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It is often difficult to obtain results for Lie algebras over arbitrary fields be-
cause the study of Lie algebras over fields of characteristic two and three as
well as finite fields usually poses special problems. An attempt was made to
develope methods using minimal generators which would be as independent
as possible of the nature of the ground field. This led to the author’s thesis
from which the present paper has been prepared.
Our theorems on Lie algebras essentially use the Jacobi identity only to

show that certain subalgebras of Lie algebras are ideals. Hence these results
for Lie algebras do not depend on the ground field. This fact also explains
why analogous theorems hold for associative algebras. Several propositions
determining the structure of certain quotient Lie algebras required a slightly
more explicit use of the Jacobi identity. These results were not obtaimd for
fields of characteristic two.
To derive the results of this paper only certain properties of minimal

generating sets were used. We single these out by the following defiition.
A set S of elements of an algebra A weak minimally generates A, abbreviated
S w.m.g. A, if

(1) S generates A as an algebra
(2) S consists of linearly independent elements of A
(3) No proper subspace of the vector spce spanned by S generates A.

It is now possible to summarize the main results we obtain. Suppose S
w.m.g. A and T is a non-empty subset of S. Let B be the subalgebra gen-
erated by S T and C the vector space spanned by T. Now, assume A is
the direct sum as vector spaces of B and C and denote the projection of A
onto C with respect to this decomposition by P. Then C becomes an algebra
with multiplication defined by c c’ P(cc’) for all c, c’ C. The struc-
ture of C with this multiplication is determimd. Next for each c C,
P(bc) (b)c and P( cb) (b)c, b B, where and r are linear functionals
from B into F. If A is either an associative or Lie algebra with dim C -> 2
then the kernel a kernel is an ideal in A. In a slightly different direction,
if B is an ideal in A and the base field is infinite then A is the direct sum
as vector spaces of the subalgebra generated by all products of elements of B
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and the vector space spanned by S. The paper concludes with a short
pendix on weak minimal generating sets.

Let V be a vector space, not necessarily finite-dimensional, over a field F.
Suppose (a, b) --> ab is a map from V X V into V. For each a V define R
and La by Ra(b ba and La(b) ab, b V. If Ra and La for each a V
are linear transformations we say A is an algebra over F with multiplication
denoted by ab. If it is not necessary to name the ground field F we will
simply say A is an algebra.

Suppose A is an algebra having a decomposition A B -- C, where B is
subalgebra of A and C a vector subspace of A, and where 4- denotes the direct
sum of B and C as vector spaces. Let P be the projection of A onto C de-
termined by this decomposition. Let (C, ,) denote the vector space C with
multiplication defined by

c c P( cc) for el, c C.

If we let R*c and *Lc denote right and left multiplication respectively in (C, ,)
thenR*c PoRe andL*c PoLe. Therefore (C,,) is an algebra. Ob-
serve if A is a square nil algebra, i.e. a 0 for all a e A, then (C, ,) is also
square nil algebra. It does not follow if A is associative then (C, ,) is asso-
ciative or if A is a Lie algebra then C, ,) is a Lie algebra.
For any set S of elements of an algebra A let V(S) denote the minimal vector

subspace of A containing S and (S) the minimal subalgebra of A containing S.
Suppose A (S T} + V(T) where S w.m.g. A and T S. That this
sum must be direct (as vector spaces) follows immediately from the definition
of S w.m.g. A when we observe (W u (S T)) A, where W is any vector
space complement of (S T} n V(T) in V(T).

Next, observe A V(S), S w.m.g. A, if and only if (a, b) V(a, b) for
all a, b A. Necessity is clear, while sufficiency would follow if

(a, ..., a) V(a, ..-, a)

for al, a A, n an arbitrary positive integer. However, it is immediate
that the set/m e A m a product of elements of A not contained in the vector
space spanned by these elements} has no element involving a least number of
factors. ThenA (S- T}-t- V(T),whereSw.m.g.A and T S,
implies T w.m.g. (V(T), ,). For s, e V(T) implies st V(s, t) (S
so that s e V(s, t).

