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1. Introduction
Lane and Wall [3] investigated convergence of the continued fraction

1 a a2 aaf(a) 1+ 1 -[- I q- i "4-
as related to properties of the sequence {hv} v=l associated with f(a) in the
following way. Let f0 0, fl 1, f2 1/(1 -4- al), denote the sequence
of approximants of f(a), and suppose no a 0. Xf t,(z) 1/(1 -t- a,z),
Tv(z) t t... t,(z), p 1, 2, 3,..., then Tv(0) fv, Tv() fv_l,
Tv(1) fv+, p 1, 2, 3, and in case no f , {hv} = is defined by

(1.1) Tv(hv) p 1, 2, 3, ....
Their investigations led to the result that if the even and odd parts of f(a)
converge absolutely, then f(a) converges if and only if either some a 0 or
else av 0, p 1, 2, 3, and the series 151 diverges, where

(1.2) b 1, b,+ 1/av bv p 1, 2, 3,....

In case av 0, p 1, 2, 3, and b {bv}v=l is defined by (1.2), then
the continued fraction

1 1 1g(b)
b+b2+ b+

is equivalent tof(a) in the sense that if go 0, g 1/bt, g. 1/(bt + l/b2),
is the sequence of approximants of g(b), then gv fv P O, 1, 2, ....

In Section 2, a transformation H is given which transforms (under appro-
prate restrictions) the sequence {bt + ba + + b2v+} into {gl g2v+l},
and it is shown that both H and its inverse are convergence preserving if ad
only if the product II (1 h2v)(1 h2v+2) converges absolutely. From this
and a similar result, we are able to obtain (Section 3) convergence and di-
vergence criteria for g(b) as related to properties of {hv} and {by}.

2. A class of continued fractions
Suppose z {z} v=l is a complex sequence whose terms are distinct from

0 and 1. Let

(2.1) D 1, Dv+I/D2,_ 1- z,, p 1, 2, 3,....

Received September 26, 1963; received in revised form February 24, 1964.

123



124 ])AD F. DWSON

Let A denote the set of all continued fractions f(a) such that no a 0 and
no f oo.

LEMMA 2.1. There exists a continued fraction g(b such that (1) the sequence
of odd denominators of g(b) is the sequence ID-}-- defined by (2.1), and (2)
g(b is equivalent to some f a) e A.

Proof. Let z’ {z} p--1 be a complex sequence whose terms are distinct
from0andl. Let Do 1, Dp/D.p_ 1- zp,p 1,2,3,.... Define

p__l and {bp} p__ as follows:

b 1, b:p+ (D2p+ D2p_,)
(2.2) p 1, 2, 3, ....
Then if b {bp} p_, (1) follows immediately from the fundamental recurrence
formulas for g(b) [1]. Since bl 1, no b 0, and noD 0, we note
that (2) is true.

Notation. If z is a complex sequence whose terms are distinct from 0 and 1,
then B(z) will denote the set of all continued fractions g(b) having properties
(1) and (2) of Lemma 2.1.

LEMMA 2.2. If g(b) e B(z) and g (b) is equivalent to f(a), then the sequence
{hp}__ defined by (1.1) has the property that hp zp, p 1, 2, 3, ....

Proof. By (2.10) of [3], hp -bp+ Dp/Dp_. But from (2.2) and
(2.1),

LEMMA 2.3. Suppose {wp} pl is a complex sequence whose terms are distinct
from 1, and suppose 1 wp up+/up, p 1,2,3,.... Then, if n is a
positive integer, the infinite product

(2.3)

converges absolutely if and only if each of the sequences {u.+} p--0, i 1, 2,.., n, converges absolutely to a nonzero limit.

Proof. We note that

--0 (1--wp+) up+, /up 1-- (1--up+,/up), p= 1,2,3,....

Hence (2.3) converges absolutely if and only if the series 1 1 u+,
converges. Thus (2.3) converges absolutely if and only if each of the series
1 1 u(p+)+/up,+[, i 1, 2, n, converges. But from a proof
given in [1] it follows that 1 U(+)n+ /Up,+ converges if and only if
{up+} p--0 converges absolutely to a nonzero limit, i 1, 2, n.

