vanishing at any point of N . Then the quasi-homogeneity of N with respect
to a smooth submanifold S ⊂ Rn and the quasi-homogeneity of the ideal I(N)
with respect to S is the same property.

This theorem follows from Theorem 5.8: If N is quasi-homogeneous and
satisfies (a) and (b) then the Euler vector field Eλ is tangent to the ideal I(N)
and by Theorem 5.8 this ideal is quasi-homogeneous.

We emphasize once again that the classical quasi-homogeneity is a partic-
ular case of the quasi-homogeneity with respect to a smooth submanifold S:
it corresponds to the case S = {0}.
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We end this section with an example of an analytic variety N having the
Poincare lemma property which is not quasi-homogeneous in the classical
sense. The latter will be proved using Theorem 5.7.

Example 5.11. In Example 4.9 we showed that the germ

N = {(x1, x2, y) ∈ R3 : H(x1, x2, y) = (x2
1 − x2

2)2 + yx2
1x

2
2 = 0}

is quasi-homogeneous with respect to the smooth submanifold {x1 = x2 = 0},
and since S ⊂ N , N has the Poincare lemma property by Theorem 4.7. Let
us prove that N is not quasi-homogeneous in the classical sense, i.e., with
respect to {0}. Assume that N is quasi-homogeneous. The ideal I(N) is
generated by the function H = H(x1, x2, y). By Theorem 5.7 it suffices to
check that there is no vector field V, V (0) = 0, which is tangent to N and
has positive eigenvalues at 0. Assume that such a vector field V exists. Then
V (H) = Q(x1, x2, y)H, where Q is a function. By the last statement of
Theorem 5.7, Q(0, 0, 0) > 0. Therefore X = V/Q is a smooth vector field,
also with positive eigenvalues, and X(H) = H. Let

X = f1
∂

∂x1
+ f2

∂

∂x2
+ g

∂

∂y
,

where f1, f2, g are smooth (analytic) function germs at 0.
The relation X(H) = H takes the form

(4x1(x2
1 − x2

2) + 2yx1x
2
2)f1 + (−4x2(x2

1 − x2
2) + 2yx2

1x2)f2 + x2
1x

2
2g

= (x2
1 − x2

2)2 + yx2
1x

2
2.

Calculating the coefficients of the terms x3
1y, x

3
2y, x

4
1, x4

2, x4
1y, x

4
2y, we obtain

∂f1

∂y
(0, 0, 0) =

∂f2

∂y
(0, 0, 0) = 0;

∂f1

∂x1
(0, 0, 0) =

∂f2

∂x2
(0, 0, 0) = 1/4;

∂2f1

∂x1∂y
(0, 0, 0) =

∂2f2

∂x2∂y
(0, 0, 0) = 0.

Calculating now the coefficient of the term yx2
1x

2
2, taking into account these

relations, we get

∂g

∂y
(0, 0, 0) = 0.

It follows that the matrix of linearization of X has zero column. This contra-
dicts the condition that all eigenvalues of X are positive.
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6. Proof of Theorems 5.7 and 5.8

Theorem 5.7 is a particular case of Theorem 5.8; therefore we will prove
Theorem 5.8. As we explained in the previous section, the implication (i) =⇒
(ii) in Theorem 5.8 is obvious, so we will prove the implication (ii) =⇒ (i) and
the statement on the invariants d1(V, I), . . . , dp(V, I). Since the proof consists
of several steps, we divide this section onto several subsections. Through-
out the proof we work with quasi-homogeneous functions and also quasi-
homogeneous vector fields with respect to a smooth submanifold S ⊂ R

n.
We need three equivalent definitions of quasi-homogeneity, which are given in
Section 6.1.

To prove the implication (ii) =⇒ (i) we have to find two objects, (a) a
coordinate system and (b) a tuple of generators of the ideal I, such that each
of the generators is quasi-homogeneous with weights λ1, . . . , λk in the chosen
coordinate system. The coordinate system will be chosen in Section 6.2. It
is a coordinate system in which the vector field V has the classical resonant
normal form if S = {0} and generalized resonant normal form if S 6= {0}.
The advantage of this coordinate system, used throughout the proof, is that
in this coordinate system V is quasi-homogeneous (with respect to S and with
weights λ1, . . . , λk) of degree 0.

The choice of generators of the ideal is a more difficult task. We will
work in the coordinate system chosen in Section 6.2. Take any tuple H =
(H1, . . . ,Hp)t of generators of the ideal. Then we have the system of equations
(5.1) with some matrix R(·). In Section 6.4 we describe a certain normal
form for the matrix R(·), which we call the resonant normal form. We will
prove that if R(·) has the resonant normal form then (5.1) implies that the
generators H1, . . . ,Hp are quasi-homogeneous with respect to S with the same
weights λ1, . . . , λk. The proof requires several statements on the spectrum of
operator H → V (H)−R(·)H, which are collected and proved in Section 6.3.
To complete the proof of the implication (ii) =⇒ (i) we have to reduce the
matrix R(·) in (5.1) to the resonant normal form by changing the tuple of
generators H to another tuple of generators Ĥ. The two tuples are related
via a non-degenerate matrix T (·): H = T (·)Ĥ. The change of generators takes
the matrix R(·) in (5.1) to a certain matrix T#R. The map (T,R) → T#R
is an action of the group of non-degenerate matrix functions in the space of
all matrix functions. In Section 6.5 we prove that any orbit of this action
contains a matrix having the resonant normal form. This completes the proof
of the implication (ii) =⇒ (i). Simultaneously, in Section 6.5 we prove the
statement of Theorem 5.8 on the invariants d1(V, I), . . . , dp(V, I).

