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A NEW APPROACH TO THE CONSTRUCTION OF
COMPLETE MINIMAL SURFACES DERIVED FROM THE

GENUS TWO CHEN-GACKSTATTER EXAMPLE

FRANCISCO MARTIN AND DOMINGO RODRfGUEZ

I. Introduction

C. C. Chen and E Gackstatter [C-G] discovered in the early 80’s two minimal
surfaces with one end that are directly related to Enneper’s surface, except that they
possess one and two handles, respectively. Furthermore, both surfaces have the same
symmetry group as in Enneper’s example.

The genus-one Chen-Gackstatter surface has been characterized by E J. L6pez
[L1 ], and independently by Bloss [B], as the only complete minimal once punctured
torus in I3 with total curvature -8zr.

H. Karcher [K] and E J. L6pez [L2] have obtained two different generalizations
of this surface by increasing the genus and the order of the symmetry group. This
technique was used the first time by D. Hoffman and W. H. Meeks in [H-M] to
construct a family of surfaces from Costa’s example [C] and it allows new examples of
high genus surfaces to be obtained without the period problem increasing in difficulty.

On the other hand, F. J. L6pez, E Martin and D. Rodrfguez [L-M-R] have proved
that the genus-two Chen-Gackstatter example is the unique, complete, orientable
minimal surface of genus two in I with total curvature -12zr and eight symmetries.
This result has been obtained by studying a family of quite symmetric minimal sur-
faces derived from the genus-two Chen-Gackstatter surface and it is a corollary of a
more general uniqueness theorem for this infinite family.

E. C. Thayer [T], using a similar technique, has discovered a family of complete
minimal surfaces with arbitrary even genus following on from the genus-two Chen-
Gackstatter example. In this paper we study these surfaces using a new approach to
the period problem. Furthermore, we prove that this problem has only one solution
(Section 3) and get a uniqueness theorem for these surfaces in terms of their genus,
symmetry and total curvature (Section 4). As a consequence we have obtained the
uniqueness result for the second Chen-Gackstatter example which we have mentioned
above.
We want to express particular thanks to Prof. F. J. L6pez for his advice, encour-

agement and several very informative conversations in the development of this work.

Received November 3, 1995.
1991 Mathematics Subject Classification. Primary 53A10; Secondary 53C42.
Research partially supported by DGOCYT grant no. PB94-0796.

(C) 1997 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

171



172 FRANCISCO MART1N AND DOMINGO RODRfGUEZ

2. Preliminaries

In this section we summarize some results about complete minimal surfaces of
finite total curvature.

If we consider x" M -- ]1{3 a minimal immersion of a orientable surface M in
three dimensional Euclidean space the total curvature of x is denoted by C.(M). In
a natural way, using isothermal parameters, M is a Riemann surface and we have
labeled (g, r/) the Weierstrass data of x. One should remember that the Gauss map g
ofx is a meromorphic function on M, and 0 is a holomorphic 1-form on M (see [O]).

Moreover, x Real f(,, t#2 t#3) where

1
4 r/(1- g2), q2- r/(1 + g2), 3 r/g (1)

are holomorphic 1-forms on M satisfying

3

j=l

(2)

In particular the 1-forms 4j, j 1, 2, 3, have no real periods on M.
In what follows we have assumed that M is complete and C(M) > -oo. Under

these hypotheses, A. Huber proved (see [H]) that M is conformally diffeomorphic to
a compact Riemann surface M punctured in a finite number of points P1 Pr
and R. Osserman [O] showed that (g, r/) extends meromorphically to M. Therefore,
g has well defined degree and C(M) -4r deg(g).

L. E Jorge and W. H. Meeks [J-M] proved that the asymptotic behavior ofx around
an end Pi is determined by the number:

li Maximum{ord(4j, Pi), j 1, 2, 3}

where ord(qj, Pi) is the pole order of tpj at Pi. Moreover,

2 deg(g) X () + Y(Ii + 1). (3)
i=1

We have assumed that M is not the covering of any minimal surface and we have
written Iso(M), the isometry group of M. The subgroup ofIso(M) consisting ofthose
isometries which are the restriction of a rigid motion in 3 leaving x(M) invariant
is denoted by Sym(M). Calabi proved that Iso(M) Sym(M) if and only if there
exists j 6 l, 2, 3} such that qj is not exact. A complete discussion about this subject
can be found in [H-M].

In what follows the order 2n dihedral group is denoted by D(n).
We will need the following topological remarks. Let M be a compact Riemann

surface of genus k > 0. Given cl, C2 Hi (M, Z), we let the intersection number of
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Cl and C2 be denoted by Cl C2. Consider/3 {al ak, bl bk }, a homology
basis of M. By definition,/3 is a canonical homology basis if and only if ai" bj di j

and ai .aj bi. bj 0, ’v’i, j 1 k (di j means Kronecker’s delta). We must use
this kind of basis in Classical Riemann Bilinear Relations. For the details see [F-K].
We conclude these preliminaries recalling the definitions of Euler beta and gamma
functions. For v N and z C {-1, -2 }, the gamma function is given by

v!v
P(z) lim

,--*+ z(z + 1)(z + 2)... (z + v)

Among classical properties of gamma function, we emphasize the following:

) 4-r(2z)
:rr 22z-P(z)l-’ z -4-F (z+ 1) zP (z), F (z) l" (l-z)

sin0rz)’

For m, n C, Re(m) > 0, Re(n) > 0, we define the beta function by

(m,n) f01 m- (1 t)n-i dt.