Let GF(p) denote the Galois field of p elements. As usual let V* denote
the dual space of a vector space V. We now state the first theorem which
completely determines the structure of V(T), ,).

THEOREM 1. Let A be a vector space V with a basis S over a field

G. Leger has proved in his paper, A particular class of Lie algebras, Proc. Amer.
Math. Soc., vol. 16 (1965), pp. 293-296, a theorem which contains this theorem for Lie
algebras as a special case.



THEOREMS FOR ASSOCIATIVE AND LIE ALGEBRAS 581

F, F GF( 2). Then A is an algebra over F with S w.m.g. A if and only
multiplication is specified by
(1) ab a(b)a + ((a) a(a))b, for all a, b A, where , a A*.

Proof. If (1) holds

Ra a(a)I -- a(- a) and La aa - ((a) a(a))I,

where I denotes the identity transformation of A onto A. Clearly Ra and La
are linear transformations and (a,b} V(a, b) so that A is an lgebra weak
minimally generated by S.

Suppose S w.m.g.A. We wish to determine , a A* such that (1) holds.
SinceSw.m.g. A, (a} V(a) and(a, b} V(a, b) for alla, beA. Then
a e(a)a for all aeA, where a- L’(a) is a map of A into F. Observe

v(},a) (ka) ha h:a v(a)a

mpliesv(a) k(a), keF, aeA. If dimA 1, L’eA*, a 0, and we
are done. If not, consider linearly independent elements a, b A. Let

S(a,b) (a + b)- a- b ab + ba.

Then S( ha, b) S( a, b) O, F. Written in terms of this becomes

(a -- b)(a -- b) (a)(a) (b)b

((a + b)(a - b) (a)a- (b)b) O.

Then

()

()

),[’(ha -t- b) v(a) ’(a + b) + (a)] 0

v(ka -- b) v(b) k(a -- b) -t- ),(b) 0

since a and b are linearly independent. Suppose ), 0; cancel in (2) and
subtract (2) from (3) obtaining

( 1)((a -[- b) (a) (b)) 0.

Since F GF(2), (a -- b) (a) -- (b).
Since (a, b} V(a, b) we may write

ab a(b, a)a + (a, b)b,

where a, are maps from A X A into F. Suppose a and b are linearly in-
dependent elements of A. Consider

a(b, a)a -- (a, b)b - a(a, b)b - (b, a)a ab - ba (a - b) a b

(a -t- b)(a + b) (a)a- (b)b t:(b)a + (a)b.

/(a, b) - a(a, b) (a) and we may now write

(4) ab a(b, a)a + ((a) a(a, b))b.
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We next show a(b, a) depends only on the first variable. From the coetIicient
of a in the identity a -- b)b ab -- b we conclude

a(b, a + b) a(b, a),

while if there exist a, b, c linearly independent elements of A from the co-
efficient of a and c in (a - c)b ab cb we conclude

a(b, a - c) a(b, a) and a(b, a - c) a(b, c).

We remark a(b, b) a(b, a) is an allowable definition since (4) still reduces
to b e(b)b. Therefore a is independent of the second variable and we may
set a(b) a(b, a). Then (4) becomes

ab a(b)a + (e(a) a(a))b

for all a, b A. Rewriting the above equation

we conclude b --> a(b)a is linear and hence a(b) is linear.

COROLLARY 1.1. If a square nil algebra A has a decomposition

L (S- T)4 V(T),

T c S, S w.m.g. A, then (V(T), .) is a Lie algebra.