The proof of several statements in Sections 6.1–6.5 consists of two steps.
First we give a proof on the level of formal series with respect to x1, . . . , xk
whose coefficients are smooth (analytic) functions of y1, . . . , yn−k, assuming
that the coordinates are such that S is given by the equations x1 = · · · =
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xk = 0. (If S = {0} then these are the usual formal series.) Then we use
certain results that allow us to pass to the analytic and the C∞ category.
These results are collected in Section 6.6.

6.1. Quasi-homogeneous functions and vector fields. In this section
we give three equivalent definitions of quasi-homogeneous functions and vector
fields with respect to a smooth submanifold S ⊂ Rn of codimension k. Each
of them will be used throughout the proof of Theorem 5.8. The classical
quasi-homogeneity corresponds to the case S = {0}, k = n.

Let S be a smooth submanifold of Rn of codimension k. Fix a local coor-
dinate system in which S is given by the equations x1 = · · · = xk = 0:

R
n = R

n(x, y), x = (x1, . . . , xk), y = (y1, . . . , yn−k), S = {x = 0}.

Fix positive numbers λ1, . . . , λk and the Euler vector field

Eλ = λ1x1
∂

∂x1
+ · · ·+ λkxk

∂

∂xk
.

In Section 5 a definition of quasi-homogeneity of a function germ with respect
to S was given; the following proposition gives two more equivalent definitions.

Proposition 6.1. Let d ∈ R. The following conditions on a function
germ f(x, y) are equivalent:

(i) f(tλ1x1, · · · , tλkxk, y1, . . . yn−k) = td · f(x, y), t ≥ 0.
(ii) Eλ(f) = d · f .
(iii) f(x) =

∑
α:(λ,α)=d aα(y)xα, where aα(y) are functions on S.

Here α = (α1, . . . , αk), αi ∈ {0} ∪ N, xα = xα1
1 · · ·x

αk
k , (λ, α) = λ1α1 +

· · ·+ λkαk.

Proof. To obtain the implication (i) =⇒ (ii) we differentiate (i) with re-
spect to t at t = 1. The implication (iii) =⇒ (i) is obvious. It remains to
prove (ii) =⇒ (iii). This implication is clear on the level of formal series
with respect to x (the coefficients are smooth or analytic functions of y) and
consequently it holds in the analytic category. The assumption λi > 0 is re-
quired in Proposition 6.1 only to prove the implication (ii) =⇒ (iii) in the
C∞-category; this assumption follows from the same implication on the level
of formal series with respect to x and Proposition 6.16 (see Section 6.6). �

The numbers λ1, . . . , λk are called weights, and the number d the degree
(of quasi-homogeneity with respect to S).

Notation. The space of all function germs f(x, y) which are quasi-homo-
geneous with respect to S with positive weights λ1, . . . , λk will be denoted by
QHλ,S(Rn). The subspace consisting of quasi-homogeneous function germs of
a fixed degree d will be denoted by QH(d)

λ,S(Rn).
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It is worth making the following observations, which follow immediately
from Proposition 6.1. A function f ∈ QH(d)

λ,S(Rn) is a polynomial with respect

to x, for any d. The space QH(d)
λ,S(Rn) is a finitely generated module over the

ring of function germs of the form g(y) (functions on Rn that do not depend
on x). If S = {0} then QH

(d)
λ,S(Rn) is a finite dimensional vector space. If

d 6∈ {(λ, α), αi ∈ {0}∪N} then QH(d)
λ,S(Rn) = {0}. Consequently, the degree

of quasi-homogeneity with respect to S of a function germ f(x, y) 6≡ 0 is always
a non-negative number. The space QH(0)

λ,S(Rn) consists of function germs of
the form g(y). If S = {0} then it consists only of constant functions. Note
also that by Proposition 6.1, if d 6= 0 and f(x, y) ∈ H(d)

λ,S(Rn) then f(0, y) ≡ 0,
i.e., f(x, y) vanishes at any point of S. Finally, the space QHλ,S(Rn) is a ring:
If f1 ∈ QH(d1)

λ,S (Rn), f2 ∈ QH(d2)
λ,S (Rn), then f1f2 ∈ QH(d1+d2)

λ,S (Rn).
Now we give three equivalent definitions of quasi-homogeneous vector fields.

Proposition 6.2. Let d ∈ R. The following conditions on the germ V of
a vector field on Rn are equivalent:

(i) If f ∈ QH(r)
λ,S(Rn) then V (f) ∈ QH(d+r)

λ,S (Rn) (for any r ∈ R).
(ii) [Eλ, V ] = d · V .
(iii) V =

∑k
i=1Xi(x, y) ∂

∂xi
+
∑n−k
j=1 Yj(x, y) ∂

∂yj
, Xi ∈ QH(d+λi)

λ,S (Rn), Yj ∈
QH

(d)
λ,S(Rn).

Proof. Let V =
∑k
i=1Xi(x, y) ∂

∂xi
+
∑n−k
j=1 Yj(x, y) ∂

∂yj
. Condition (ii) means

that Eλ(Xi) = (d + λi)Xi and Eλ(Yj) = d · Yj . Therefore by Proposi-
tion 6.1, (ii) and (iii) are equivalent. The implication (iii) =⇒ (i) also fol-
lows from Proposition 6.1. Taking in (i) f(x, y) = xi ∈ QH

(λi)
λ,S (Rn) and

f(x, y) = yj ∈ QH(0)
λ,S(Rn) we get (i) =⇒ (iii). �

Definition and notation. The germ of a vector field V satisfying con-
dition (i) (and consequently conditions (ii) and (iii)) of Proposition 6.2 with
positive λ1, . . . , λk is called quasi-homogeneous with respect to S. The num-
bers λ1, . . . , λk are called weights, and the number d the degree (of quasi-
homogeneity). The space of all quasi-homogeneous with respect to S germs
of vector fields with weights λ1, . . . , λk is denoted by QHλ,S(Rn). The sub-
space consisting of quasi-homogeneous germs of vector fields of a fixed degree
d will be denoted by QH(d)

λ,S(Rn).