This is related to the gamma function according to

3 (m, n)
r(m)r(n)
P(m +n)

A complete reference for these topics is, for instance, [Str].

3. The family of examples

This section is devoted to a careful study ofa family ofcomplete orientable minimal
surfaces with one end derived from the Chen-Gackstatter genus two surface. These
surfaces were constructed first by E. C. Thayer in [T], as we mentioned in Section 1.
We obtain an analytic uniqueness theorem (Theorem 1) for these examples. For a
more geometric uniqueness theorem see Section 4.

Let Mk a, k 6 N, k >_ 2, a 6 + be the compact Riemann surface of genus
2(k- 1):

M’--ka-. {(Z, VO) ff.(CU{})2: vok.- z(z2-a2)}Z2- 1

Write o (0, cxz), 0 (0, 0), 4-1 (4-1, 0), 4-a (+a, 0). The following
conformal mappings are defined by

H, T: Mka -- Ma
T(z, w) (-z, e’ w) H(z, w) (, ).
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Figure 1. a > 1

Note that T has order 2k and H is an involution. They generate a group isomorphic
to D(2k). Moreover, T2 and H fix 0, cxz, 4-1, 4-a, and T fixes 0, o.

To construct a canonical homology basis of Mk a we distinguish two cases:

Suppose a > 1. Let ci (s), i (S), 1, 2, , (s) be the oriented simple closed
curves in the z-plane illustrated in Figure 1. We assume that otl (0) I,
c1 (0) > a, c2(0) , > c=(0) > 0,/31 (0) 11, a >/31 (0) > 1,/32(0) ,
0 > /32 (0) > 1, , (0) I, a > ?’ (0) > 1. Let ai (s) be the unique lift
of Oti(S) to Mka satisfying w(ai(O)) I+, 1, 2. Analogously, we define
bi (s), 1, 2, c(s) as the corresponding lifts of ]i (S), 1, 2, ’ (s) with initial

r ,r respectively.conditions Arg(w(bi(O))) -, 1, 2, Arg(w(c(0))) ,
Suppose 0 < a < 1. Now, ai(s), i(s), ,(s) are the oriented closed curves
in the z-plane of Figure 2. Here or1(0) , al (0) > 1, a=(0) , a >
02(0 > 0 /1(0) ( , 1 > /31(0) > a, /32(0) IR, 0 > /2(0) > --a,
,(0) 6 IR, > 1/(0) > a. Let ai(s) be the unique lift of oti(s) to Mt, a

satisfying w (ai (0)) a_. IR+ 1, 2.
Analogously, denote by bi (s), 1, 2, c(s), the corresponding lifts of/3i (s),

1, 2 and y(s) with initial conditions Arg(w(bi(O))) Arg(w(c(0))) -,
1, 2, respectively.

For any closed curve d in M, a, we identify d and its homology class [d]. Then
observe that

b bz + c, T,(a) -b2, T,(a=) -c. (4)

At this point we distinguish two cases:

Ifa > 1, welet

J
a/ j-(TZl),(ai), b/=(TZJ),(bi) i= 1,2; j=0 k-2

/=0
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2

Figure 2.0 < a < 1

If a < 1, we denote by

Ja E(T21),(al),
1=o

J
b{ (T:J),(b al), aJ2 E(T2’),(a:- b2), bJ2 (T2J),(b:),

l-O

j =0 k-2.

In both situations one has that

B= a{, b’i= k-2
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is a canonical homology basis on ka, where (al ak-2, a2 a2-2),
(b blk-2, b2 b-2)are the a, b-curves, respectively. Let 1, 2, q, 2
be the following 1-forms on Mk a"

dz llok_ dz z dz
"11 l/)k_l, "t’2-- dz, 0"1 l/)k_l(z2 1)’ tr2 (Z2_ 1)w

An easy computation gives

xi ni

T*
ri

T*(rl) e’rl, T*(r2) e-Tr2, T*(Crl) eT"trl, (tr2) e-Ttr2. (5)

Define the following functions on/l+ {1 }"

rl, fE(a)= rl, g(a)= 2r2’ g2(a)= rE,fl(a)

or2, k2(a)--- or20"1, h2(a) o’1, kl(a)h(a)

2ri
where e. When a > 1 then (a), gi(a), hi(a), ki(a) > 0, 1, 2, and
a < implies f(a),g(a) < O, f2(a),g2(a) > O, hi (a), ki (a) > 0, 1,2. From
(4) and (5),

rl=O(a), r2=--Ogi(a), i=1,2

T1 (-1)i+lOhi(a),

where 0 e e-’. We define

tr2 =Oki(a), i=1,2,

f (a) + 2f(a)
f3(a) (1 + 2cos(-))f(a) + 2fz(a)

if a>
if0<a<l

gl (a) + 2g2(a)
g3(a)

(1 + 2cos())gl(a) + 2g2(a)

hi(a) 2h2(a)
h3(a) (1 + 2cos())h(a) 2h2(a)

kl(a) + 2k2(a)
k3(a) (1 + 2cos())kl(a) + 2k2(a)

We state the following lemmas"

if a>
if0<a<l

if a> 1
if0<a<l

if a>
if0<a< 1.