Proof. P( c) O implies c . c 0. Then

c . d a( g)c a(c) d, c, d e Y( T), a e V( T) *,
implies

(c d) e a(d)a(e)c a(c)a(e) d, c, d, e e V( T),

from which it follows (V(T), .) satisfies the Jacobi identity.
We remark for a Lie algebra L V(S), of dimension m, S w.m.g. L,

m >_ 2, there are precisely two non-isomorphic algebras corresponding to
a 0 nd a 0. This follows immediately once we observe that the codimen-
sion of the kernel of a in L is either zero or one.

PROPOSITION 1. Suppose an algebra A over a field F has a decomposition
A (S- T} V(T), T S, Sw.m.g.A. Denote the projection map
of A onto V( T) by P. Then

P(st) (s)t and P(ts) r(8)t, se(S-- T),teV(T),,re(S- T}*.
Proof. We prove only P(st) (s)t, e (S T}*, the proof of

P( ts) r( S)t being similar.
We have P( st) (S T, t} V(T) V( t) since S w.m.g.A. Therefore

for each e V(t) we have P(st) t(s)t where ft is a map from (S T)
into F. Define the linear functionul tt from V(T) into F by t(kt) ,
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X F. Then fit at P R8 and therefore fit
is independent of t. Observe flxt(s)(Xt) P(s(Xt)) XP(st) Xt(s)t
implies t fit for all X 0, ), F. While t+v(S)(t -- v) P(s(t - v))
P(st) + P(sv) t(s)t - v(S)V implies t(s) /.(s) for and v linearly
independent elements of V(T).

Suppose an algebra A has a decomposition A B - C, where B is a sub-
algebra of A and C a vector subspace of A. Let P denote the projection of A
onto C and suppose P(bc) t(b)c and P(cb) r(b)C, b B, C C,
$eB*. Denote the kernel ofbyKt,ofrbyKr,andsetK KK.
TEOREM 2. If A is a Lie algebra then B K and if dim C >_ 2, K is an

ideal in A.

Proof. Let . Since Lissquare nil/ --r, kernel/ K
K K. Forb, b’eB, ceC

(bb’)c P( (bb’)c)

P(b(b’c)) P(b’(bc)) (by the Jacobi identity)

P(bP(b’c)) P(b’P(bc)) (since B is a subalgebra)

(b)(b’)c- (b’)(b)c O.

Therefore B K. Hence KB K and it would suffice to show KC K
to conclude K is an ideal in A. Assume dim C > 2. Given c C there exists
c C such that c and c’ are linearly independent. For b K, bce B and be’ B
so that we may write (bc) and (bc’). Then

0 $(b)(cc’) P(b(cc’))

P((bc)c’) P((bc’)c)

5(bc)c’-- (bc’)c.

Therefore (bc) 0, hence bc K, completing the proof.
It is easy now to determine the factor algebra structure when B is not an

ideal.

PROPOSITION 2. Suppose a Lie algebra L over afield F, characteristic of F 2,
L*contains an element a such that ab b + a( b )a for all b e L. Then a and

c d a( d)c a( c) d for all c, d e L, where a( a) --1.

L*Proof. It is clear that a with a(a) 1. Let D be any vector space
complement of V(a) in L. We have cd e -- $(cd)a, for some (cd) F,
e D, for c, d e D. Then

e+ a(e)a a(cd) (ac) d (ad)c

2(e -t- (cd)a) + a(c)(d + a(d)a) a(d)(c -a(c)a).

By linear independence
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(1) e-- a( d)c -- a( c) d 0

(2) .(e) + 2(cd) O.

