ON THE TRANSFORMATION OF SEQUENCES AND RELATED
CONVERGENCE CRITERIA FOR CONTINUED FRACTIONS

BY
Davip F. Dawson

1. Introduction
Lane and Wall [3] investigated convergence of the continued fraction

1 ax Qs as
@) = T4 T+T 4.
as related to properties of the sequence {h,} 51 associated with f(a) in the
following way. Letfo = 0,fi = 1,f. = 1/(1 4+ @), - - - denote the sequence
of approximants of f(a), and suppose no a; = 0. If t,(2) = 1/(1 + ap2),
Tp(z) = bty tp(z)7 p =1, 2,8,-+, then TP(O) = fpy TP(OO) = fp,
Ty(1) = fosu,p =1,2,3,--+,and in case no f; = o, {h,}p— is defined by

(11) Tp(hp) = o, p = 1) 27 3) Ut

Their investigations led to the result that if the even and odd parts of f(a)
converge absolutely, then f(a) converges if and only if either some a; = 0O or

elsea, # 0,p =1,2,3,---, and the series Y, | b, | diverges, where
(1'2) by = 1; bP+1= 1/apbp’ p= 1; 2,3,
Incase a, = 0, p = 1,2,3, -+, and b = {b,} 5= is defined by (1.2), then
the continued fraction
ol L1
b1+b2+b3+

is equivalent to f(a) in the sense that if go = 0,91 = 1/b1, g2 = 1/(by + 1/by), - - -
is the sequence of approximants of g(b), theng, = f,,p =0,1,2, --- .

In Section 2, a transformation H is given which transforms (under appro-
prate restrictions) the sequence {b; + b; + -+ -+ bypia} Into {1 — gapya},
and it is shown that both H and its inverse are convergence preserving if and
only if the product [] (1 — Agp) (1 — hgpys) converges absolutely. From this
and a similar result, we are able to obtain (Section 3) convergence and di-
vergence criteria for g(b) as related to properties of {,} and {b,}.

2. A class of continued fractions

Suppose z = {z,} 51 is & complex sequence whose terms are distinet from
Oand 1. Let

(2'1) D, = 1, D2P+1/D2P—1 =1- 2p, p=12 3: Tt
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Let A denote the set of all continued fractions f(a) such that no a; = 0 and
nof; = oo,

LemMA 2.1.  There exists a continued fraction g(b) such that (1) the sequence
of odd denominators of g(b) s the sequence {Dyp_1} =1 defined by (2.1), and (2)
g(b) s equivalent to some f(a) € A.

Proof. Let 2 = {2,}5-1 be a complex sequence whose terms are distinct
from 0 and 1. Let Dy = 1, Dyp/Dyps = 1 — 2, p = 1,2, 3, -+ . Define
{Dop_1} p=1 and {bs,} 51 as follows:

(2.2) b =1, bopy = (D2p+l - D2p—'1)/D2m p=123 .
by = (D2p - D2p—2)/D2p—1>

Then if b = {b,} =1, (1) follows immediately from the fundamental recurrence
formulas for g(b) [1]. Since by = 1, no b; = 0, and no D; = 0, we note
that (2) is true.

Notation. If 2z is a complex sequence whose terms are distinet from 0 and 1,
then B(z) will denote the set of all continued fractions g(b) having properties
(1) and (2) of Lemma 2.1.

Lemma 2.2, If g(b) € B(z) and g(b) s equivalent to f(a), then the sequence
{hp) o=t defined by (1.1) has the property that hey = 2, p = 1,2, 3, -+ - .

Proof. By (2.10) of [3], hap = —bopy1 Doy /Dap1. But from (2.2) and
(2.1), —bspy1 D2y /Dops = (Dzp-1 — Dapia)/Dopy = 2,.

LeMMA 2.3.  Suppose {w,} p=1 s a complex sequence whose terms are distinct

from 1, and suppose 1 — w, = Up1 /Up, p = 1,2,8,---. Then,if nisa
positive integer, the infinite product
(2.3) 1Lz AT (1 — wps)

converges absolutely if and only if each of the sequences {Upmiipmo,? = 1, 2,
-+, m, converges absolutely to a nonzero limit.

Proof. We note that
H?‘:Ol 1= wpis) = Upgn /Up = 1 — (1 — Upyn /up), p=1,2,3,---.
Hence (2.3) converges absolutely if and only if the series D | 1 — uppn /Uy |
converges. Thus (2.3) converges absolutely if and only if each of the series
Y11 = Unngs [Upngi |, 4 = 1,2, --+, n, converges. But from a proof
given in [1] it follows that > | 1 — Uptynti /Upnyi | converges if and only if
{Upn} p=0 CONVerges absolutely to a nonzero limit, 7 = 1,2, --- , n.