CHEN-GACKSTATTER SURFACES AND SYMMETRIES 177

LEMMA 1. The asymptotic behavior of j], gi, ki, 1, 2 at 0, cx is given by

(i)

,- 1 (1 2k-3)lim f (a)a-r" B
a---O 2 ’ 2k

limfl(a)a- 1 (1 2k-l)2k

lim f2 (a)a-7- 3
a--}O

lim f2(a)a. _1 (2k-1 k)a---o 2 k

(ii)

lim gl (a)
1 ( 1

aO - k’
4k- 3)2k

lim g (a)a-r- -3
a--- t:x 2 k

3-4, (2k-1 2k-l)lim g2(a)a
a--,o 2 k 2k

lim gz(a)a )

(iii)

limkl(a) (1 2k-3)a---0 ’ 2k

limk(a)a 1 (21_k k-l)a---o k

3-2k 1 (k-1 2k-l)lim k2 (a)a ’-
aO k 2k

limkz(a)a (1 2k-l)a---o k’ 2k

where is the classical Beta Function. Furthermore

f(a) g(a)
lim lira
a---l a 1 a--+l a 1

rr(k- 1)
lira f2(a) (2k- 1). lira g2(a) k.

k sin(zr/k)’ a-,’l a---l
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Proof. From the definition of fl we obtain

k-I

fla(|--Z2)f (a)
Z(Z2 a2

dz.

A suitable change of variable gives

k-1

fol( t(2+(a--1)t) )-r-fl(a) (a- 1)
(1 + a + (a- 1)t)(1 + (a- 1)t)(1- t)

dt.

Hence
k-I

lim
fl(a) =f01( ) "r-dt= (k-1)zr

a--- a 1 1 k sin(/k)

k-!

lim fl(a)a- 1 2k-1
a--oo 1

dt - k’ 2k

To compute the limit at 0, put (S 1) + 1 and so

t
k-I

3-2k fO (t(2a+(1-a)t) "-
fl(a) a "-r- (a 1)

(1 t)(1 + a + (1 a)t)
dt

l+k
(a + (1 a)t)

Then

2_3 fo t7 2k-3
lima fl (a)

k 2ka--+O (1 2) .!
dt B

Similar arguments work for gi and ki, 1, 2. E3

LEMMA 2. Thefunctions j, gi, hi, ki, {1, 3} satisfy

(i) flg3 + f3gl

(ii) flk3 + f3kl

2rrk(k- 1)(a2- 1)
(2k 1) sin(zr/ k)
kzr

sin(rr/k)
kzr

(iii) glh3 + g3hl
(2k 1) sin(z/k)

(iv) hlk3 + h3k O.

Proof. Using classical bilinear relations we obtain

EE Z’2 Z’I r2 r 2zri Residue(frl,
p=l j=O
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where r2 df locally around o. In the case a > 1, taking into account (4) and (5),
the last equality becomes

2k2(k 1)(1 a2)
2k- 1

For a < 1 one has

2k2(k 1)(1 a2)
2ri

2k- 1

Using the definitions of the functions 3, gi, {1, 3} it is not hard to check (i).
Applying the same argument to the pairs (or2, rl), (r2, cq) and (tr2, try) we obtain the
equalities (ii), (iii) and (iv), respectively.

LEMMA 3. Thefollowing equalities hold:

d f/ 2(k- 1)
(i)

da k-3 /kh

d gi 2a(k- 1)
(ii) kida k

d hi 1 2(k 1)
(iii)

da ka(a2-1) 3- ka

(iv)
d ki 2k 1 2k 3

ki
da ka(1 a2)

gi -4c-
ka

fori {1, 3}.

Proof. By a formal derivation, we obtain

d 2(k 1)
da

(/71) a ’1 - ka
t71 //3k-1 )

d 2a(k- 1)
k

d

d-’ (crl)
ka(a2- 1) ka a(1 a2) l/)k-
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d
(erE)=

2k-1 2k-3 1 d().d-- ka(a2-1) r2+ ka trE+a(l_a2)
Integrating on the suitable curves, it is easy to deduce the statements of this lemma.

LEMMA 4. Thefollowing equations hold:

kzr 3-2

(i) flh3- f3hl -a’-r-
sin(zr/k)

kzr
(ii) gk3 g3kl -sin’r’k"2k / ) 1)

2k-3

Proof. From Lemma 3, we can check the following equations:

d 3 2k
d--’d(flh3- f3hl) k----d--(flh3- f3hl)

d 2k 3
d’-’d(glk3 g3kl) k---’(glk3 gakl).

