
NON-ERGODIC TRANSFORMATIONS WITH DISCRETE SPECTRUM

3. P. CoKs

1. Let (X, M, m) be a totally finite, separable, non-atomic measure space,
and T an invertible measure-preserving transformation on this space. We
shall only be concerned with measure-preserving transformations modulo sets
of measure zero, that is, effectively, with measure-preserving automorphisms
of the measure algebra of (X, M, m). There is therefore no loss of generality
in assuming that X is the unit interval, M the class of Lebesgue measurable
sets, and m Lebesgue measure (ef. [3, pages 171-174], [4, pages 42-44]).
Further, since every automorphism of the measure algebra of the unit interval
is induced by a measure-preserving point transformation of the unit interval
[12, pages 582-584] we shall speak of "transformations" when, in fact, we
mean automorphisms.
The transformation (automorphism) T defines a unitary operator U on

L (X, M, m) given by (Uf) (x) f(Tx) for f e L (X, M, m). Let T and S
be transformations with corresponding unitary operators U and V. T and S
are said to be conjugate if there exists an invertible measure-preserving trans-
formation (automorphism) P such that S p-1Tp. They are said to be
equivalent if U and V are unitarily equivalent. Coniugaey obviously implies
equivalence. The problem of deciding when the converse of this statement
holds is one of the most important in ergodie theory. For ergodie transforma-
tions with discrete spectrum (i.e. those for which there exists a basis of L(rn)
consisting of eigen functions of the induced unitary operator U) yon Neumann
[11] showed, in 1932, that equivalence implies eonjugaey. That this is false
for arbitrary transformations was proved by Halmos and yon Neumann (see
[4, pages 57-60]). A eounterexample to the converse problem in the ease of
transformations with continuous spectrum was given by Kolmogorov in 1958,
thus solving one of the famous problems in ergodie theory (see [9] and also
Halmos [4] and [5], Rohlin [14]).

For ergodie transformations with discrete spectrum, very complete results
have been obtained. The spectrum forms a group (a countable subgroup of
the circle group) and every eigenvalue is simple. Further, to every countable
subgroup of the circle group there corresponds an ergodie measure-preserving
transformation with discrete spectrum, with the given group as spectrum,
which is uniquely determined up to eonjugaey. There is thus a (1-1) cor-
respondence between countable subgroups of the circle group and eoniugaey
classes of ergodie measure-preserving transformations with discrete spectrum.
See [11, pages 624-631], [7, pages 346-348] and [4, pages 46-50].
A non-ergodie measure-preserving transformation is, in a certain sense,
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decomposable into ergodic pieces, ([1], [6], [11] and [13]). It is assumed in
Halmos-von Neumann [7] that, because of this theorem, the conjugacy prob-
lem for non-ergodic transformations with discrete spectrum can be resolved
using the results for ergodic transformations. It is explicitly stated in [7, page
346] that equivalence implies conjugacy for all transformations with discrete
spectrum. In this paper we show that this is almost never the case, i.e. with
certain very few exceptions, which we at least partly classify, given a non-
ergodic transformation with discrete spectrum, there exists an equivalent non-
conjugate transformation.
My thanks are due to M. Pavman Murthy, to whom the ideas of the proofs

of Lemmas 8 and 9 are due, and to Raghavan Narasimhan for his criticism of
the entire paper.

2. The definition of conjugacy that we shall use is a little more general than
the one given in 1. To motivate this definition we begin with an example.

Let G be an arbitrary countable subgroup of the circle group. Let T, T,
S, S be ergodic measure-preserving transformations on [0, 1/2), [1/2, 1], [0, 1/4),
[1/4, 1] respectively such that the unitary operator of each of them has discrete
spectrum G. Let

T T on [0,1/2), T T. on [1/2, 1];

S S on [0,1/4), S S on [1/4,1].