Note that we use the same notations as for quasi-homogeneous functions.
One can easily check that QHλ,S(Rn) (the space of quasi-homogeneous germs
of vector fields with respect to S) is a Lie algebra: If V1 ∈ QH(d1)

λ,S (Rn), V2 ∈
QH

(d2)
λ,S (Rn) then [V1, V2] ∈ QH(d1+d2)

λ,S (Rn).
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6.2. The choice of a coordinate system. In this section we fix a coordi-
nate system in which suitable generators of the ideal are quasi-homogeneous.
Assume first that S = {0}. Then V is a vector field on Rk with positive
eigenvalues λ1, . . . , λk at the singular point 0. Consider the classical resonant
normal form

Eλ +
k−1∑
i=1

δixi+1
∂

∂xi
+

k∑
i=1

∑
|α|≥2

ai,αx
α ∂

∂xi
,

(λi 6= λi+1) =⇒ δi = 0, (λ, α) 6= λi =⇒ ai,α = 0.

The resonant normal form is polynomial because λ1, . . . , λk > 0. It is well
known (see [1]) that in this case the vector field V can be reduced to the
resonant normal form by a change of coordinates in either the analytic or
the C∞ category. The advantage of a coordinate system in which V has the
resonant normal form is that in such a coordinate system the vector field V is
quasi-homogeneous of degree 0 with weights λ1, . . . , λk.

Consider now the general case of Theorem 5.8 when the vector field V van-
ishes at any point of the smooth submanifold S = {x = 0} of codimension
k and has at any point of S the same positive eigenvalues λ1, . . . , λk corre-
sponding to directions transversal to S. In this case, as was shown in [21], the
vector field V can be reduced, also in either the analytic or the C∞ category,
to the normal form

Eλ +
k∑

i,j=1

δij(y)xi
∂

∂xj
+

n∑
i=1

∑
|α|≥2

ai,α(y)xα
∂

∂xi
,(6.1)

where the functions δij(y) and ai,α(y) satisfy the following conditions:

(λi 6= λj) =⇒ δij(y) ≡ 0;(6.2)

for any y the matrix {δij(y)} is nilpotent;(6.3)

(λ, α) 6= λi =⇒ ai,α(y) ≡ 0.(6.4)

As in the case S = {0} we will call this normal form resonant. Since λ1, . . . , λk
> 0, the resonant normal form is polynomial with respect to x1, . . . , xk. Con-
ditions (6.2)–(6.4) and Proposition 6.2 imply the following statement.

Proposition 6.3. Assume that a coordinate system is chosen so that the
vector field V has the resonant normal form (6.1). Then:

(i) V is quasi-homogeneous with respect to S of degree 0, with weights
λ1, . . . , λk: V ∈ QH(0)

λ,S(Rn).
(ii) V is tangent to the foliation y = const. This means that V can be

treated as a family of vector fields Vy on Rk parameterized by y =
(y1, . . . , yn−k), i.e., by a point of S.
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(iii) Any of the vector fields Vy is quasi-homogeneous of degree 0 with
weights λ1, . . . , λk; moreover Vy = Eλ + Ny, where Ny is a nilpotent
quasi-homogeneous vector field of degree 0 with weights λ1, . . . , λk,
[Eλ, Ny] = 0.

Here by a nilpotent vector field we mean a vector field whose eigenvalues
at the singular point 0 are all equal to zero.

Example 6.4. Let n = 5, k = 3, λ1 = λ2 = 1, λ3 = 2. Then in suitable
coordinates the vector field V has the resonant normal form

x1
∂

∂x1
+ x2

∂

∂x2
+ 2x3

∂

∂x3
+

2∑
i,j=1

δij(y1, y2)xi
∂

∂xj
+

+ (a(y1, y2)x2
1 + b(y1, y2)x1x2 + c(y1, y2)x2

2)
∂

∂x3
,

where the 2 × 2 matrix δ(y1, y2) = {δij(y1, y2)} has zero eigenvalues for any
y1, y2. This matrix can be replaced by any matrix of the form

T−1(y1, y2)δ(y1, y2)T (y1, y2),

where T (y1, y2) is a 2 × 2 matrix, with detT (0, 0) 6= 0, depending smoothly
(analytically) on y1, y2. Note that in general this transformation does not
allow us to reduce the matrix δ(y1, y2) even to triangular form. Take, for
example,

δ(y1, y2) =
(
y2

1y2 y1y
2
2

−y3
1 −y2

1y2

)
.

Then trace δ(y1, y2) ≡ det δ(y1, y2) ≡ 0, but the relation δ(y1, y2)v(y1, y2) = 0,
where v(y1, y2) is a vector depending smoothly (analytically) on y1, y2, implies
v(0) = 0. Therefore the matrix δ(y1, y2) cannot be reduced to triangular form.

6.3. The operator H → V (H)−R(y)H.

Convention. In this and the next sections we work in a fixed coordinate
system (x, y) such that S = {x = 0} and the vector field V has the reso-
nant normal form, i.e., form (6.1) with the functional coefficients satisfying
conditions (6.2), (6.3) and (6.4).

