
HOMOTOPY GROUPS OF THE SPACE OF HOMEOMORPHISMS
ON A 2-MANIFOLD

BY

/IARY-ELIZABETH HAMSTROM

1. Introduction

This is the final pper in series of ppers concerning the homotopy groups
of the spce of homeomorphisms on 2-mnifold. If M is compact 2-mni-
fold with boundary M’, nd K is closed subset, denote by H(M, K) the spce
of homeomorphisms of M onto itself leaving K pointwise fixed nd by
H0(M, K) its identity component. Kneser proved [14] tht the spce of rigid
motions on S is deformation retract of Ho(S). Thus 7rn H0(S2) "n’n(P)
for ech n, rn Ho(S) 7rn(.3) for n > 1, nd mHo(S) -,(S) for n > 2.
In prticulr r H0(S) Z nd r, H0(S) 0. If M is disc with holes or
Moebius strip, Ho(M, M’) is homotopiclly trivial ([6], [8] nd [12]). In

fct Alexander’s classic result [1] that the spce of homeomorphisms of n
n-cell onto itself leaving the boundary pointwise fixed is contractible nd
locally contractible is most important tool in the study of these problems.
If M is torus, rHo(M) Try(M) for ech i, nd if M is torus with the
interiors of finite number of disjoint discs removed, Ho(M, M’) is homo-
topically trivial [11]. For rel projective spce, r H0(P) r(P) for i > 2,
rH0(P) 0, rH0(P) Z, rH0(P, x) Z, where xeP nd- Ho(P, x) 0 for i > 1 (see [12]). For the Klein bottle K, ’Ho(K) 0
for i > 1, r Ho(K) Z nd ’Ho(K, x) 0 for ech i [12]. In this present
pper, it is shown that H0(M) is homotopiclly trivial for ll compact 2-mni-
folds (without boundary) of genus greater thn 1, if orientble, and greter
than 2, if non-orientble; nd that, if M is compact 2-mnifold with non-
empty boundary, H0(M, M’) is homotopiclly trivial.

Further related results my be found in McCrty’s pper [16], where he
proves among other things, that

rH0(S:,x) H0(S,xuy) Z
and

-Ho(S, x) ’Ho(S:, x u y) 0 for i> 1

and that if K is a finite subset of S with more thun two points H0(S, K) is
homotopically trivial. Quintas proves in [18] thut if M is an orientble com-
pact manifold with two or more handles or is non-orientble with three or
more cross-caps and M is the manifold obtained from M by deleting/c points,, Ho(M) rn Ho(M) for each n. It thus follows from McCarty’s work
that in this case 7f’n H0(M) n H0(M, x).
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The interested reader is referred also to [6] and [15], where local homotopy
properties of these spaces are studied and to Fisher’s paper [4], where further
historical remarks may be found.

This paper is constructed in the following way. In Section 2, the relation
between H0(M) and H0(M, x) is studied. In Section 3 is found the main
result for the double torus. In order not to disturb the continuity of the argu-
ment, certain parts of the proof are gathered together as lemmas in Section 4.
Finally, the results for surfaces of higher genus and for non-orientable surfaces
are to be found in Section 5. The proofs there are merely outlined, for the
main ideas for the arguments are in Sections 3 and 4 and can be carried over
without essential change.

2. Relation between Ho(M) and Ho(M,x)
McCarty proves in [16] that if M is a compact 2-manifold and x is a point of

M, then H(M) is a fiber space overM with fiber H(M, x), where the projection
map p is such that p(f) f(x). If M is neither S nor p2, n(M) 0 for
n > 1, so it follows from the properties of the homotopy sequence of this fiber-
ing that rn H(M) ’ H(M, x) for each n > 1. Part of this homotopy
sequence is

McCarty observes that p(- H(M)) is central in r(M, x) (Remarks 5.24,
p. 302 of [16]). Using result of Baumslag [2, Theorem 3] Quintas notes in
[18] that if M is orientble and has two or more handles, then rl(M) has trivial
center. It thus follows that rl H(M, x) ’ H(M). This is, of course, false
if M is a 2-sphere, torus, Klein bottle or P2. Quintas argument goes through
if M is non-orientable and has three or more cross caps. Griffiths, in [5],
proves that, in this case, r(M) has trivial center (see p. 10, Theorem 4.4).
Thus, for all compact manifolds, M, with two or more handles or three or more
cross caps, ’n H(M) ’n H(M, x) for each n.