Because a is linear (1) implies (e) 0, hence (2) implies (cd) O.
Observe for K B the factor algebra L/K is weak minimally generated by a

basis, while for K B it is necessary, of course, to suppose B (S T} and
C V(T), where T S, S w.m.g.L. The next example shows all the
possible factor algebras with a weak minimal generating set which is a basis
occur. Let W be a vector space over F with basis {a, b, ab, c, d}. Then the
following multiplication tables

a

a 0
b --ab

ab 0
c 0
d 0

b ab c d
ab 0 0 0 a
0 0 c d b
0 0 0 0 ab
--c 0 0 0 c
--d 0 0 0 d

a
b

ab
C

d

a b ab c d
0 ab 0 --a 0

--ab 0 0 --b 0
0 0 0 --2ab 0
a b 2ab 0 d
0 0 0 -d 0

a b ab c d
0 ab 0 0 0

--ab 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

turn W into Lie algebras weak minimally generated by {a, b, c, d} with
B (a, b). In the first table K (a, ab) B, in the second and third tables
K B with L/K abelian and non-abelian, respectively.
The following lemma essentially settles the associative algebra case.

LEMMA. Suppose A is an algebra over F. Then
(i) b(b’c) (bb’)c, b, b’e B, c C implies K an ideal in B.
(ii) (cb)b’ c(bb’), b, b’ e B, c e C implies Kr an ideal in B.
(iii) (bc)c b(cc), beB, ceC implies KC K
(iv) c(cb) (cc)b, beB, ceC implies CK. Kr
(v) c(bc’) (cb)c’, c, c’eC, beB, dim C >_ 2 implies KC K and

CK K.

Proof. (i) b(b’c) (bb’)c implies is a homomorphism of B into F
and hence its kernel is an ideal of B.

(ii) Similarly r a homomorphism implies K an ideal of B.
(iii) For beK,, bceB, so that we may write (bc). Then t(bc)c

P((bc)c) P(b(cc)) (b)(cc) O.
v) Similarly b Kr implies (cb) c .(b) (cc) O.
(v) For b K, be’ eB and cb eB, so that we may write r(bc’) and

,(cb). Then r(bc’)c P(c(bc’)) P((cb)c’) ,(cb)c’. If c, c’ are
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linearly independent we may conclude r(bc’) 0 and t(cb) 0. Therefore
KC c Kr and CK K provided dim C >_ 2.

TI-IEOREU 3. If A is an associative algebra and dim C >_ 2 then K is an ideal
of A.

Proof. From (i) and (ii) we conclude K is an ideal in B. It then suffices
to show KC K which follows from (iii) and (v) and CK Kwhich follows
from (iv) and (v).
The analysis of the structure of A/K where A is an associative algebra is

more involved than that of L/K where L is a Lie algebra. Indeed the analysis
is not quite complete, as we shall see. The following proposition and examples
settle the case when K B under the natural assumption B (S T} and
C= V( T), q - T c S, S w.m.g. A.

PROPOSITION 3. Suppose a right or left alternative algebra A is of the form
A V(S), S w.m.g. A; then ab v(a)b or ba v(a)bfor all b A, v A*.

Proof. By Theorem 1 we have

c ()c + (,(c) (c))

for all c, d A, , e e A*. Then (cd) d c(dd) implies

(1) a(d)(e(c) a(c)) 0
(2) (a(d)) e(d)a(d) for c, d linearly independent.

If a" 0thenby(2) a 0 and we are done.
Ire 0, anda 0, seta" v.
Ire 0, a 01ere(b) 1 andK kernelc. ThcnA V(b) - K.

Sincee(K) =0, a(K) =0by(2),whilcby(1),a(b) e(b). Setz’=a =v.
The conclusion is symmetric in a and b hence it would follow also from the

identity d( dc) dd)c.
Let {a, b, ab, c, d} be a basis for a vector space W over F.

a b ab c d
0 ab 0 0 0 a
ab 0 0 0 0

and
b

0 0 0 0 0 ab
0 0 0 0 0 c
0 0 0 0 0 d

a
b

ab
C

d

a b ab

Then

c d

determine associative multiplications on W, with B (a, b} an ideal, and

LIB abelian, LIB prossessing a left identity, respectively; both algebras are
clearly w.m.g, by {a, b, c, d}.
We now begin the analysis of the case codim B 1. Suppose we have

bc c + a(c)b for some element beA and allceA. From (b)c b(bc)
we conclude a(b) 0 and a(c) 0 provided c is linearly independent of b.
Let D be a complement of V(b) in A and suppose cb (c)b + 5(c)c for all

0 ab 0 0 0
ab 0 0 0 0
0 0 0 0 0
a b ab c d
0 0 0 0 0
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c eD. Then (cb)b c(b2) implies (c)(c) 0 and ti(c) ti(c).
following proposition takes care of the subcase when ti(c) 0 for all c.