Denote by (QH(r)
λ,S(Rn))p the space of tuples

H(x, y) = (H1(x, y), . . . ,Hp(x, y))t
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such that Hi(x, y) ∈ QH(r)
λ,S(Rn). Let R(y) be any p×p matrix function which

depends only on y. Consider the linear operator

LpV,r,R(y) : (QH(r)
λ,S(Rn))p → (QH(r)

λ,S(Rn))p,

LpV,r,R(y)(H(x, y)) = V (H(x, y))−R(y)H(x, y).

By Proposition 6.3, V ∈ QH(0)
λ,S(Rn). Therefore, using Proposition 6.2, it is

easy to see that this linear operator is well-defined. The following result will
be used throughout the next section.

Proposition 6.5. If r is not an eigenvalue of the matrix R(0) then the
linear operator LpV,r,R(y) is an isomorphism.

Proof. The vector field V has form (6.1). Therefore it can be treated as
a family of vector fields Vy ∈ Hλ,{0}(Rk) parameterized by y = (y1, . . . , yn−k),
i.e., by a point of S; see Section 6.2. A vector functionH(x, y) ∈ (QH(r)

λ,S(Rn))p

can be treated as a family of vector functions Hy ∈ (QH(r)
λ,{0}(R

k))p, also
parametrized by y. Therefore the operator LpV,r,R(y) can be treated as a fam-

ily of linear operators in the finite-dimensional vector space (QH(r)
λ,{0}(R

k))p.
This family depends smoothly (analytically) on the parameter y. Therefore it
suffices to prove that 0 is not an eigenvalue of the linear operator correspond-
ing to y = 0, i.e., the operator

(QH(r)
λ,{0}(R

k))p → (QH(r)
λ,{0}(R

k))p, H(x)→ V0(H(x))−R(0)H(x).(6.5)

The vector field V0 has the form Eλ + N , where N is a quasi-homogeneous
degree 0 nilpotent vector field; see Proposition 6.3. Therefore the operator
(6.5) is the sum of the operator H(x) → Eλ(H(x)) − R(0)H(x) and the
nilpotent operator H(x) → N(H(x)). By Proposition 6.2 [Eλ, N ] = 0 and
Eλ(H(x)) = rH(x) for any H(x) ∈ (QH(r)

λ,{0}(R
k))p. Therefore these two

operators commute and the spectrum of the first operator consists of the
numbers r − λ, where λ is an eigenvalue of the matrix R(0). It follows that
the spectrum of the operator (6.5) consists of the same numbers. By the
assumption of Proposition 6.5 none of these numbers is equal to 0. �

Proposition 6.5 implies the following corollary.

Proposition 6.6. Let R(y) be a p× p matrix such that the matrix R(0)
has the only eigenvalue d. If H(x, y) = (H1(x, y), . . . ,Hp(x, y))t is a tuple of
functions such that V (H(x, y))−R(y)H(x, y) ∈ QH(d)

λ,S(Rn) then H1(x, y), . . . ,

Hp(x, y) ∈ QH(d)
λ,S(Rn).

Proposition 6.6 easily follows from Proposition 6.5 on the level of formal
series with respect to x (the coefficients are smooth or analytic functions of y)
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and consequently in the analytic category. The transition from formal series
to the C∞ category is possible due to Proposition 6.16 (see Section 6.6).

We need one more result generalizing Proposition 6.5.
Let (QH(r)

λ,S(Rn))p1×p2 be the space of all p1 × p2 matrices whose entries

are functions in the space QH(r)
λ,S(Rn). Let A(y) be a p1 × p1 matrix and let

B(y) be a p2 × p2 matrix. Consider the operator

(QH(r)
λ,S(Rn))p1×p2 → (QH(r)

λ,S(Rn))p1×p2 ,

U(x, y)→ −V (U(x, y)) +A(y)U(x, y) + U(x, y)B(y).(6.6)

Proposition 6.7. The linear operator (6.6) is an isomorphism unless
there exist an eigenvalue a of the matrix A(0) and an eigenvalue b of the
matrix B(0) such that a+ b = r.

Proof. Fix the operator

(QH(r)
λ,0(Rk))p1×p2 3 U(x)→ −V0(U(x)) +A(0)U(x) + U(x)B(0)(6.7)

in the finite-dimensional space (QH(r)
λ,0(Rk))p1×p2 , where V0 = Eλ + N, N is

quasi-homogeneous degree 0 nilpotent vector field on Rk. Arguing exactly as
in the proof of Proposition 6.5 we reduce Proposition 6.7 to the statement that
the linear operator (6.7) is non-singular. The operator U(x)→ −N(U(x)) is
nilpotent. It commutes with the operator U(x)→ −Eλ(U(x)) + A(0)U(x) +
U(x)B(0) since [Eλ, N ] = 0. Therefore it suffices to prove that the operator
U(x)→ −Eλ(U(x)) +A(0)U(x) + U(x)B(0) is non-singular. By Proposition
6.2 we have −Eλ(U(x)) = −rU(x) for any U(x) ∈ (QH(r)

λ,0(Rk))p1×p2 . It
is easy to show that the eigenvalues of the operator U(x) → A(0)U(x) +
U(x)B(0) have the form a + b, where a is an eigenvalue of the matrix A(0)
and b is an eigenvalue of the matrix B(0). Therefore the spectrum of the
operator U(x) → −Eλ(U(x)) + A(0)U(x) + U(x)B(0) consists of numbers
−r+ a+ b, where a is an eigenvalue of the matrix A(0) and b is an eigenvalue
of the matrix B(0). By the assumption of Proposition 6.7 none of these
numbers is equal to 0. �

6.4. Normal form for the equation V (H(x, y)) = R(x, y)H(x, y). In
this equation R(x, y) is a p× p matrix function and H(x, y) = (H1(x, y), . . . ,
Hp(x, y))t is a tuple of functions. We study this equation in a fixed coordinate
system (x, y) such that S = {x = 0} and the vector field V has resonant
normal form (6.1). Let d1, . . . , dp be the eigenvalues of the matrix R(0, 0).
We will prove that the equation V (H(x, y)) = R(x, y)H(x, y) implies that the
functions H1, . . . ,Hp are quasi-homogeneous with respect to S with the same
weights λ1, . . . , λk and degrees d1, . . . , dp provided that the matrix R(x, y) has
the following normal form.
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Definition 6.8. We say that the matrix R(x, y) = {Rij(x, y)}i,j=1,...,p

has the resonant normal form if the following conditions hold:

(a) The matrix R(0, 0) is a below-triangular matrix with real diagonal
entries d1 ≤ d2 ≤ · · · ≤ dp.

(b) The function Rij(x, y) belongs to the space H(di−dj)
λ,S (Rn).

The motivation for this definition is as follows. LetH(x, y) = (H1(x, y), . . . ,
Hp(x, y))t, H1(x, y) ∈ QH(d1)

λ,S (Rn), . . . ,Hp(x, y) ∈ QH(dp)
λ,S (Rn). Let Ĥ(x, y)

= R(x, y)H(x, y). If R(x, y) has the resonant normal form then, as it is easy
to check,

Ĥ1(x, y) ∈ QH(d1)
λ,S (Rn), . . . , Ĥp(x, y) ∈ QH(dp)

λ,S (Rn).

Assume that the matrix R(x, y) has resonant normal form. The requirement
d1 ≤ d2 ≤ · · · ≤ dp implies that if i ≤ j then the function Rij(x, y) depends on
y only. Moreover, if di 6= dj then Rij(x, y) ≡ 0. Consequently, if the numbers
d1, . . . , dp are different then the matrix R(x, y) is lower-triangular. In general,
the square blocks in R(x, y) corresponding to equal numbers in the sequence
d1 ≤ d2 ≤ · · · ≤ dp are matrices which depend on y only.

Example 6.9. Assume that R(x, y) is a 4 × 4 matrix and the diagonal
entries of the matrix R(0, 0) are d1 = d2 = 2, d3 = d4 = 3. If R(x, y) has
resonant normal form then

R(x, y) =


R11(y) R12(y) 0 0
R21(y) R22(y) 0 0
R31(x, y) R32(x, y) R33(y) R34(y)
R41(x, y) R42(x, y) R43(y) R44(y)

 ,

where R31(x, y), R32(x, y), R41(x, y), R42(x, y) ∈ QH(1)
λ,S(Rn).

Proposition 6.10. Let H(x, y) = (H1(x, y), . . . ,Hp(x, y))t. If the matrix
R = R(x, y) in the equation V (H(x, y)) = R(x, y)H(x, y) has the resonant
normal form then Hi(x, y) ∈ QH(di)

λ,S (Rn), where d1, . . . , dp are the diagonal
entries of the matrix R(0, 0).

Proof. We will give a proof for the case when R(x, y) is the matrix in
Example 6.9; the proof in the general case is the same modulo a change
of notation. The equation V (H(x, y)) = R(x, y)H(x, y) is a system of four
equations. Take the first two. They have the form

V (H1(x, y)) = R11(y)H1(x, y) +R12(y)H2(x, y),

V (H2(x, y)) = R21(y)H1(x, y) +R22(y)H2(x, y).
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The eigenvalues of the 2×2 matrix {Rij(0)}, i, j = 1, 2, are its diagonal entries,
each of which is equal to d1 = d2 = 2. Now we use Proposition 6.6, which
implies that H1(x, y),H2(x, y) ∈ QH(2)

λ,S(Rn).
Consider the next two equations of the system V (H(x, y)) = R(x, y)H(x, y)

corresponding to d3 = d4 = 3. They have the form

V (H3(x, y)) = R31(x, y)H1(x, y) +R32(x, y)H2(x, y)

+R33(y)H3(x, y) +R34(y)H4(x, y),

V (H4(x, y)) = R41(x, y)H1(x, y) +R42(x, y)H2(x, y)

+R43(y)H3(x, y) +R44(y)H4(x, y).

Since, as we have proved, H1(x, y),H2(x, y) ∈ QH(2)
λ,S(Rn) and the functions

R31(x, y), R32(x, y), R41(x, y), R42(x, y) belong to the space QH
(1)
λ,S(Rn), we

have

V (H3(x, y))−R33(y)H3(x, y)−R34(y)H4(x, y) ∈ QH(3)
λ,S(Rn),

V (H4(x, y))−R43(y)H3(x, y)−R44(y)H4(x, y) ∈ QH(3)
λ,S(Rn).

The eigenvalues of the 2×2 matrix {Rij(0)}, i, j = 3, 4, are its diagonal entries,
each of which is equal to d3 = d4 = 3. Using again Proposition 6.6 we obtain
that H3(x, y),H4(x, y) ∈ QH(3)

λ,S(Rn). �

6.5. Reduction of the matrix R(x, y) to the resonant normal form.
As in previous sections we work in a coordinate system such that the vector
field V has resonant normal form. To complete the proof of the implication
(ii) =⇒ (i) in Theorem 5.8 we have to show that the matrix R(x, y) in the
equation V (H(x, y)) = R(x, y)H(x, y) can be reduced to the resonant normal
form defined in Section 6.4 by changing the tuple H = (H1, . . . ,Hp)t of gen-
erators of the ideal I to another tuple of generators Ĥ. Then the implication
(ii) =⇒ (i) follows from Proposition 6.10.