Then T and S are equivalent, but are trivially not conjugate. However, as
measure-preserving transformations, T and S have a very similar structure;
they have isomorphic invariant subalgebras and on the atoms of the invariant
subalgebras, their respective restrictions are conjugate but for a change of
scale. (This example is mentioned in [14, 1.4].) It is clear that our defi-
nition of conjugacy is not wide enough and we therefore introduce the follow-
ing

DEFINITION. T nd S re said o be conjugate by partition or weakly conju-
gate if here exisg wo prgigions, [A,] nd [B,I, i 1, 2, of X into dis-
join mesurble segs of posigive mesure, such hg

(i) he A, re invrin under T and he B under S;
(ii) here exists n inverible mesurble mnsformion P of A onto

B, for which, for eeh (7 A,

m(B) m(C),m(P C)
m(A)

(such a transformation always exists, see Lemma 3 below), and S[B is conju-
gate to P( T A)PT.

It is obvious that in the above example T and S are weakly conjugate. If
two transformations are conjugate, they are trivially weakly conjugate. If
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they are weakly coniugate, they are trivially equivalent. From now on the
word "conjugate" will always mean "weakly conjugate". For any set A in-
variant under T, we shall write TA for T[A. Further, for any transforma-
tion T, we shall denote also the induced unitary operator by T. We now prove
some preliminary results.

LEMMA 1. If T has discrete spectrum and A is an invariant subset of X, then
T. has discrete spectrum.

Proof. If xA is the characteristic function of A, x is an eigen function
of T and of T. If f is any eigen function of T, x f is an eigen function of

LTandof T. Ifge (A) then g can be extended to a function on X by
putting (x) 0 for x e A. Then L2(X), so that cifi, where the
fi are eigen functions of T. So g x. c fi x., the eigenfunctionsfi x
of T span L (A), that is T has discrete spectrum.

LEMMA 2. If T has discrete spectrum and A is invariant, TA is the identity
transformation if and only if T, has no eigenvalues other than 1.

Proof. The "only if" part is clear. To prove the converse, note that by
Lemma 1, T has discrete spectrum, so f(T x) f(x) for every f e L2(A).
Hence T is the identity.

LEMMA 3. If A and B are any two measurable subsets of X such that m(B)
am(A), a O, then there exists an invertible measurable transformation P of A
onto B, such that m(PC) am(C) for C

_
A.

Proof. For a 1, the result is proved in [4, page 74]. Hence there exist
SA, SB, invertible measure-preserving, mapping A onto [0, re(A)], and
[0, re(B)] onto B respectively. Let S, denote the transformation x ---> xa on
[0, re(A)]. Put P SBS, S.
LEMMA 4. Given any measure-preserving transformation T on X, there exists

a decomposition of X into three invariant sets Xa(T), XI(T) and Xs(T) such
that

(i) Txa has a purely atomic invariant subalgebra, i.e. Xa [Jl A where
the A (finite or countable in number) are invariant and of positive measure, and
T. is ergodic. We shall refer to the A as the ergodic sets of T.

(ii) Tx is the identity transformation on X
(iii) Tx, is not the identity on any set of positive measure, and has a purely

non-atomic invariant subalgebra, which is a proper subalgebra of the algebra of
measurable subsets of X.

This decomposition is unique modulo null sets. If one of the sets X X, or
X is null, the same is true for every transformation conjugate to T.

Proof. Since the measure algebra of X is complete, there is a maximal
set Xi (modulo null sets) on which T is the identity. Consider the subalgebra
of invariant sets of Tx_x. It decomposes into a purely atomic part and a non-



310 z.R. CHOKSI

atomic part, uniquely modulo null sets. Let Xa be the union of the atoms of
the atomic part, and put Xs X (Xi u Xa). The uniqueness of the
decomposition is immediate.
The last statement of the lemma is obvious from the definition of conjugacy.
If is an eigenvalue of T we write multr(k) or just mult (k) for the mul-

tiplicity of , i.e. the dimension of the eigen space of ,. If (t is a subalgebra
of M we write 9Za for the a-ideal of null sets in a.

LEMMA 5. If A is invariant under T, and ) is an eigenvalue of T, then
is an eigenvalue of at least one of Ta and Tx_A and

multr() multrA() + multx_().

Proof. If fx is an eigen function with eigenvalue ,, then

fx x fx + x:x- fx.