THEOREM 2.1. Suppose z {zp} p= is a complex sequence whose terms are
distinct from 0 and 1. Then the following two statements are equivalent"

(1) If g(b) e B(z), then {g_l} and bp_ both converge or both diverge.
(2) The product IX (1 zp) (1 z+) converges absolutely.



CONYERGENCE CRITERIA FOR CONTINUED FRACTIONS 125

Proof. We apply Lemma 2.3 for the case that n 2, w z,
and u D._, p 1, 2, 3,.... Thus by Lemma 2.3, the product
II (1 z)(1 z+) converges absolutely if and only if each of the se-
quences {D+._} -0, i 1, 2, converges absolutely to a nonzero limit. Let
H (hq) andH’ hq) be triangular matrices defined as follows

hq 0 if q p

1/D_ D+I if p q

(2.4) 1/Dq_ Dq+ 1/Dq+ D:q+a if p > q,

hq 0 if q > p

D_ D.+ if p q

Dq_ Dq+- Dq_ Dq+a if p > q.

Using induction and the formula g_ g+ b.+ /D+ D_,
p 1, 2, 3, we can show that H transforms the sequence of partial sums
of the series=b+ into the sequence {g g+} _-, and H’ isthe inverse
of H. Recalling the Silverman-Toeplitz conditions which are necessary and
sufficient for a triangular matrix to be convergence preserving, we see that H
and H’ are both convergence preserving if and only if both of the series

(2.5) 1/Dq_ Dq+ 1/Dq+ Dq+a

and

(2.6) D.q_ D.q+ Dq+ Dq+a

re convergent. But (2.5) nd (2.6) re both convergent if nd only if
[D2q- D:q+} q- converges absolutely to a nonzero limit, and this condition is
equivalent to the convergence of the series 1 D.+ D+/D_ D.+
[1]. Thus H and H are both convergence preserving if and only if each of
the sequences {D+._} =0, i 1, 2, converges absolutely to a nonzero limit,.
and this condition is equivalent to the absolute convergence of the product
II (1 z) (1 z+), as shown above from Lemma 2.3. Hence (2) implies
(:).
We next suppose tha (1) is true. This means that H and H’ are both

convergence preserving over the set of all complex sequences {t} _- such that
t 0 and t . t+, i 1, 2, 3, .... Using a slight modification of Corol-
lary 3.6a of [2], we see that H and H’ are both convergence preserving, and
so (2) must hold. This completes the proof of Theorem 2.1. A similar
theorem is obtained if the roles of even and odd indices are interchanged.

THEOREM 2.2. Suppose z {z} _- is a complex sequence whose terms are
distinct from 0 and 1. Then the following two statements are equivalent:

(1) If g (b) e B (z), then {D} and b both converge or both diverge.
(2) z converges.
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follows"

(2.7)

Let E (epq) and E’ (e,q) be triangular matrices defined as

=0 ifq > p e,q 0 ifq > p

1/D2_1 if p q D2_1 if p q

1/Dq_- 1/Dq+ if p > q, D2q_ D.q+ if p > q.

Using induction and the fundamental recurrence formulas for g(b) [1], we can
show that E transforms the sequence {D Do}1 into the sequence of
partial sums of the series __1 b, and E’ is the inverse of E. We note that
E and E are both convergence preserving if and only if both of the series

co.  rg .t, thi 
condition is equivalent to the convergence of the series

_
1 D,+I/D.,_.

[1]. Thus from (2.1) we see that E and E’ are both convergence preserving
if and only if lz converges. Hence (2) implies (1).
We now suppose that (1) holds. Then E and E’ are both convergence pre-

serving over the set of all complex sequences {t} such that tl 0 and
t t+ i 1, 2, 3, .-.. As in the proof of Theorem 2.1, it follows that
E and E are both convergence preserving, and so (2) must hold. A similar
theorem holds if the roles of even and odd indices are interchanged.

3. Theorems on convergence and divergence
Throughout this section it will be assumed that whenever a continued

fraction g(b) and a sequence {h} are mentioned, g(b) is equivalent to some
f(a) e A and {h} is defined by (1.1). The theorems and remarks of this sec-
tion remain valid if the roles of even and odd indices are interchanged.

THEOREM 3.1. If h., converges and either b=, converges or b.,_
diverges, then g(b diverges.