The

]?ROPOSITION 4.
b such that

Suppose in an associative algebra A there exists an element

bc= c, cb (c)b,
then dc 7( d c, A *, 7( b 1.

( c) e F, for all c e A,

Proof. Let D be a complement of V(b) in A. The proposition would
follow from Iroposition 3 if we could show cd V(cd) for c, d e D, for then
A would be weak minimally generated by a basis of A. Suppose
cd e + (cd)b, eeD, 5(c, d) F. An easy calculation of (cb)d c(bd)
leads to 5(c, d) 0 and hence cd 5(c) d.

It is easy to give an example of an associative algebra having this factor
algebra structure.
The subcase remains when (c) 1. for some c. By considering

(c - d)b cb + db for b, c, d linearly independent we see t(c) 1 for all
ceA. We now havebc cand cb c for some fixed beA and allceA.
Under these conditions no information can be derived about the product cd
froin the associative identities involving b so that an analogue of the last
proposition is impossible. We next attempt to derive additional information
by supposing B (S 7.’} and C V(7_’) where T c S, S w.m.g. B + C
and A (B + C)/K. In this situation we know in terms of A and a com-
plement D of V(b) in A by Theorem 1. that

cd a(c) d + (e’(d) a(d) )c + n(c, d)b, a, e e D*

n simply a mapping from D X D into F. If we suppose c, d are linearly
independent the coefficients of c and d in the identity (cc) d c(cd) imply

,(c, d) (c)((d)

for c, d D. (The identity given by the coefficient of b in this calculation
follows from the formula derived for v(c, d).) Observe v(c, d) is a bilinear
functional from D X D into F. Furthermore, we must have 7(c, d) 0 for
some c, d D, otherwise A would be weak minimally generated by a basis of
D u {b} contradicting Proposition 3. The author does not know whether such
a algebra A can occur as a factor algebra (B - C)/K.

Finally, when the codim K is two, there is essentially one factor structure.
There exists b, e K and K, and b e K and K which may be assumed nor-

malized so that (when considered in the factor algebra with multiplication
understood to be the natural factor algebra multiplication)

b c c - a( c)b z7 (c)b b c 5( c)br

b e,b,, cb, 7(c)b,

cb c + n( c)b - ( c) b b er br e er e F,
for all c e D, a complement of V(b, br) ill the factor algebra A/K.
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()

Next

while

}lellce

br bz 0 follows from (iii) and (iv) of Lemma 2.

c(bb,.) (cbt)br "y(c)btbr implies b,b,.e V(b)

(bbr)c bt(brc) 6(c)bbr implies btbreV(br),

(2) btbr O.

Now from b b(bz c) we conclude

(3) e 1
() (c) o

while from cb,. (cb,.)br we conclude

(5)
(6) (c) o.

Finally, 0 (br b)c br(bt c) 6(c)br --1- (c)br so that

(7) 6(c) q- (c) 0, while

0 c(b b) (cbr)b 7(c)bt -t-" n(c)b
so that

(s) .(c) + n(c) o.

For c e D let c’ c + (c)br + 7(c)bt; then bt c’ c’ and c’b,, c’, hence
crbt O, b.c’ O.

Let D’ {c’]c D}. Then D’ is a vector space complement of V(b, b,.)
in the factor algebra. Then 0 (c’b)d’ c’(b d’) c’ d’ so that D’ is
abelian. Observe that the factor algebra is not weak minimally generated
by a basis since (bt, b -4- c) e b, b, c. Again the author has no example of an
associative algebraA B -+- C,B (S T}, C V(T), T S,
S w.m.g. A, which has A/K of the above structure.