THEOREM 2.1. Suppose z = {2} p=1 s a complex sequence whose terms are
distinct from 0 and 1.  Then the following two staltements are equivalent:

(1) If g(b) € B(2), then {gsp1} and D by both converge or both diverge.

(2) The product [] (1 — 2,)(1 — 2p41) converges absolutely.
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Proof. We apply Lemma 2.3 for the case that n = 2, w, = 2,,
and up = Dypy, p = 1, 2, 3, ---. Thus by Lemma 2.3, the product
II (1 — 2,)(1 — 2,41) converges absolutely if and only if each of the se-
quences {Dypi2: 1) p=0, ¢ = 1, 2, converges absolutely to a nonzero limit. Let
H = (hy) and H' = (h),) be triangular matrices defined as follows:

hpa =0 ifg>p

= 1/Dsp1 Dypya ifp=g¢

(24) = 1/Dag1 D3ga — 1/D2gia Degys i p > g,

Bpg = 0 ifg>op

= Dip-1 Dapia ifp =g

= Dyt D2gy1 — Dagi1 Dogys ifp > q.
Using induction and the formula ¢sp1 — gepyr = bepys /Dopis Dop,
p=123, -, we can show that H transforms the sequence of partial sums

of the series Y p—y bapys into the sequence {g1 — gap41} 31 , and H' isthe inverse
of H. Recalling the Silverman-Toeplitz conditions which are necessary and
sufficient for a triangular matrix to be convergence preserving, we see that H
and H' are both convergence preserving if and only if both of the series

(2.5) 22| 1/Dsg1 Dagya — 1/Dig41 Dagus |
and
(2.6) Z | Dgg—1 D2gy1 — Dagq1 Dagys |

are convergent. But (2.5) and (2.6) are both convergent if and only if
{Dsg—1 Dagy1} g=1 converges absolutely to a nonzero limit, and this condition is
equivalent to the convergence of the series D, | 1 — Dspya Dopys /Dopy Dopos |
[1]. Thus H and H' are both convergence preserving if and only if each of
the sequences {Dip42i1) 50, ¢ = 1,2, converges absolutely to a nonzero limit,
and this condition is equivalent to the absolute convergence of the product
II (@ — 2,)(1 — 2,41), as shown above from Lemma 2.3. Hence (2) implies
(1).

We next suppose that (1) is true. This means that H and H' are both
convergence preserving over the set of all complex sequences {¢,} 51 such that
= 0andt; # tia,t=1,2,3,---. Using a slight modification of Corol-
lary 3.6a of [2], we see that H and H' are both convergence preserving, and
s0 (2) must hold. This completes the proof of Theorem 2.1. A similar
theorem is obtained if the roles of even and odd indices are interchanged.

THEOREM 2.2. Suppose z = {2,}p-1 18 a complex sequence whose terms are
distinct from 0 and 1. Then the following two statements are equivalent:

(1) If g(b) € B(2), then {Ds,} and Y, by, both converge or both diverge.

(2) 2|2y | converges.
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Proof. Let E = (ep,) and E' = (ep,) be triangular matrices defined as
follows:

(2.7) ey =0 ifg>op €pg = 0 ifg>0p
=1/Dsp ifp=gq = Dopy iftp=g
=1/Dpg1—1/Dyen if p > g, = Dyg1 — Degn ifp > g.

Using induction and the fundamental recurrence formulas for g(b) [1], we can
show that E transforms the sequence {D,, — Do} p—: into the sequence of
partial sums of the series %71 by, , and E’ is the inverse of E. We note that
E and E’ are both convergence preserving if and only if both of the series
> 11/Dspy — 1/Dygpys | and Y, | Dypy — Dapys | are convergent, and this
condition is equivalent to the convergence of the series Y, | 1 — Dypyy /Dapy |
[1). Thus from (2.1) we see that E and E’ are both convergence preserving
if and only if D |2, | converges. Hence (2) implies (1).

We now suppose that (1) holds. Then E and E’ are both convergence pre-
serving over the set of all complex sequences {f,}p—1 such that # # 0 and
ti # tin,t=1,2,3,---. As in the proof of Theorem 2.1, it follows that
E and E’ are both convergence preserving, and so (2) must hold. A similar
theorem holds if the roles of even and odd indices are interchanged.

3. Theorems on convergence and divergence

Throughout this section it will be assumed that whenever a continued
fraction g(b) and a sequence {h,} are mentioned, g(b) is equivalent to some
f(a) € A and {h,} is defined by (1.1). The theorems and remarks of this sec-
tion remain valid if the roles of even and odd indices are interchanged.

TarorREM 3.1, If D | hap | converges and either > bay converges or D, | bap_y |
diverges, then g(b) diverges.