Proof. From (2.1) and Lemma 2.2, the convergence of [h implies
absolute convergence of {D_} to a nonzero limit [1]. Suppose b. con-
verges. Then by Theorem 2.2, {D=} converges. Thus g(b) diverges, since

(3.1) g+l g (- 1)/D,+ D, p O, 1, 2, ....
Suppose lb-l diverges. From the formula

(3.2) D.+ D=_ b.+l D., p 1, 2, 3,

and the absolute convergence of [D._}, it follows that b=+ D. con-
verges. Hence {D.} contains a subsequence convergent to 0. Therefore by
(3.1), g(b) diverges.
Remark 3.1. Theorem 3.1 can be proved by use of formulas of Lane and

Wall [3, pp. 370-371] and a theorem of Scott and Wall [4, Theorem B] to the
effect that if the series b_ and b. converge, at least one of them
absolutely, then g(b) diverges. It is interesting to note that there is no
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theorem to the effect that if the series h:_ and h converge, at least
one of them absolutely, then g(b) diverges. We show this by means of the
following example. Let h_ (-1)(-p)-1 and h 2-, p
1, 2, 3,.... Clearly I(h 1)(h 1)... (h 1)1--. oo as n --and by (2.7) of [3], {g_} converges. Hence by (2.4) of [3], g(b) converges.

THEOREM 3.2. If the odd part of g(b) converges absolutely and the esen part
converges, then g(b) converges if and only if either h, diverges or

h,+(1 h) (1 h) (1 hs,_) diverges.

Proof. The necessity follows from Theorem 3.1, Theorem 2.2, and the
fact that

h+(1 h)(1 hs)... (1 h._)
(3.3)

D-D+, p 1,2,3, ....
Convergence of g(b) when h. diverges follows from a theorem of Lane
and Wall [3, Theorem 2.2a]. Suppose then that hl converges and
] h+(1 h) (1 ha) (1 h._) diverges. We have then the abso-
lute convergence of {D._} to a nonzero limit, and from (3.3), the divergence
of {D.}. But since the even and odd parts of g(b) converge and

(3.4) g.+ g 1/D,+ D., p 1, 2, 3,

we see that D - as n --. oo, and so g(b) is convergent.

THEOREM 3.3. If the product II (1 hs) (1 h+) converges absolutely
and h -+ 0, then g(b) converges if and only if b._ converges.

Proof. From the proof of Theorem 2.1, we see that each of the sequences
D, Ds, Ds, and Ds, D, D, converges absolutely and neither limit
is 0. These limits are distinct since h, 1 D+/D._ and h - 0.
From Theorem 2.1 it follows that if g(b) converges, then b._ converges.
Suppose conversely that b_ converges. Then by (3.2), ]D I-- as
n -- . By Theorem 2.1, the odd part of g(b) converges, and so by (3.4),
g(b) converges.
Remark 3.2. Lane and Wall [3, Theorem 2.3] showed that if {g} is bounded,

then the two series lh and [b converge or diverge together. We
can use Theorem 3.3 to show that the two series [ h. and b_ need
not converge or diverge together whenever {g} is bounded. Let z {z}
be a complex sequence such that z 0, z 1, i 1, 2, 3, and such
that II (1 z)(1 z+) converges absolutely, butz -0. Let g(b) eB(z)
such that b-ll converges. Then by Theorem 3.3, g(b) converges. By
Lemma 2.2, h: z, p 1, 2, 3, and so hl diverges. Thus the
convergence of b:- need not imply convergence of h. even when
g} is convergent. It follows easily from the formula on the bottom of page
371 of [3], however, that the convergence of hs implies convergence of

b_ when {g} is bounded.
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Remark 3.3. It is easy to show that if both of the matrices H and H’ de-
fined by (2.4) are convergence preserving, then the sequences {g.-l} and
{bl -t- b3 W - b_l} are either both bounded or both unbounded. Simi-
larly, if both of the matrices E and E’ defined by (2.7) are convergence pre-
serving, then the sequences {D} and {b. W b W W b} are either both
bounded or both unbounded. Hence if [h converges,

lim sup bl W b3 W W b- < ,
and

limsuplbWbW -bl ,
then {D-I} converges to a nonzero limit, Igor-l} is bounded, and {D} is
unbounded. Thus by (3.4), lim iaf g+l g2l 0, and so there exists a
finite point v, every neighborhood of which contains infinitely many even and
infinitely many odd approximants of g(b).
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