If we integrate these ordinary differential equations we obtain

fl(a)h3(a)-f3(a)hl(a)--{ ClakDla-- ifif 0<aa>l<1

Hence,

C2a2f---3
gl (a)k3(a) g3(a)kl (a) D2af.

if a>

if O<a<l.

C1.C2 if a>
(flh3 f3hl)(gk3 g3k)

D1 D2 if 0 < a < 1.

Expanding and using (ii), (iii) and (iv) in Lemma 2 we have C C2 D D2

sinE(rr/k)(2k- 1)"
Now using Lemma and the properties of beta and gamma functions it follows

that

gl (a)k3(a) ga(a)kl (a) gl (a)k2(a) gE(a)kl (a)
C2 lim 2-3 2 lim

_
a a a a

2 k k
kr

(2k 1) sinOr/k)

2k
3
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02 lim
gl (a)k3(a) g3(a)kl (a) gl (a)k2(a) g2(a)kl (a)

2- 2 lim 2k-3
a---0 a "-r- a---0 a "r-- ’ 2k k 2k =-(2k-1) sin(zr/k)

kyt"
and so, C1 D

sin(r/k)

LEMMA 5. Thefunctions fl, f3, gl, g3 satisfy

d(i)
da
d gi

(ii)
da

a
f/(a) + (-1) (2k 1)a

gi(a)
k(a2 1)’ k(a2 1)

,-i a (2k 1)a
(-1)’- 3(a) q-- gi(a)

k(a2 1) k(a2 1)

for {1,3}.

Proof. From Lemmas 2 and 4, observe that the functions hi, ki, 1, 3, satisfy
the linear systems

-f3h + flh3 kzr
sin(n/k) a

kTg3h + gh3 (2k-1)sin(rr/k)

kr 2k-3 I--g3kl "1- glk3 (2k_l)sin(r/k) a
-r-

f3kl + flk3 sin(r/k)

Solving and using (i) in Lemma 2, we obtain new expressions for ki and hi, 1, 3,
depending on 3 and gi, 1, 3. Substituting them in the equalities (i) and (ii) in
Lemma 3 we conclude the proof. E!

To define a proper minimal immersion of Mk a -k a {(X)} into ]13 for every
k > 2 and suitable a e I+ 1 }, consider the Weierstrass data

g A 113k-l, rig B dz, A , B
_
C, Inl 1

on Mk a. Then, defining j, j 1, 2, 3, as in (1), the inequality (2) holds. Moreover,
j, j 1, 2, 3, have no real periods if and only if the immersion

x gka --> R3

is well defined.

x Real f ,,,, 3)
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THEOREM 1. For each k >_ 2 there exists only one ao I+ }, depending of
k, such that x is well defined.

Proof. The immersion x is well defined if and only if Real (fd bj) 0 for every
closed curve d in Mk a and every j 1, 2, 3}. As j has only one singularity at oo,
then Residue(qj, oo) 0, j 1, 2, 3. So, it is sufficient to prove

Real(fdqj) =0, j=1,2,3

for any closed curve lying in the homology basis/3 of Mk a defined at the beginning
of this section.

If we put 4 then T*() . , where (.9(3) is the matrix

3

cos(zr/k) sin(zr/k) 0 )7 sin(r/k) cos0r/k) 0
0 0 -1

Hence using the last equality and (4),

Real (fd) =0 Yd/3 == Real (fb )= Real (fc) =0

Recall that 43 is exact, B A2 B-(r r2) and 42 (r + A2r2). Using the
definitions of f/and gi, 1, 2, the last equations hold if and only if B2 1 and

fl(a) A2gl(a)
fE(a) A2g2(a)

for some A / and a e + }.
Thus x is well defined if and only if

fl (a)g3 (a) f3 (a)gl (a) O.

Let us define : /1+ 1 ] by

f3(a) g3(a)
(a)

f(a) g(a)

and note that aP(a0) 0 if and only if ao satisfies (6).
Firstly we study the asymptotic behavior of at O, 1 and cxz.
From Lemma 1,

f2(a)g(a) fi(a)g2(a) (, )
lim (a) 2 lim -2
a0 aO f(a)gl(a) (,)

<0

(6)
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4k2 sin(zg/ k)
lim (a)= lim =-oo
a-+ 1- (2k- 1) a--+ 1- a- 1

4k2 sin(zr/k)
lim (a) lim
a--l+ (2k- 1)Tt" a-+i+ a- 1

lim (a)a 2 lim ( f2(a)a2
a-,,+oo a--++xa a f (a)a-[

-2 <0.