Further xfx is either null or is an eigen function with eigenvMue k. The
same is true of xx-A f, and if both are not null, they are orthogonal, and so
linearly independent. Further x fx is an eigen function of T, xx-A fx of
Tx_. Anyfand g with supports in A and X A respectively are orthogonM.
Thus if is a basis of the eigen space of k relative to T, Cj of the eigen
space relative to Tx_A, the set of functions i, " (extended to X by putting
Oi 0 on X A, . 0 on A together give a basis of the eigen space relative
to T. It follows that

multr(k) multrx () + multrx_().

LEMMA 6. If is the invariant subalgebra of T then

(.) multr (1) minimal number of generators of /gZ

number of atoms of 9/gZ (if this algebra is atomic)

number of ergodic sets of X(T) (if, again, /gZ is atomic).

(Note. a/oza is always atomic if the number of generators is finite.)
Proof. Both multr(1) and the number of generators can be at most

0. Further, in an atomic algebra, the atoms are the unique, minimal set of
generators. It is therefore enough to show that if one side of (.) is finite, so
is the other, and the two are equal.

If the number of generators is finite, say A1, AN are the generating
atoms, then the characteristic functions x are orthogonal and so linearly
independent eigen functions with eigenvMue 1. Further, any such function,
being invariant, must be constant on the atoms of the invariant subalgebra, and
so must belong to the subspace spanned by the x Hence multr(1) N.

If the number of generators is infinite, then there exist disjoint invariant
sets A, A, of positive measure, x are orthogonM eigen functions
with eigenvMue 1, so multr(1) 0. This completes the proof.
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:LEMMA 7. If is an eigenvalue of T, then

multr()) _< multr(1).

Proof. The result is trivial ifmultr(1) . If multr(1) N <
then by Lemma 6, X is the union of N invariants sets A1, AN such that
TAi is ergodic. ), can be at most a simple eigenvalue of TAi (see [4, page 34]),
and so by Lemma 5,

multr(X) ’i1 multra (X) _< N.
We shall consider the conjugacy problem separately for the three cases

(A) sup{multr(X) X 1} multr(1) ,
(B) multr(1) , sup{multr() X 1} < ,
(C) multr(1) < m.

We first show that in cases (B) and (C), the set Xs(T) must be null.

THEOREM l. If T has discrete spectrum and iffor each 1 in the spectrum
of T, we have multr(X) < , then Xs( T) is null.

Proof. Assume the theorem false. Then, since the invariant subalgebra of
Txs is non-atomic, a standard exhaustion argument shows that there exists,
in this subalgebra, a collection of sets {E, 0 < a _< m(X)} with the follow-
ing properties. E,

_
E if a < , and m(E,) a. Every eigenvalue of

T. is an eigenvalue of T; further, by Lemma 1, each T. has discrete spectrum
and so, by Lemma 2, has an eigenvalue different from 1. Now if
f, and .f are eigen functions of T. and T respectively, and if f, and fo are
extended to X by putting f, 0 on X, E,, f 0 on X E then f, and
f are linearly independent. So each X in the spectrum of T can be an eigen-
value of at most a finite number of T. and further the spectrum of T con-
tains only a countable number of eigenvalues. Hence the total number of
E, is countable which is a contradiction.

Note. The hypothesis that T has discrete spectrum is only used here to
show that each T. has an eigenvalue distinct from 1. The theorem is not
true without this hypothesis. Let $1 be a mixing transformation on [0, 1/2],
S the same transformation translated by 1/2 acting on [1/2, 1], S the transforma-
tion on [0, 1] equal to $1 on [0, 1/2], S: on [1/2, 1]. Let T be the cartesian product
of countably many copies of S. T has no eigenvalue other than 1, but X(T)
and Xi (T) are null, X(T) is not.

3. In this section we consider the conjugacy problem in the simplest cases.
For all the transformations considered here there always exist equivalent,
non-conjugate transformations. We begin with case (A) above.