Let H(x, y) = T (x, y)Ĥ(x, y), where T (x, y) is a non-degenerate p × p

matrix. Then V (Ĥ(x, y)) = R̂(x, y)Ĥ(x, y), where

R̂(x, y) = T (x, y)#R(x, y) = T−1(x, y) (R(x, y)T (x, y)− V (T (x, y)) .

The map (T (x, y), R(x, y)) → T (x, y)#R(x, y) is an action of the group of
non-degenerate matrices T (x, y) in the space of all matrices R(x, y).

Proposition 6.11. Let I be a p-generated ideal in the ring of functions.
If R(x, y) is a p × p matrix such that V (H(x, y)) = R(x, y)H(x, y), where
H(x, y) = (H1(x, y), . . . ,Hp(x, y))t is a tuple of generators of the ideal I,
then the eigenvalues of the matrix R(0, 0) are non-negative real numbers.

Proposition 6.12. Let R(x, y) be a p×p matrix such that the eigenvalues
of the matrix R(0, 0) are real numbers. There exists a non-degenerate matrix
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T (x, y) such that the matrix T (x, y)#R(x, y) has the resonant normal form
defined in Section 6.4.

These two propositions complete the proof of Theorem 5.8 including the
statement about the relation between the invariants d1(V, I), . . . , dp(V, I) and
the tuple of degrees of quasi-homogeneity of the ideal I.

Proof of Proposition 6.12. Note first that for any d1 . . . , dp there exists a
non-degenerate matrix T (y) such that the matrix T−1(y)R(y)T (y) has the
resonant normal form.

Example 6.13. Any 5×5 matrix R(y) such that the eigenvalues of the ma-
trix R(0) are equal to 2, 2, 5, 5, 5 can, by transformations R(y) →
T−1(y)R(y)T (y), be taken to the form(

E(y) 0
0 F (y)

)
,(6.8)

where

E(y) =
(
E11(y) E12(y)
E21(y) E22(y)

)
, F (y) =

F11(y) F12(y) F13(y)
F21(y) F22(y) F23(y)
F31(y) F32(y) F33(y)

 ,

E11(0) = E22(0) = 2, F11(0) = F22(0) = F33(0) = 5,

E12(0) = F12(0) = F13(0) = F23(0) = 0.

Therefore, to prove Proposition 6.12 we may assume that the matrix R(0, y)
has resonant normal form. In what follows d1 ≤ d2 ≤ · · · ≤ dp are the diagonal
entries (and the eigenvalues) of the matrix R(0, 0).

Express the Taylor series with respect to x of the matrix R(x, y) in the
form R(0, y) +R(r1)(x, y) +R(r2)(x, y) + · · · , where R(ri)(x, y) ∈ QH(ri)

λ,S (Rn)
is the quasi-homogeneous part of R(x, y) of degree ri, and 0 < r1 < r2 < · · · .
Assume that the matrices R(ri)(x, y) have the resonant normal form if i ≤
m− 1. If we show that R(rm)(x, y) can be taken to the resonant normal form
then Proposition 6.12 will be proved on the level of formal series with respect
to x. One can pass from formal series to the analytic and the C∞ category
using Proposition 6.15 (see Section 6.6).

Let r = rm. To prove that R(r)(x, y) can be taken to the resonant nor-
mal form by a transformation R(x, y) → T (x, y)#R(x, y) we seek matrices
of the form T (x, y) = I + T (r)(x, y), where I is the identity matrix and
T (r)(x, y) is a matrix whose entries belong to the space QH(r)

λ,S(Rn). Then
the matrix T−1(x, y) has the form I − T (r)(x, y) modulo quasi-homogeneous
terms of degree > r. It follows that the matrices R(x, y) and T#R(x, y) have
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the same quasi-homogeneous terms of degrees 0, r1, . . . , rm−1, and the quasi-
homogeneous part of degree rm = r of the matrix T#R(x, y) is equal to

R̃(r)(x, y) = R(r)(x, y)− V (T (r)(x, y)) +R(0, y)T (r)(x, y)− T (r)(x, y)R(0, y).

We have to find T (r)(x, y) such that the matrix R̃(r)(x, y) = {R̃(r)
ij (x, y)} has

the resonant normal form. This means that

R̃
(r)
ij (x, y) ∈ QH(di−dj)

λ,S (Rn), i, j = 1, . . . , p.(6.9)

We will prove that the required matrix T (r)(x, y) exists in the case when
R(0, y) is a matrix of the form (6.8). The proof in the general case is the
same modulo a change of notation.

Let

R(r)(x, y) =
(
W1(x, y) W2(x, y)
W3(x, y) W4(x, y)

)
, T (r)(x, y) =

(
U1(x, y) U2(x, y)
U3(x, y) U4(x, y)

)
,

where

W1(x, y), U1(x, y) ∈ (QH(r)
S,λ(Rn))2×2, W2(x, y), U2(x, y) ∈ (QH(r)

S,λ(Rn))2×3,

W3(x, y), U3(x, y) ∈ (QH(r)
S,λ(Rn))3×2, W4(x, y), U4(x, y) ∈ (QH(r)

S,λ(Rn))3×3.

The requirement (6.9) can be expressed as follows:

W1(x, y)− V (U1(x, y)) + E(y)U1(x, y)− U1(x, y)E(y) ∈ QH(0)
S,λ(Rn),

(6.10)

W2(x, y)− V (U2(x, y)) + E(y)U2(x, y)− U2(x, y)F (y) ∈ QH(−3)
S,λ (Rn) = {0},

(6.11)

W3(x, y)− V (U3(x, y)) + F (y)U3(x, y)− U3(x, y)E(y) ∈ QH(3)
S,λ(Rn),

(6.12)

W4(x, y)− V (U4(x, y)) + F (y)U4(x, y)− U4(x, y)F (y) ∈ QH(0)
S,λ(Rn).