So there exists ao 1, +oo[ such that (a0) 0.
To see that a0 is the only zero on IR+ we compute !#’(a). From Lemma 5,

’(a)
a 3(1......_2 (fl(a)g3(a) + f3(a)gl(a)) (f2(a) (2k 1)ag2(a))

f2 (a)g2(a)k(a2- 1)

and using (i) in Lemma 2 we deduce

ap’(a)
a-2(k-1)zr(fl(a)+/2k-la gl(a))(fl(a)-/2k- la gl (a))

f(a)g(a)(2k 1) sin(r/k)

Observe that aP’(a)/o(a) is positive in ]1, +cx[ and negative in ]0, 1[, where

0" IR+ 1 --+ IR is given by o(a) fl (a) /2k la gl (a). It follows from
Lemma that

limp(a)= lim o(a)=
a--+O a--+x

4(a) (k- 1)zr(1- /2k- 1)
lim < 0
a-- a 1 k sin(zr/ k)

Furthermore, if 4(b) 0 for some b 6 + 1 then from Lemma 5,

o’(b) fl (b)(k 1)(b2 3)
kb(b2- 1)

Hence, if b 6 ]0, 1[ is a zero of 4 then 4’(b) < 0. Assume that 4(a) 0 for some
a 6 ]0, l[. Let al be the first zero of 4 in ]0, 1[. Since 4(1) 0, 4’(1) < 0 we
deduce that there exists another point a2 ]0, 1 [, a2 > a such that 4(a2) 0 and
4’(a2) > 0, which is clearly absurd. Thus 4(a) > 0, Ya 6 ]0, 1[.

Suppose al is the lowest root of 4 in ]1, +x[. If al ]1, /’[ then 4’(al) < 0
which is contrary to the choice of a and the facts 4(1) 0, 4’(1) < 0. Therefore
4(a) < 0, ’Ca ]1, ,f[. Assume that 4 has at least three zeros al, a2, a3 in
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[Vc, +cx[. Without loss of generality, we will suppose that a < a2 < a3 and
that these three points are the lowest roots of O. Then a2, a3 ], +c[ and so
0’(a2), 0’(a3) > 0 which is absurd. Thus 0 has at most two zeroes in ]1, +oo[.

The above remarks imply ap’(a) < 0 Ya E]0, 1[ and taking into account the limit
of p at 0 we get ap(a) < 0 Ya ]0, 1[. Analogously, ’ has at most two zeroes in
1, +cx[. Assume that has at least two zeros in l, +o[. According to the limits
of this function at 1 and +cx we conclude that ’ has at least three roots, which is
absurd. This contradiction completes the proof. E]

For the sake of simplicity we write Mk instead of Mk a0.

4. The geometric characterization

The aim of this section is to characterize the surfaces Mk from amongst all the
other minimal surfaces with the same topology, symmetry and total curvature.

Let x M - ]13 be a complete orientable minimal surface with finite total
curvature and one end, and let (0, g) be its Weierstrass representation. From Huber’s
Theorem [H] there exist a compact Riemann surface M and one point P e M such
that M is conformally equivalent to M P}. We write n genus(M) and assume
that n >_ 2, n even. Then we can put n 2(k 1), where k N, k _> 2.
A symmetry ofM induces in a natural way a conformal automorphism ofM which

extends to M, leaving P invariant. Since the subgroup of holomorphic transforma-
tions has index one or two in Sym(M), then Hurwitz’s Theorem (see [F-K]) implies
that Sym(M) is finite. Then, except for a suitable choice of the origin, Sym(M) is
given by a linear group of isometries of 3.

ForR > 0 large enough, x-1 ({(Xl,XE, X3) /x21 +x +x >_. R})t0 {P} isa

conformal disc in M. We can identify D D(0, 1) and P =_ 0. As Sym(M) leaves
D invariant, then A {St / S 6 Sym(M)} is a group of conformal automorphisms
of the unit disc which fixes 0. This implies that A is either cyclic or generated by
a rotation composed by a symmetry with respect to a straight line containing 0. In
the last case A is isomorphic to the dihedral group D(d/2), where d (A) is the
cardinal of Sym(M).
Up to rigid motions of Ii3 we can assume that g(P) oo. Let T 6 Sym(M)

denote a symmetry whose restriction TIB generates the subgroup of holomorphic
transformations of A. It is obvious that ord(T) {d, d/2}. Observe that T extends
conformally to M and as linear transformation it fixes the x3-axis. If d > 3, T is
either a rotation around the x3-axis or a rotation followed by a symmetry with respect
to the (xl, x2)-plane. Without loss of generality, we suppose the rotation determined
by T is by angle 2,r As the normal vector at the end is vertical, x (M) intersects theord(T)

xa-axis in a finite numberofpoints and therefore T fixes a finite set ofpoints in M. For
each Q M, define the isotropy group Ha {J (T)" J(Q) Q}, and the orbit
of Q, orb(Q) {Q, T(Q), TE(Q) Trdr)-(Q)}. Note that orb(P) {P}.
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If we label/x(Q) (Ha), the Riemann-Hurwitz Formula gives"

6- 4k ord(T) X (-/(T>) -ord(T) + 1 "’_ (#(Q) l)
Q6M

(7)