THEOREM 2.
spectrum, and if

If T is a measure-preserving transformation with discrete

sup {multr(X) ) 1} multr(1) ,
then there exists a transformation S equivalent to, but not conjugate to, T.
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Proof. By Lemma 4, X can be decomposed into Xa(T), XI(T) and
Xs(T). We first suppose that Xi(T) is null. Let A be any subset of X of
positive measure (e.g. [0, 1/2]). By Lemma 3 there exists an invertible trans-
formation P of X onto A such that m(PC) m(A)m(C) for all C X.
Put $1 PTP-1. SI is an invertible measure-preserving transformation of
A onto itself, and is unitarily equivalent to T. Put Sx S x for x e A,
Sx x for x e A. S has discrete spectrum. Sx_ has no eigenvalue other
than 1, which has infinite multiplicity. But S S, so S is equivalent to
T. Hence mults(},) multsl() multr() if k # 1, and mults(1)

multr(1). Hence S and T are unitarily equivalent, but they are cle.rly
not conjugate, for X(T) is null, but X(S) is not.
We now consider the other case whenX(T) is not null. Put B X X(T).

Since Tx(r) has no eigenvalues other than 1, it follows by Lemma 5 that for
# 1, multr.() multr() and hence by Lemma 7 that

multr.(1) >_ sup {multr,(k) k # 1} sup {multr()t) k # 1} .
So T and T. are unitarily equivalent. By Lemma 3 there exists an invertible
transformation Q of B onto X such that

1m(QC) m(C)
n(B)

for C B. Put S QT, Q-I; then S and T. are unitarily equivalent, so
S and T are unitarily equivalent. But S and T are not conjugate as Xi(S)
is null, but X(T) is not. This completes the proof of Theorem 2.

In some examples of case (B), the same method can be applied.

THEOREM 3. If T is a measure-preserving transformation with discrete
spectrum, if multr(1) , and X T) is null then there exists a transforma-
tion S equivalent to but not conjugate to T.

Proof. The proof of Theorem 2 for the case when X(T) is null does not
make use of the hypothesis that sup lmultr()’) 1} .

Since transformations of type (A) have been dealt with in Theorem 2, and
since by Theorem 1 all transformations of types (B) and (C) have Xs null,
it follows that the only transformations T, which remain for us to consider,
are those in which X Xt X, where Txi is the identity, and X is the
union of a finite or countable sequence of ergodic sets A., i.e. invariant sets
A such that T is ergodic (with discrete spectrum). The eigenvalues of
T are all simple, and form a group which will henceforth be denoted by G.
The case when X(T) has a countable number of atoms has already been deMt
with implicity.

THEOREM 4. If T is a measure-preserving transformation with discrete
spectrum such that X( T) is null and X( T) has a countably infinite number of
ergodic sets, then there exists a transformation S equivalent to but not conjugate
to T.
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Proof. By Lemma 6, multr(1) o. If Xt(T) is null, the result follows
by Theorem 3. If Xi(T) is not null, we note that Xa X Xi, and
multrxa(1) o; we can now proceed as in the second half of the proof of
Theorem 2, where we only used the fact that multrx_xi(1) .

4. The only cases which therefore remain are those in which Xs(T) is
null, and Xa(T) has a finite number of ergodic sets A1, AN. The trans-
formations for which Xi(T) is not null come under case (B), those for which
XI(T) is null under case (C). For these cases the crude methods of 3 do
not suffice. More delicate group-theoretic methods are needed; in fact all
our subsequent proofs depend solely on properties of the groups Gi, the
spectra of the ergodic transformations TA We therefore state certain results
on infinite abelian groups which we shall require in the sequel. They may
be found in Kaplansky [8] especially pages 1-12, or Kurosh [10], especially
Chapter VI or Fuchs [2] especially Chapters I and III.

a Every countable divisible abelian group is the direct sum of an (at most)
countable number of groups each isomorphic either to the additive group of ra-
tional numbers R or to some pO group (where p is a prime).

(b) Every abelian group can be embedded in a divisible group.
c The rank of an abelian group is the maximal number (possibly infinite)

of elements which are independent over the integers (see [10, Chapter VI 19]
or [2, Chapter I, 8]).