3. The double torus

Let M be a double torus. This section is devoted to the proof that H0(M)
is homotopiclly trivial. Since it is the injection map of H(M, P) into H(M)
that induces the isomorphism of rk H(M, P) onto rk H(M), it will suffice to
prove that every map of S into H0(M, P) is homotopic to 0 in H0(M). For
i 1, 2 let Mi denote a torus from which has been removed the interior of a
disc. Sew these tori together along their boundaries to obtain M nd denote
the now common boundary of M1 and M by C. Let ai and b be simple closed
curves in M meeting only at a point P of C, one being a meridian, the other a

* b*longitude ofM and let a be elements of (M, P) determined by homeo-
morphisms of S onto ai and b. The a and b may also be considered as

generators of r(M, P) (hereafter, the P is dropped), where
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the class of a homeomorphism of t. onto C. Finally, let co be a mapping of M
onto the union of two tori T1 and T2 with common point c such that 0(C) c,
and co(Me C) is a homeomorphism onto Te C. Denote the images of
* b* * b*ae and in rl( T u T2) under the induced homomorphism by ae and also.

* b*Then rl( T u T.) is the free product of 1(T) and rl(T), ae and generating
the abelian roup r(

Suppose thatfis a mapping of S into H0(M, P). Let be an are on
f(y)(C) that lies, except for its endpoints, which lie on C, in M C and which
does not, when joined to either component of C f, bound a disc in M. Call
such an arc an arc of type a. The mapping co associates with a simple closed
curve in T1 or T and thus, the direction on being derived from that on
[f()]-l(t), co associates with an element W(f) of either r(T1) or r(T).
Suppose that f. f, f are the consecutive ares of type a in f(y)(C).
Then W(re) 1. However, in r(T u T2),

W(fl)W(f) I/V(I) 1

(sincef(y) is in the identity eomponentHo(M),ofH(M)). This implies that
for some j, mod n, f. and f+l lie in the same one of M and M and the are

t inf(x)(C) from the last point of f. to the first point of t.+1 is such that c0(t.)
is a union of simple closed eurves each bounding a disc in T u T.

Let n(y) denote the number of ares of type a in f(y)(C) and let
N maxn(y), yes. It is clear that the set K of all y ins such that
n(y) N is closed, for if fe f(ye)(C) and is an are of type a and {ye} con-
verges to , then some subsequenee of 1} converges to an are in f(y)(C) that
contains an are of type a. Also, if he is an are in f(ye)(C), ye K, that does
not lie in an are of type a, but does lie, except for its endpoints, which lie in C,
in M1 C or ][ C, then he} does not converge to a set containing an are of
type a, since then, n(y) > n(y) for some i. It is seen then, that for each
component L of K, if x, y L and the ares of type a inf(x) (C) andf(y) (C) are
1, fn and f, f., then W(te.) W(e.). (It is necessary to
note that the convergence of {f(ye) (C)} to f(y)(C) is equieontinuous.)
Suppose N > 0. For x K, let T denote the union of the ares of type a in

f(x)(C). Add onto the closure of each component of M1 n [f(x)(C) T]
the discs in M1 bounded by parts of and parts of C. Call the resulting set
Dz. If has two limit points on the same are of type a, u f(x)(C).
Since W(f) 1 andf(x) is isotopic to the identity, this is impossible. Also, if
has limit points on two ares, f and f2, of type a, then one of the components

off(x)(C) (fu f) lies entirelyinM. ForxeK, eonsiderthe elosureof
the union of these Dr. The components of this and the points of M not in it
yield an upper semieontinuous decomposition G of M. No non-degenerate
element separates M or C, lies in M1 C or contains C (since N > 0). Thus
the decomposition space is M and the non-degenerate elements correspond to