If we assume that tt(Sym(M)) 4k, then X /(T)) > 0 and so -/(T) is a
sphere or a torus. In particular, there exists Q M such that/z(Q) > 1. Label
u M M/(T) the natural projection. Denote by ,4 {al, a2 as} the set of
singular values of u i.e.,/x(Q) > 1 if Q u-1 (,4) and/z(Q) if Q 9’ u-1 (,4)

ord(T) s. It is clear that mi - 1,). Pick Oi u l(ai)and define mi ,(Qi)
1 < mi < ord(T)/2, 1 s and {ml ms} are relatively prime. Then

HQi {Tpro’" p O, 1 lz(Qi) 1}, orb(Q/) {Qi, T(Qi) Tm’-l(Qi)}

and so

’ (/(Q) 1) )-(ord(T) mi)
Q.M i=1

Given Q e M whose normal vector g(Q) is vertical, it is clear that

(8)

orb(Q) c_ g-1 (g(Q)) (9)

To see this observe that g o T og, ord(T) 1. Even more, a classical result asserts
(see [N, 437])"

Let M be a minimal surface in 3 and Po M. Then the multiplicity
of the Gauss map g at Po is v 1 if and only if the tangent plane at
this point intersects the surface along v analytic curves C1 Cv in a
neighborhood of Po. These curves intersect each other at Po forming
angles different to 0 and rr. They divide a neighborhood of Po into 2v
open sectors, such that M lies on one side of the tangent plane in one
sector and on the other side in the next sector.

Thus, if Q is a fixed point of Tm the tangent plane at Q is horizontal and the number
of curves in the intersection between the tangent plane and the surface is

ord(Tm’)li, where li 1 (10)

if Tm is a rotation, and

rd(Tm’)
li, where li . N, li odd, (11)

2

if Trm is the composition of a rotation and a symmetry.
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So, the multiplicity of Q as zero or pole of g is

ord(T)
li- 1, where li N, (12)
mi

Tmi is a rotation, and

ord(T) 1"7 1, where 1"7 N, li odd. (13)
2mi

Tmi is the composition of a rotation and a symmetry.
In what follows we denote by [g]0 and [g]oo the zero and polar divisor of g,

respectively. It is evident that Deg([g]0) Deg([g]) deg(g), where Deg(D)
means the degree of a divisor D. For more details see [F-K].

At this point we will distinguish two cases: A cyclic and A Z)(2k). In the first
case we obtain the following

PROPOSITION 1. /fA is cyclic then M/(T) is conformally equivalent to the Rie-
mann sphere. Furthermore the Gauss map g satisfies deg(g) > 3k 3.

Proof. Taking into account (7) and (8) we get

4k X (--/(T)) 5 + (4k mi) > 0
i=1

thus X (-/(T>) 2 and

(4k mi) 8k 5.
i=1

Therefore, one has 2 < s < 3.
If s 2 then m + m2 5. This implies that either {m, m2} {1, 4} or

{ml, m2} {2, 3}. In both cases, using (12) and (13), it is clear that deg(g) >

4k- 4 > 3k- 3.
If s 3 then m + m2 + m3 4k + 5. Up to relabelings, we can suppose

m < m2 < m3. If m3 --< then m -+- m2 + m3 _< 4k, which is impossible. Thus,
m3 2k and m + m2 2k + 5. By similar arguments, we obtain m2 > k, and So
mE {2k, }. There are two possibilities either m 5, mE m3 2k or 3 is a
divisor ofk and m + 5, mE , m3 2k. The first option implies that k is a

multiple of 5. In the second possibility, as + 5 is a divisor of 4k, a straightforward
arithmetical computation gives k 15, m 15, m2 20, m3 30. In both
situations, m l, mE, m3 are not relatively prime, which is absurd. In summary, the
case s 3 is impossible, l-’l
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If A is not cyclic then ord(T) 2k. Using (7) and (8), we have

2k X. I(T)) 5- 2k +,(2k- mi) >_ 0
i=1

(14)

which implies either X (M/ T 0 or X (M/(T) 2.

PROPOSITION 2.
deg(g) # 3k- 3.

IfA iD(2k) and X (-/(T)) 0 then 5 is a divisor ofk and

Proof. Replacing X (-/(T))by0in (14), we deduce thats andml 5 (in
particular, 5 is a divisor of k). From (9), (12) and (13), we have deg(g) a multiple of
5 and so deg(g) 3(k- 1). E]

We can now present our final version of the main result of this section.

THEOREM 2. Let x M ---> be a complete minimal immersion with C(M)
-4zr (3k 3), 4k symmetries and one end. Ifk is not a multiple of3 then M is, up to

rigid motions and homotheties, the minimal surface Mk described in Theorem 1.

Proof. By Propositions and 2, one has A 79(2k) and x(M/(T)) 2. It
follows from (14) that

(2k mi) 6k 5.
i=1

Hence, we infer 3 < s < 5. In the following paragraphs we show that the case s 5
is topologically impossible and that the case s 4 leads to deg(g) 3k 3, and
finally that if s 3 we obtain the surfaces Mk of Theorem 1.