It is possible that a transformation T for which Xi(T) is not null andXa(T)
has a finite number of ergodic sets is equivalent to (but not conjugate to l) a
transformation S for which Xa(S) has an infinite number of ergodic sets. We
shall first therefore completely classify those T for which this happens, and
then confine our attention solely to those transformations for which all equiva-
lent transformations have only a finite number of ergodic sets. We note first
that two transformations S and T, of the type we are now considering, are
conjugate if and only if (I) Xi(T) and Xi(S) are either both null or both not
null, (II) there is a (1-1) correspondence between the ergodic sets A. of T
and B. of S such that the groups of TA. and Ss are identical.

LEMMA 8. A direct sum of N copies of the additive group of rationals,
(2 _< N _< 0), RI @ R2 @ is the union of a countably infinite sequence of
subgroups Q, Q, such that Qin Q. {0} for i j, and each Q is of
rank 1 (in fact isomorphic to the rationals).

Proof. A typical element of R @ R2 @ may be written in the form
(r, r, ..., r) where r # 0 and r eR.. Consider the set of all
elements (s ,s, s.) such that s/r s,./r si/r, (i.e., if
R @ R. @ is considered as a vector space over R, this is the line joining
the origin to (r, r)). Such elements form a group isomorphic to the
rationals. Moreover no non-zero element of R @ R @ belongs to more
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than one of these groups.
such groups is countable.

Since R1 @ R. @ is countable the number of
These form the required groups Q.

LEMMA 9. Any countable torsion-free abelian group H of rantc >_2 (possibly
infinite), is the union of a countably infinite sequence of subgroups H1, H2
such that H n Hi O} for i j, and each H is of ranlc 1.

Proof. By (a) and (b) quoted above, H can be embedded in a direct sum
of a countable number of groups each isomorphic to the additive group of
rationals. Now by Lemma 8, such a direct sum is the union of groups Q
of rankl, i= 1,2,...suchthatQnQi= {0}ifij. Soil= UIHnQ.
Now H g Q for any i, as Q is of rank 1 and H is of rank >_ 2. Further

NH Ur=IHnQ

for any finite number of groups Qh, Qr. For suppose gl, g2 are non-
zero, gleHnQil, geHnQ2. Since gl and g are of infinite order, the
elements kgl + g: (]c 1, 2, must all belong to different groups H Q.

Putting H H a Q, we get the required result.

THEOREM 5. Let T be a measure-preserving transformation with discrete
spectrum satisfying the following conditions" (i) multr(1) ,

sup {multr(X) X # 1} < m,

(ii) X, T has a finite number of ergodic sets A1, A and iii for at
least one n, the spectrum of T, is a torsion-free group of rank >_ 2. Then, there
exists a transformation S for which X(S) has an infinite number of ergodic sets,
and which is equivalent to, but not conjugate to, T.

Proof. Let G denote the spectrum of T, i 1, ..., N. We may
suppose that (iii) is satisfied for n N. By Lemma 9, G U.I Hi,
where Hi n H /1} for j k. (We write the groups multiplicatively.)

Let B, B, B, be an arbitrary partition of X into sets of positive
measure. Let So be the identity on B; S an ergodic transformation on B
with discrete spectrum G for i 1, N 1;Si an ergodic transforma-
tion with discrete spectrum H.. on B+i-1 for j 1, 2, 3, Define S So
onB, S= SonB,l_<i<_N- 1, S SionB+i-l,j>_ 1. ThenX(S)
has an infinite number of ergodic sets B1, B2, S is equivalent to T as it
has the same eigenvalues with the same multiplicities, but it is obviously not
conjugate to T.
We shall show later (Theorem 7) that the condition that at least one of the

G be torsion-free of rank >_ 2 is also necessary for the conclusion of Theorem 5.
We first prove some useful but elementary lemmas and incidentally show that
equivalence implies conjugacy if all the groups G1, G are torsion groups.

LEMMA 10.
is cyclic.