(6.13)

The existence of U1(x, y), . . . , U4(x, y) satisfying (6.10)–(6.13) is a corollary of
Proposition 6.7. Consider, for example, condition (6.12). If r = 3 then (6.12)
holds for any U3(x, y) ∈ (QH(r)

S,λ(Rn))3×2, and if r 6= 3 then (6.12) is equivalent
to the equation W4(x, y) − V (U3(x, y)) + F (y)U3(x, y) − U3(x, y)E(y) = 0.
This equation has a solution U3(x, y) ∈ (QH(r)

S,λ(Rn))3×2 by Proposition 6.7
with p1 = 3, p2 = 2, A(y) = F (y), B(y) = −E(y) because the sum of any
eigenvalue of the matrix F (0) and any eigenvalue of the matrix −E(0) is
equal to 5− 2 = 3 6= r. �

Proof of Proposition 6.11. It suffices to prove that all eigenvalues of the
matrix R(0, 0) are real. Then they are non-negative by Proposition 6.12 and
6.10. Assume, to get contradiction, that at least one of the eigenvalues of the
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matrix R(0, 0) is not real. Then there is no loss of generality to assume that
the matrix R(0, y) has the form(

E(y) 0
0 F (y)

)
,

where E(0) is an s × s matrix with no real eigenvalues, s > 0, and F (0) is a
(p− s)× (p− s) matrix with real eigenvalues.

Lemma 6.14. There exists a non-degenerate p×p matrix T (x, y) such that

T (x, y)#R(x, y) =
(
E(x, y) 0

0 F (x, y)

)
, E(0, y) = E(y), F (0, y) = F (y).

Lemma 6.14 implies that there exists a tuple Ĥ(x, y) = (Ĥ1(x, y), . . . ,
Ĥp(x, y))t of generators of the ideal such that

V (Ĥ1(x, y), . . . Ĥs(x, y))t = E(x, y)(Ĥ1(x, y), . . . Ĥs(x, y))t.

Since the ideal is p-generated, (H1(x, y), . . . ,Hs(x, y)) 6≡ 0. By Proposition
6.16 (see Section 6.6) the Taylor series of the tuple (Ĥ1(x, y), . . . , Ĥs(x, y))
with respect to x is not zero. (In the analytic category this is obvious, but we
need Proposition 6.16 in the C∞ category.) Therefore

(Ĥ1(x, y), . . . , Ĥs(x, y))

= (Ĥ1(x, y), . . . , Ĥs(x, y))(r1) + (Ĥ1(x, y), . . . , Ĥs(x, y))(r2) + · · · ,
where the superscript denotes the degree of quasi-homogeneity, r1 < r2 < · · · ,
and (Ĥ1(x, y), . . . , Ĥs(x, y))(r1) 6≡ 0. The equation

V (Ĥ1, . . . Ĥs)t = E(x, y)(Ĥ1, . . . Ĥs)t

implies

V (Ĥ(r1)
1 (x, y), . . . Ĥ(r1)

s (x, y))t = E(0, y)(Ĥ(r1)
1 (x, y), . . . Ĥ(r1)

s (x, y))t.

Since the matrix E(0, 0) has no real eigenvalues, by Proposition 6.7 we have
(Ĥ1(x, y), . . . , Ĥs(x, y))(r1) ≡ 0 and we get a contradiction.

It remains to prove Lemma 6.14. The proof is similar to the proof of
Proposition 6.12. We seek a matrix of the form

T (x, y) =
(

I U1(x, y)
U2(x, y) I

)
,

where U1(x, y) is an s × (p − s) matrix and U2(x, y) is a (p − s) × s matrix.
Arguing exactly as in the proof of Proposition 6.12, we reduce Lemma 6.14
to the solvability of the equations

− V (U1(x, y)) + E(y)U1(x, y)− U1(x, y)F (y) = W1(x, y),(6.14)

− V (U2(x, y)) + F (y)U2(x, y)− U2(x, y)E(y) = W2(x, y)(6.15)
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with respect to the matrices

U1(x, y) ∈ (QH(r)
S,λ(Rn))s×(p−s), U2(x, y) ∈ (QH(r)

S,λ(Rn))(p−s)×s.

Here W1(x, y) and W2(x, y) are arbitrary matrices in (QH(r)
S,λ(Rn))s×(p−s)

and (QH(r)
S,λ(Rn))(p−s)×s, respectively, and r is an arbitrary non-negative real

number. Equations (6.14) and (6.15) are solvable by Proposition 6.7 because
all eigenvalues of the matrix F (0) are real and none of the eigenvalues of the
matrix E(0) is real. The proof of Theorem 5.8 is now complete. �

6.6. From formal series to the C∞ category and the analytic cat-
egory. In this section we prove results enabling the transition from formal
series to the C∞ category or the analytic category which were used in Sections
6.1–6.5.

Let x = (x1, . . . , xk), y = (y1, . . . , yn−k) be a local coordinate system on
R
n. Let V be a vector field on Rn satisfying the following conditions:

(a) V vanishes at any point of the manifold x = 0.
(b) The eigenvalues of V at 0 corresponding to directions transversal to

the manifold x = 0 are positive.

It follows that the eigenvalues of V at a singular point (0, y) close to (0, 0)
are also positive; in the statements below we do not require that they do not
depend on y.

Let now z = (z1, . . . , zp). Let G(x, y, z) be a vector function on Rn+p with
p components,

G(x, y, z) = (G1(x, y, z), . . . , Gp(x, y, z))t.