Let S be a weak minimal generating set for an algebra A. Suppose
r S -+ V(S). The following construction, gives useful sufficient condition
for r(S) w.m.g.A. Suppose for the present that S is a linearly independent
set of elements of A. A well defined product of the elements of S will be cMled
a monomiM in the elements of S. If (S) A we may find a basis B S u M,
where M consists of monomiMs of the elements of S. We extend r S --> A
to r" :A -+ A by requiring

(1) r" restricted to S equals r.

(2) If II se M, se S, then r’(II s,) IX r(S,), where parentheses
in II r(S) are inserted exactly as in II s.

(3) r is linear
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If S w.m.g. A and there exists a basis B as above such that r’(A) A
then r(S) w.m.g.A.

THEOREM 4. Let A be a finite-dimensional algebra over an infinite field F.
Suppose A (S- T} + V( T),q T c S, S w.m.g. A, and (S T} is an
ideal of A. Then

A {S- T)- V(S).

Proof. Suppose 0 -bs Xb b (S T) f3 V(S). Then Xs 0 for some
seS- Tsince(S-- 7) f’l V(T) 0.

Adjoin a transcendental x to F and view A as A (R)F F(x) over F(x).
Fix T and consider r S V(S) (R)i F(x) defined by

r(s) s + xt, r(b) b for b e S {S}.

LetB =SuM, MasetofmonomialsinS- T, be a basis for A. Then

r’(m) EbeMUS--TU{t} (tmb -JI- xP,b)b, P,b e F[x], for m e M,
where

Therefore

&,b =0 ifm Cb

1 ifm=b.

det r* 1 -4- xP, P e F[x].

From the generalized form of Cramer’s rule for vector-valued functions
applied to r(b) in terms of b for b M u S T u {t} we conclude for b

(1) b
Qbc ,( xQbt

t, Qbc Qbt e Fix].
cs-ru l -Jr- xP

r c) -t- 1 + xP

Then

by Theorem 2. Using (1),
b, c e S T u M concluding

X2Rbc(4) bc
(1 + xP)

for some Rb FIx].

Then

(2), and (3) we may

e (rZ(S T u M)) (R) F(x)

By supposition

EbeS )kb b .c.as-’u Xca cd,

calculate bc for

Xb, Xca e F.
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We conclude

\ , /
(r’(S it} uM)} (R)F F(x),RcdeF[x].

Since k8 0 the coefficient of is a quotient of non-zero polynomials and since
F is infinite there exists a specialization x - k such that these polynomials
are non-zero. Then

( r’)(t) (( r’)(S {t} u M)},
B

" r is onto since 1 q- kP)2 0, contradicting " rZ(S) w.m.g.A.
It is clear from the last proof that "infinite field" could be replaced by "iield

with sufficiently many elements." The number of elements necessary could
be calculated once a basis in terms of the generators was specified for a given
algebra. It is interesting to rephrase the last theorem as an extension theorem.

COeOLLaRY. Suppose A is an algebra over an infinite field and S w.m.g.A.
Then there exists an algebra A over F such that

(1) A is an ideal in ,
(2) S u {t}w.m.g. , where A 4 V(t) if and only if

A A --]- V(S).

Proof. The necessity follows immediately from the theorem. To show
sufficiency wc construct an A given A A + V(S). Let A A + V (t),
ta at 0forallaeAandt 0. ThenZ AzsothatSu lt}w.m.g.A.