Any finitely generated subgroup of the additive group of rationals

The proof is both simple and well known.
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If T is a transformation with X.(T) null, then the joint multiplicity relative
to T of any r eigenvalues Xl, Xr of T is the number of groups G associated
with T such that X. e G for all 1 <_ j _< r.

LEMMA 11. (a) Let GI GN, and H HM be two sets of groups
U_- G H. (ii for elements asuch that N Uj-_ and any set of r ar,

the number of groups G such that a e G for all 1

_
tc <_ r is the same as the

number of groups H such that a e Hj for all 1 <_ tc <_ r; then N M and the
G and the H are pairwise identical.

(b) Let T and S be equivalent transformations with discrete spectrum such
that (i) sup mult (X) 1 < (ii) Xa(T) has a finite number of ergodic
sets A1, AN (iii) Xa(S) has a finite number of ergodic sets B B
(iv) the spectrum of TA is G of SB is H and (v) the joint multiplicities of
every finite set of elements are the same relative to T and S. Then the G and the
H are pairwise identical, and T and S are conjugate.

Proof. (a) If the G and H are not pairwise identical, then either there
exists a G, say G, such that G H for any j, or else there exists an H.,
say H, such that H G for any i. Suppose that the first alternative holds.
Then there exist al, a, a such that a. G1 forj 1, M and a. H..
The joint multiplicity of al, ..., a is 0 for the H. and >_1 for the G,
contradiction. Part (b) of the Lemma then follows from the conjugacy
theorem for ergodic transformations.

LEMMA 12. (a) Let G GN and H1, Hi, be torsion subgroups
[J= G [J H and (ii) for any element a,of the circle group such that (i) N

jl

the number of groups G such that a G is the same as the number of groups H
such that a H then given any set of r elements a, a, the number of
groups G such that a G for all 1

_
k <_ r, is the same as the number of groups

H such that a H for all 1 <_ k <_ r. M and N may be infinite.
(b) If T and S are equivalent and have discrete spectrum and if

sup {mult (X) X 1} < ;

if G G are the groups associated with the ergodic sets of T, H H
with those of S; and if further the G and H are all torsion groups, then the
joint multiplicity of any finite set of elements is the same relative to T and to S.

Proof. (a) The elements of G and H are all roots of unity and may be
expressed as primitive roots of unity. Given any numbers

(1) (n)exp (2rill/ml), o exp (2riln/mn)

with (/, m) 1, there exists by Lemma 10, a primitive root of unity
o exp (2rip/q) such that the cyclic group generated by o is the group
generated by (.0

(1) (n)
,o Hence

the number of groups G such that o()e G for 1 <_ r _< n

the number of groups G such that o G
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the number of groups H such that o H.
the number of groups H. such that (r) H for 1 _< r _< n.

Part (b) of the lemma follows since the equivalence of T and S implies that
and H. satisfy the conditions (i) and (ii) of part (a).

THEOREM 6. (a) Let T be a measure-preserving transformation with dis-
crete spectrum such that (i) sup {multr(k) :, # 1} < , (ii) Xa(T) has
only finitely many ergodic sets A1, Av an (iii) the spectrum
is a torsion group for each i 1, N. Then every S, equivalent to T, is
conjugate to T.

b Let T be a measure-preserving transformation with discrete spectrum such
that (i) sup {multr(,) , 1} < , (ii) Xa(T) has only finitely many
ergodic sets A1, A2v (iii) the spectrum of T. is G i 1, N; let
S be any transformation equivalent to T, with possibly an infinite number of
ergodic sets, such that the groups associated with the ergodic sets are H1, H
then there exist jl j such that the torsion subgroups of G and Hy are iden-
tical for i 1, N. The remaining H are torsion free.