Proof. From (2.1) and Lemma 2.2, the convergence of Y | ks, | implies
absolute convergence of {Dy,_;} to a nonzero limit [1]. Suppose 2 by, con-
verges. Then by Theorem 2.2, {D,,} converges. Thus ¢g(b) diverges, since

(3.1) go+1 — gp = (—1)?/Dpn Dy, p=012---.
Suppose Y | by | diverges. From the formula
(32) D2p+1 - D2p—1 = b2p+l -D2p ’ p=123- -,

and the absolute convergence of {Ds, 4}, it follows that Y | bypss Dap | con-
verges. Hence {D;,} contains a subsequence convergent to 0. Therefore by
(3.1), g(b) diverges.

Remark 3.1. Theorem 3.1 can be proved by use of formulas of Lane and
Wall [3, pp. 370-371] and a theorem of Scott and Wall [4, Theorem B] to the
effect that if the series Y bs,; and D by, converge, at least one of them
absolutely, then g(b) diverges. It is interesting to note that there is no
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theorem to the effect that if the series  hspy and 2 hy, converge, at least
one of them absolutely, then g(b) diverges. We show this by means of the
following example. Let hypy = (—1)?(—p)™* and hy = 277, p =
1,2,3,---. Clearly |(ly — 1)(hg — 1) -+ (hy — 1)] = ® agn — o,
and by (2.7) of [3], {g2p—1} converges. Hence by (2.4) of [3], g(b) converges.

TareOoREM 3.2. If the odd part of g(b) converges absolutely and the even part
converges, then g(b) converges if and only if either Y, |hop| diverges or
> hapa(1 — b)) (1 — hg) -+ (1 — hopy) diverges.

Proof. The necessity follows from Theorem 3.1, Theorem 2.2, and the
fact that

hoppa(1 — ) (1 — hg) -+ (1 — hgp1)
= D21J_-D2D+2) P = 112:37 Tt

Convergence of g(b) when Y | hy, | diverges follows from a theorem of Lane
and Wall [3, Theorem 2.2a). Suppose then that |k, | converges and
> hapia(l — B) (1 — hy) -+ (1 — hapy) diverges. We have then the abso-
lute convergence of {D;,—} to a nonzero limit, and from (3.3), the divergence
of {Dy,;}. But since the even and odd parts of g(b) converge and

(34) Jop+1 — GJ2p = 1/D217+1 D2P ) P = 1, 27 3> R
we see that | Dy, | — © asn — o, and so g(b) is convergent.

TuroreM 3.3. If the product [] (1 — hgp) (1 — hopys) comverges absolutely
and ha, - 0, then g(b) converges if and only if Y, bepy converges.

(3.3)

Proof. From the proof of Theorem 2.1, we see that each of the sequences
Dy,Ds,Dy, - and D3, D7, Dy, - - - converges absolutely and neither limit
is 0. These limits are distinct since hyy = 1 — Dypyy /Dopy and hy, - 0.
From Theorem 2.1 it follows that if g(b) converges, then D by,_y converges.
Suppose conversely that D by, 1 converges. Then by (3.2), | Ds, | — « as
n — o. By Theorem 2.1, the odd part of g(b) converges, and so by (3.4),
g(b) converges.

Remark 3.2. Lane and Wall [3, Theorem 2.3] showed that if {g,} is bounded,
then the two series Y | h, | and D | b, | converge or diverge together. We
can use Theorem 3.3 to show that the two series D, | hop | and Y | byp_y | need
not converge or diverge together whenever {g,} is bounded. Let z = {z,} 7
be a complex sequence such that z; # 0,2 % 1,7 = 1,2, 3, -+, and such
that [ (1 — 2,) (1 — 2,41) converges absolutely, but z, +>0. Let g(b) ¢ B(2)
such that Y, | by,_1 | converges. Then by Theorem 3.3, g(b) converges. By
Lemma 2.2, hyp = 2,,p = 1,2, 3, -+, and 0 Y | hyy | diverges. Thus the
convergence of », | by, ; | need not imply convergence of Y, | ks, | even when
{g»} 1s convergent. It follows easily from the formula on the bottom of page
371 of [3], however, that the convergence of . | hs, | implies convergence of
> | bap—s | when {g,} is bounded.



128 DAVID F. DAWSON

Remark 3.3. Tt is easy to show that if both of the matrices H and H' de-
fined by (2.4) are convergence preserving, then the sequences {gep,—1} and
{bp + bs + -+ + bep_y} are either both bounded or both unbounded. Simi-
larly, if both of the matrices E and E’ defined by (2.7) are convergence pre-
serving, then the sequences {D,,} and {by + bs + .-+ + by} are either both
bounded or both unbounded. Hence if Y | ks, | converges,

limsup|b1+b3—|- v +b21)—ll < o,
and

limsup | by + by + «++ + by | = =,

then {Dg,1} converges to a nonzero limit, {gs,_1} is bounded, and {D,,} is
unbounded. Thus by (3.4), lim inf | gepi1 — g2p | = 0, and so there exists a
finite point v, every neighborhood of which contains infinitely many even and
infinitely many odd approximants of g(b).
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