If s 5, one obtains that -.i5=1 mi 4k + 5. We may suppose that ml < m2 <

m3 < m4 < m5 If m3 < then= mi < 4k, which is absurd. Thus mi > 2k

3, 4, 5, that is, m3 m4 m5 k and ml + me k + 5. By similar arguments,
we obtain m2 > and so, assuming that k is not a multiple of 3, m2 k, m 5.
But observe that m l, m2, m3, m4, m5 are not relatively prime, which is absurd.

4For s 4, one has ’i= mi 2k + 5. We must distinguish two cases:

(i) T is a rotation;
(ii) T is the composition of a rotation and a symmetry.

If T is a rotation then, up to relabelings, we can suppose that

4

orb(Q/)

___
g-l(0) and U orb(Q/) ___. g-l(oo)

i=1 i=r-t-1
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for some r e {0 4}. So, using (9) and (12) one has

deg(g) Deg([g]0) (2k mi) + 21k
i=1

4

deg(g) Deg([g]o) (2k mj) + m(g) + 2"k
j=r+l

where m(g) is the multiplicity of g at P. It is obvious that r : 2 implies deg(g) >
3k > 3k 3. In the case r 2, if we suppose deg(g) 3k 3, we obtain 0 and
m + m2 k + 3. Hence, m3 d- m4 k + 2 and by using the second expression for
deg(g) we obtain deg(g) 3k 2 + m(g) + 21k > 3k 3, which is absurd.

If T is a rotationfollowed by a symmetry, let

ff.l {mi even: orb(Q/) c_ g-l(0)}
2 {mj odd: orb(Qj) c_ g-(0)}
.3 {mh even: orb(Qh) C_ g-l(o)}
4 {rot odd: orb(Q/) c_ g-l(o)}

and let ri (i), 1, 2, 3, 4. We can suppose that {m mr }, 2
{mr+l mr+r2}, 3 {mr+r2+l mr+r2+r3}, 4 {mr+r2+r3+l m4}.
Observe that i can be empty for some 1, 2, 3, 4} and r2 + r4 is odd. Taking (9),
(12) and (13) into account, we have

deg(g) Oeg([g]o) (2k mi) @ a (k mj) -4- 2lk (15)
mi .,l my-2

deg(g) Deg([g]o) (2k mh) d-- Z (k ml) -+- mo(g) + 2"k (16)
mh,3 ml.,4

where l, N. If > 1, by (15)we deduce that deg(g) >_ 4k > 3k- 3. If l,
deg(g) 3k 3 leads to 1, r 0, r2 and m 3, contrary to our
assumptions.

Then, we must study case 0 only by discussing the possible values of r + rE.
If r + rE l, by (15) again, it follows that deg(g) _< 2k < 3k 3.
If r + rE 2, one has several cases:

r 0, r2 2. Then deg(g) 2k m m2 < 3k 3.
r r2 1. In this case deg(g) 3k m m2. As m + m2 >_ 5 we obtain
deg(g) <3k-5 <3k-3.
rl 2, r2 0. Then deg(g) 4k m rnz and assuming deg(g) 3k 3
we obtain rn + rn2 k + 3. Hence, using ideas similar to those in case s 5,
we conclude that either m k or m2 k. This implies k even and so k + 3
is odd, contrary to the choice ofm and m2.
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If rl + r2 3, one has two cases:

rl 2, rE 1. Then r3 1, r4 O. Using (15) and (16), we have
deg(g) Deg([g]0) 5k m mE m3 3k 5 + m4. Assuming that
deg(g) 3k 3, we obtain m4 2 and ml + mE + m3 2k + 3. The
last equality implies, in the same way as in the case s=5, that k is even and
m mE k, m3 3, contrary to our hypothesis.
rl 1, rE 2. In this case, by (15) once again, one has deg(g) 4k ml

mE m3 2k 5 + m4 3k 5 < 3k 3.

Finally, we consider case s 3. From (14) one obtains ml + m2 + m3 5.
As k is not a multiple of 3, one can observe that {m, mE, m3} {1, 2}. It is
clear that at least two i, j e {1, 2, 3} satisfy either orb(Q/) t.J orb(Qj) c_ g-l(o) or
orb(Q/) I.j orb(Qj)

_
g-l(o). Suppose T is a rotation. From (12), we deduce that

deg(g) >_ 4k mi mj >_ 4k 4 > 3k 3. Taking into account the former, our
hypotheses imply that T is a rotation followed by a symmetry. Furthermore, since
deg(g) 3k 3 one has, up to relabelings, m 1, mE rn3 2, orb(Q1) U
orb(Q2) g-l(o), orb(Q3) C g-l(o) and mo(g) k 1.