Proof. (a) We first show that the number of ergodic sets of X(S)
must be finite. Else let B1, B, be the ergodic sets of S and let H. be
the spectrum of Ss. H is a torsion group. We rearrange the groups G
and H. in blocks and , as follows: Let p denote the r-th prime. The
r-th block consists of all those groups G, which contain a p-th root of
unity, but contain no pt-th root for < r. Similarly we define the blocks
3C,. Note that if a group contains a (pn)-th root of unity, it contains a
p-th root of unity. Each block has at most N groups in it. (This is im-
mediate for the G, and it follows for the H. from the equivalence of T and S.
There are a finite number of blocks say 1, , but n infinite number
of . So there exists/ > R, such that 5 is non-empty. We shall write

o for a p-th root of unity. By Lemma 12, the joint multiplicity relative to
T and S is the same for 0 and o hence o belongs to the same number of
groups of 1 as of 3C. Again % belongs to the same number of groups of

2 as of 3C, this number being

jt mult (o, o) jt mult (w, o,

(the joint multiplicities relative to T and S again being the same). More
generally for r _< /c, it belongs to the same number of groups of as of ,
this number being

jt mult (o,, %) jt mult (o, o,, o)

(it mult (, ,, %) it mult (cos, w, o,,,

(jr mult (o, 0,, o)

in fact a certain linear combination of ioint multiplicities (the same relative
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to T as to S) Hence the number of groups to which belongs in
is the same as in (Jr=l r. But 1, "", exhaust the G whereas there
exists an H. e 1C such that 0 e Hr. So 0 does not have the same
multiplicity relative to T as to S contradicting the equivalence of T and S.
Hence X(S) has only a finite number of ergodic sets. The conjugacy of
and T now follows from Lemmas 11 and 12.
The proof of (b) is almost identical with that of (a).

THEOREM 7. Let T be a measure-preserving transformation with discrete
spectrum such that (i) multr(1) , sup {multr()" 1} < ; (ii)
Xa( T) has only a finite number of ergodic sets At, Av the spectrum of
T. being G and (iii) none of the G is both torsion free and of rank >_2. Then
for every transformation S equivalent to T, Xa(S) has only a finite number of
ergodic sets.

Proof. Let sup {multr(k) 1/ M. Suppose that the theorem is
false, i.e. that there exists an S equivalent to T such that X(S) has an infinite
number of ergodic sets B, B., -... Denote by H. the spectrum of S. for
j 1, 2, .... If the G are all torsion groups the result follows by Theorem
6(a).
We first consider the case when all the G are torsion free of rank 1. For some

], G n H {1} for infinitely many j; let j j, j, j+ be M 1
distinct values of j for which this is true. Let a 1 be an element of inflate
order in G. Since G has rank 1, there is an integer r, with rl e H

r(l 1, 2, M + 1). Then, if r lr belongs to at least M + 1
of the groups H, i.e. mults(ar) M 1, contradiction.
Now we consider the general case. Suppose that G, G are groups

with torsion, G+, G are torsion free. By Theorem 6(b), there exist n
values of j, say j 1, n, such that the torsion subgroups of G and H
are identical for i 1, n; H+, H+, are then torsion free. Now
G+, ..., G being torsion free, are of rank 1. Hence, applying to the
groups H, G with i > n the argument given above in the special case of
groups of rank 1, we see that there exists an integer k, which we may suppose
>n, such that for j ]c, andnW 1 i g N,GH {1}. Let abean
element in U+i, with a 1 and mults(a) r say. Since mults(b) M
for all eigenvalues b, and since mults() mults(a), we may assume, by
replacing a by a suitable power of a, that mults() mults(a) for
m= 2,3,.... NowabelongstorofthegroupsG,...,G;letG,...,G
be these groups. Let us suppose that the r groups H to which a belongs are
H, H,, with j, j, all gk, and H+, H+_,. Clearly
s g r 1. Let denote the torsion subgroup of G i 1, ...,rand

denote the torsion subgroup of H, i 1, s.
If e for some i, 1, then ta cannot belong to any H other than

H, H,. For if ta belongs to any of H+, H+_,, then so does
t, which is impossible, since these groups are torsion free. If ta belongs to
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any other H., then ataler(t) has a multiplicity greater than that of a. Hence
it can only belong to HI ..., H. Similarly if e/., then ta cannot
belong to any G. other than G1, ..., Gr and so must belong to one of
(1, (r. Further, if belongs to exactly of 1, (, it belongs to
exactly of/.1, ,/.8, for is then the multiplicity of ta. Hence, applying
Lemmas ll(a) and 12(a) to (1, r and /. /.,, we see that
these groups are pairwise identical. It follows that r s, which is impossible
as s <_ r 1. Hence the number of groups H. must be finite.