Appendix
In this appendix we answer some o the natural questions which arise con-

cerning the concept of weak minimal generating set.
It is clear that weak minimal generating sets exist for finite-dimensionM

algebras but need not exist for an infinite-dimensional algebra as the following
example shows. Let Q denote the rational numbers. Let k Q (w, Wn
primitive 2 root of unity, n a positive integer). Let K /(x) be a tran-
scendental extension of K. Consider the algebra A K[z ](Zn) X, n a

positive integer]. Suppose (S} A. It is clear S is infinite. We show given
s, s’ S either (S {s}} A or (S {s’}} A, and therefore A would have
no weak minimM generating sets. For s S, K(s) K(z,), where m is the
greatest integer n occurring in either a numerator or denominator term X z
of s, X - 0, and s assumed to be expressed with numerator and denominator
relatively prime over K. Since K(z) is a finite normal extension of K, hence
has finite cyclic Galois group, every subgroup of which is determined by its
order, every subfield of K(z,) is one of the K(zn), 1 <__ n <_ m. Therefore
K(s) K(z) for some n. For s’ S, K(s’) K(z;,). Therefore
K(s)

_
K(s’) or K(s’)

_
K(s) when n <_ n’ or n’ <_ n, respectively. Since

g(s) K[s] and K(s’) K[s’] either (S {s}} A or (S {s’/} A.

This example resulted from a conversation with Max Zorn.
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The term weak minimal generating set is justified by the fact that weak
minimal generating sets for finite-dimensional algebras may have distinct
number of elements. Consider the vector space A with basis {a, b, c, d} over
a field F and multiplication specified by the following table:

a b c d
0 c b 0
-c 0 0 0
-b 0 0 a
0 0 -a 0

Then {a, b, d} and {c, d} both w.m.g.A. Observe though, A is neither a Lie
algebra nor aIt associative algebra. The author has no examples of a finite-
dimensional Lie or associative algebra which have two weak minimal generat-
ing sets consisting of different numbers of elements.
We now indicate how an example of an infinite-dimensional Lie algebra could

be constructed which is weak minimally generated by two elements and also
by three elements.

Suppose S is a set of elements; then an element of (... (SS)S) S is
called standard monomil in S of length n. The standard monomials spn
the free Lie Mgebra generated by S, but re not linearly independent because
of the squre nil identity (e.g. 0 (ab)(b) ((ab)a)b ((ab)b)a). If we
inductively extend a basis consisting of standard monomiMs of length <_/ 1
to a bsis for those of length <_/c, then those monomials of length k in the bsis
will led to linear relations of standard monomils of weight 2/. With respect
to this bsis we cn now see what happens if we fctor free Lie Mgebm a

generated by S a, b} by the relations

a ((ab)a)(ab) (((ab)a)a)b (((ab)a)b)a
and

b ((ab)b)ab) (((ab)b)a)b) (((ab)b)b)a.

If I is the minimal two sided ideal in L containing these relations, the linear
dependence relations among standard monomials induced by factoring by I
arise simply by multiplying the above relations successively by a and b.
It follows that L/I is an infinite-dimensional algebra so constructed that both
{a, b} and {ab, (ab)a, (ab)b} w.m.g. L/I.

Finally, if we cannot produce an example of a finite-dimensional Lie al-
gebra with two distinct w.m.g, sets, can we prove that all w.m.g, sets have the
same number of elements? We now sketch a proof under the hypothesis L
is a nilpotent Lie algebra (probably too strong an assumption). It has been
shown that a finite-dimensional Lie algebra L is nilpotent if and only if every
maximal subalgebra of L is an ideal. This implies L is nilpotent if and only if

Donald Barnes, Nilpotency of Lie algebras, Math. Zeitschrift, vol. 79 (1962), pp.
237-238.
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L q,L, where L is the intersection of all maximal proper subalgebras of L,
called the Frattini subalgebra of L. It follows if S w.m.g, a finite-dimensional
nilpotent Lie algebra L then L L q- V(S), i.e. V(S) has codirnension equal
to the dimension of L in L. Simply observe for ’,s M s, }’.0 0, ., e F,
there exists a maximal subalgebra M of L containing (S {So} and ot con-
raining s X s.
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