At this point, we can describe the underlying complex structure of M. Up to
MObius transformation, we put u(P) x, al u(Q1) 0, a2 u(Q2) b,
a3 u(Q3) 1, b C {0, 1 }. If we define N M =l orb(Q/), then

ulv N C-{0, 1, b}

is a 2k-fold unbranched cyclic cover, and the conformal structure of M is determined
by the structure ofN. Let toi (t), 1, 2, 3, be the counterclockwise circuits around 0,
andb, respectively, and leti (t) be their respective lifts to N. Since Tmi (Qi) Qi,

1, 2, 3, the end points of i(t) will differ by a deck transformation of the form
Thin’, where hi . {1 2k/mi}, and gcd(hi, 2k/rni) 1, 1, 2, 3. Even more,
the choice of T gives hi 4-1 mod(2k/mi), 1, 2, 3. Without loss of generality,
we put hi a.. {1, -1}, 1, 2, 3. The integers {h, h2, h3} determine the induced
map from 1-I (C {0, 1, b}) into Z2k whose kernel corresponds to u,(Fl (N)). Now
consider the complex curve

1 {(U, W) ( (CI,.J {00})2. w2k U(U b)2 /
(u 1)2 /

The cyclic covering defined by the u-projection of M1 has the same properties as ulv
described above, and so they are equivalent; that is, up to conformal transformations,

=, T(u,w)=(u, eYw),

and since

[g]0 Q-1 Qk-12 (T(Q2))k- [g]oo=Pk-l’Q-l’(T(Q3))-,
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it is easy to see that the Weierstrass data are

u-b
g Ao w*-I og Bo du

(U 1)Wk

for suitable constants A0, B0 C- {0}.
Since Sym(M) 7)(2k), there exists an antiholomorphic transformation H

Sym(M) satisfying HE Id, T o H T H. As Tm’ H H T-m’ then
H leaves invariant the set of fixed points of Tm’, l, 2, 3. Thus, H induces an
antiholomorphic automorphism H ofthe u-plane M/ (T) that satisfies u H H u.
Furthermore, H satisfies one, and only one, of the following assertions:

H fixes oo, 0 and interchanges 1 ++ b;
H fixes x, O, 1 and b.

The first assertion implies that Ibl 1 and H(u) b -i, and so

b -i2
(11) o H)2k (17)

2k

If we let ( w,o H then ( o T (, and thus there exists a holomorphic

transformation ( of the u-plane M/(T), such that ( o u (. Observe that the zero
divisor of ( is

[(]0 Q2 T(Q3)23"

which implies deg(() 4. As deg(() deg(() deg(u) and deg(u) 2k, then we
obtain k 2 and deg(() 1. From (17), we have

H u w) b-if, c Lu --- /"
Then g H L g, for any rigid motion L (.9(3) leaving the xa-axis invariant.
Hence, this case is impossible.

It is straightforward to check that the second condition leads to H(u) -i, and
without loss of generality,

H(u, w) (-i,-).

In particular, b e IR.
If we write u z2, up to a biholomorphism, one has

"--{ (z’ tO) (Cl’J {O})2: II)k-’Z(z2--b)}z2-

and

g A wk-l, rig B dz
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-ai

Figure 3. y and ?’2

where b 6 IR- {0, 1 and, up to homotheties and rigid motions, A I, B 6 C,

If b > 0, putting a > 0, Theorem leads to the surface Mk.
If b < 0, we write a /Z’-. Let ?’1 (t), ?’2(t) be the oriented simple closed curves

in the z-plane illustrated by the Figure 3. Furthermore we take ?’l (0) 6 , ?’l (0) > 1
and ?’2(0) 6 i,/m(?’2(0)) > a. Let cj(t) be the lift of ?’j(t) to M, j 1, 2, with
initial conditions Arg(w(Cl (0))) 0 and Arg(w(c2(0))) .. Using the notation

dz and rE wk-I dz. Hence, it is not hard to checkfrom Theorem l, we write r -rrr
that

Z’l 1 El, r2 1 F2, z’l 2 G, z’2 -2 G2

ri 3rti ri

where 1 e e-7, 2 er e-r and Fj, Gj I, Fj, Gj > 0, j l, 2. If
we suppose that and t#2 have no real periods then

A "l A r2 j 1 2.

For j we obtain B2 and similarly j 2 implies B2 -l, which is absurd.

Remark 1. If k is divisible by 3 it is possible to find other algebraic curves S,
and Weierstrass data (g, r/) on S P with deg(g) 3k 3 and the same group of
symmetries.

To finish, we give an interesting consequence ofTheorem 2. As we said in Section
l, this corollary has been obtained by E J. L6pez and the authors by studying another



192 FRANCISCO MARTIN AND DOMINGO RODRGUEZ

family of complete minimal surfaces which generalizes also the genus two Chen-
Gackstatter example.

COROLLARY 1. The’only complete orientable genus two minimal surface in 3
with total curvature -12zr and eight symmetries is the Chen-Gackstatter example.

Proof. From the Huber Theorem [H], M is conformally equivalent to M
P Pr }, where M is a compact genus 2 Riemann surface. Furthermore from

the Jorge-Meeks formula (3), r 1,2. Ifr then I 3 andr 2gives
I 12 1. The second possibility leads to the catenoid (see [Sch]) which is ab-
surd. From Theorem 2 the first one corresponds to the Chen-Gackstatter genus two
example.
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