Consider the equation

V (H(x, y)) = G(x, y,H(x, y))(6.16)

with respect to the vector function H(x, y) = (H1(x, y), . . . ,Hp(x, y))t.

Proposition 6.15. Equation (6.16) has a solution H(x, y) provided that
this equation is solvable on the level of formal series with respect to x.

We emphasize that this statement holds in either the C∞ or the analytic
category. By formal series with respect to x we mean power series in x whose
coefficients are smooth (analytic) functions of y.

In the analytic category Proposition 6.15 holds due to the absence of “small
denominators” (see [1]), which is a corollary of assumption (b) on the vector
field V . In the C∞ category an analogue of Proposition 6.15 for functional
equations (with H(F ) instead of V (H), where F is a local diffeomorphism of
R
n) was proved in [2]. Proposition 6.15 can be proved by the same method,

using techniques developed in [2] and [3]. In fact, in the C∞ category the
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techniques developed in [2] allow us to prove Proposition 6.15 under the as-
sumption that the eigenvalues of the vector field V corresponding to directions
transversal to the manifold x = 0 have non-zero real part, i.e., V is hyperbolic
with respect to the manifold x = 0. This assumption is much weaker than
assumption (b), but the proof will be much more involved.

In the C∞ category one more result was used in Sections 6.1–6.4.

Proposition 6.16. Assume that G(x, y, 0) ≡ 0 and assume that the func-
tion H(x, y) has zero Taylor series with respect to x. Then (6.16) implies
H(x, y) ≡ 0.

This result is also similar to results in [2] and can be proved using the
techniques in [2]. Note that Proposition 6.16 is not true if assumption (b)
is replaced by the hyperbolicity of V with respect to S. For example, the
equation x1

∂H
∂x1
− x2

∂H
∂x2

= 0 is an equation of form (6.16) (n = k = 2, p =
1, G ≡ 0). This equation has a flat solution (i.e., a solution with zero Taylor
series) τ(x1x2), where τ is any flat function of one variable.

Appendix. Another version of Poincare lemma property

Another version of Poincare lemma property for local analytic subsets N ⊂
C
n was studied in [9] and [10]. Let ω be a closed holomorphic (p+1)-form with

vanishing pullback to the regular part N reg of N . This means that ω|TpN = 0
for any point p near which N has the structure of a smooth submanifold of Cn.
Is it true that ω is a differential of a p-form α on Cn with the same property?
If this is the case, then we say that N has the Poincare lemma property for
closed forms with vanishing pullback to N reg. The Poincare lemma property
considered in Sections 2 and 3 concerns closed forms vanishing at any point
of N .

If a form ω vanishes at any point of N , i.e., for any p ∈ N the coefficients of
ω in some (and then any) local coordinate system vanish at p, then of course
ω has zero pullback to the regular part of N . The inverse is not true. For
example, the non-vanishing 1-form dx has zero pullback to the line N : x = 0.
Therefore the assumption that ω vanishes at any point of N is stronger than
the assumption that ω has zero pullback to N reg. Nevertheless, in any version
of the Poincare lemma property the p-form α must have the same property as
ω. Therefore it is not clear a priori if one of the Poincare lemma properties
implies the other. This remains an open question. We do not know an example
of an analytic set N which has one of the Poincare lemma properties and does
not have the other.

On the other hand, the known sufficient conditions for the two Poincare
lemma properties of an analytic set N are the same. In [9] an analogue of
Theorem 2.3 for closed forms with vanishing pullback to N reg, was proved.
In [10] it was noted that for analytic sets the quasi-homogeneity should be
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considered as a type of contractability, and it was shown that the quasi-
homogeneity implies the Poincare lemma property for forms with vanishing
pullback to N reg. In fact, if N is an analytic set or, moreover, any variety
with Whitney stratification, then all other results in Section 2 also hold if we
replace the Poincare property for closed forms vanishing at any point of N
by the Poincare lemma property for closed forms with vanishing pullback to
N reg. For such N the following holds: If F : Rk → R

n is a smooth map whose
image is contained in N and ω is a form on Rn with zero pullback to N reg

then F ∗ω = 0. It is easy to see that this property of N allows us to repeat all
proofs in Sections 2.

As in Section 3, one can construct de Rham cohomology groups for N
such that their triviality is equivalent to the Poincare lemma property for
closed forms with vanishing pullback to N reg; see [9], [10], [4]. A priori these
groups are different from the cohomology groups defined in Section 3. The
cohomology groups Hp

N (Rn) in Section 3 are based on the factorization of the
space Ωp(Rn) by the space Kp

N (Rn) consisting of p-forms ω of the form α+dβ,
where α and β vanish at any point of N . To construct the cohomology groups
H̃p
N (Rn) corresponding to the Poincare lemma property for closed forms with

vanishing pullback to N reg one has to replace Kp
N (Rn) by the space of p-

forms with vanishing pullback to N reg. The reduction theorem (Theorem 3.1)
remains true for these cohomology groups.

So, a singular set N defines cohomology groups Hp
N (Rn) and H̃p

N (Rn),
p ≥ 0. We do not know if for analytic N these cohomology groups are always
isomorphic. For example, if N is a stratified 1-dimensional submanifold of
R

3 then H̃2
N (R3) = {0} because the pullback to N reg of any 3-form and

any 2-form is equal to 0. On the other hand, we do not know if in this
case H2

N (R3) = {0}, i.e., whether for any analytic 1-dimensional stratified
submanifold of N ⊂ R3 (say the union of curves) any 3-form vanishing at any
point of N is a differential of a 2-form vanishing at any point of N .
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