THEOREM 8. Let T be a measure-preserving transformation with discrete
spectrum such that (i) sup multr(k) k 1} < , (ii) Xa(T) has a finite
number of ergodic sets A A (iii) the spectrum of T is G and (iv)
each group G is either a pure torsion group or is torsion free of rank 1;then every
S equivalent to T is conjugate to T.

Proof. The groups G can be divided into blocks, 0, , r (r _< N),
90 consisting of the torsion groups, and each of the other blocks containing
all groups whose elements are integrally dependent on some fixed element a
of infinite order. Let S be equivalent to T, Xa(S) have ergodicsets
B, B (finite in number by Theorem 7) with spectra H, H.
None of the H. can have rank greater than 1. For if a, b were integrally
independent elements in H say, then ab" would have to belong to distinct
G for all distinct coprime pairs of integers (m, n), contradicting the fact that
there are only finitely many G. Let G, G be the torsion groups among
the G. Then, by Theorem 6(b), there exist k groups H, say H, H,
such that the torsion subgroup of H is identical with G, i 1, 2, lc.
H. will be torsion free for j > k. We show that H1, H are themselves
torsion. For suppose a e H, a of infinite order. By replacing a by a suitable
power of a, we may suppose that mult (a mult (a) form > 1. Let
be a torsion element of H. Then ta e H and so ta G for some i > K.

Since this G is torsion free a G, and so mult (ardr(t)) > mult (a) which is a
contradiction. Thus H, ..., H are torsion and hence identical with
G, G. The remaining H. (j > ]) are all torsion free of rank 1, and
so can also be divided into blocks, each block containing all groups whose
elements are integrally dependent. Elements in groups of the same block of
groups G, belong to groups of the same block of groups H., and vice versa.
Consequently we may assume that there is just one block of G, and one of
H., i.e. that all elements of all the G are dependent on just one element a
say. Each G is isomorphic to a subgroup of the additive group of rationals;
it follows by Lemma 10 that the joint multiplicity of any finite number of
elements al, a is the same as the multiplicity of a certain Single element
a0, the generator of the group generated by a, ..., a. The result now
follows from Lemma 11.
We note that Theorems 6 and 8 are true in both cases (B) and (C), i.e.

whether multr(1) , or < . In the latter case, the proofs could be
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simplified, as no equivalent transformation can have an infinite number of
ergodie sets, in fact by Lemma 6, multr(1) number of ergodie sets of
X(T).

5. We conclude with some examples showing that nothing can be said in
the mixed groups case, nor even in the case when multr(1) < , and all
the groups are torsion free of arbitrary rank. We write Gp(al, ..., an)
for the group generated by al, a.

(i) Let a be any element of infinite order of the circle group, At, A2, As
a partition of X into 3 sets of positive measure. Put

G1 Gp(a,-1), G. Gp(a), Ga Gp(a2)
H1-- Gp(a2, -1), H- ap(a), Ha- Gp(-a).

Let T, S both have A, A2, As as ergodic sets, the spectrum of TA being
Gi, of S being Hi, i 1, 2, 3. Then T and S are equivalent but not con-
jugate.

(ii) If, in the above example, Ga is replaced by G’3 Gp(a), and T’ is the
corresponding transformation with spectrum of TAa being Ga, then every S
equivalent to T is in fact conjugate to T’.

(iii) Let a, A1, A2, As be as before, b integrally independent of a.

G1 Gp(a, b), G2 Gp(a-, b), Ga Gp(a, b)
H Gp(a, b), H2 Gp(a2, b), Ga Gp(ab, a, 52)

Put

All the above groups are torsion free. Define T and S so that the spectrum
of T is Gi, of SA is Hi for i 1, 2, 3. Then T and S are equivalent but
not conjugate.
We remark however that if multr(1) 2, then equivalence implies

conjugacy.
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