Sboundary points. If x K, let G be the decomposition of M1 into its
own points.
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In M1 X Sk, the collection g X xl, for g Gx, x S, is an upper semicon-
tinuous decomposition G of M1 S. It follows from Lemma 4.3 that the
hyperspace X of this decomposition is M1 Sk. Let A denote an annulus in
M bounded by C and another simple closed curve, C’. There is a homeo-
morphic mapping of A X Sk into the hyperspace of G such that A x goes
into Gx x and the only non-degenerate elements in the image are images of
points of C X S. This yields a homeomorphism v of A S into M1 S
such that for no x does 7(C’ x) meet a non-degenerate element of G x
(Corollary to Lemma 4.2). Let A (x) denote the annulus (A x), where

is the projection map of M1 S into M.
Remove from A(x) X x the non-degenerate elements of G x. Remove

the components of (f(x) (C) n A(x)) x that intersect C’ x but not C x
and remove the discs bounded by parts of these components and parts of
C’ x. Some components of (f(x) (C) n A (x)) x have both endpoints on
C’ x. Let s be such a component and let a and b denote the first and last
points ofsonC x. Ifa b, letpsx Xx a. Ifa b, the portion of s
between a and b can be isotopiclly deformed in A (.) x into an arc on C x
with endpoints a and b under aa isotopy leaving a and b fixed. Denote this
pvrtion of C X x by ps X x. Remove all of s and the discs bounded by por-
tions of it and of C’ X x or C X x except the points of f(x)(C) X x on px X x.
Remove C’ x and all of C x except the points of the various sets p X x.
Call the resulting set A’(x) X x. The only points of A’(x) x that are not
interior points of A (x) x are on the sets px x.

Let C(x) X x be a simple closed curve in A’(x) X x that bounds, together
with C’ X x, an annulus in A (x) X x. The curve C(x) X x meets C X x in
the arcs p x described above. Note that if C were replaced by C(x), (in
the sense that arcs of type a onf(x) (C) are to be considered as arcs inf(x) (C)
that lie except for their endpoints in M C and that do not, when joined to
either component of C , bound a disc in M) the number of arcs of type a in
f(x)(C) will not increase and will decrease if x K and if, as a result of the fact
that W( I)W(.) W() 1, the consecutive arcs . and .+ that lie in
the same one of M1 and M lie, in fact, in M. The only way this number can
increase is for C(x) c to meet a component of (f(x)(C) r A(x)) x that
doesn’t meet C x and this has been avoided by construction. If the . and
.+ mentioned above lie in M., the arc t. (defined earlier in this section) on
f(x) (C) between . and + has the property that either it lies in M. or each
piece of it in M bounds, together with a piece of C, a disc in M. The con-
struction prevents C(x) from meeting such pieces; thus . .+1 t., which is an
arc, lies in one of the components of M C(x) and the number of arcs of type
a is reduced.
Now it follows from Lemma 4.4 that there is a mapping of C S into

M1 such that for each x, C x is a homeomorphism into A’(x). (The mp
is the composition of 0" of Lemma 4.4 and the projection of M Sk into
M .) The simple closed curve 0(C x) has the properties described for
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C(x) above. Lemma 4.5 implies that there is a mapping q) (the compositionof
* of Lemma 4.5 with the projection on M1) of M1 X Sk X I into M such that
M1 X x X is a homeomorphism, q)(y, x, 0) q( C X x) for each y in C, and

q)(y, x, 1) y for each y in M1. Thus there is a mapping b of Sk X I into
H(M) such that

(x, t)(M1) M, (x, O)(C) (C x), and (x, 1) i.

Let
b*(x, t) (x, 1 t)[(x, 0)]-f(x).

Then *(x, 1 f(x) and *(x, 0) [(x, 0)I-if(x). Since [b(x, 0) ]-1 takes
(C X x) into C, it is seen that the intersection of *(x, 0)(C) with C is
precisely like that off(x)(C) with (C x).

If for some Xl in K, there is a j such that . and t.+ (this notation being that
described earlier in this paper) lie in M2, then this is true for all x in the com-
ponent L of K containing x (Note that for each x in K, there is aj such that
fi and .+ lie in the same one of M1 and M..) Therefore, if K contains such
an xi, *(x, 0)(C) has fewer arcs of type a than doesf(x) (C), for each x in L,
and, in any case, for no x in Sk does *(x, O)(C) have more arcs of type a than
does f(x) (C). IfM is considered in place of M1 in the above arguments, it is
seen that *(x, 1) is homotopic in H(M) to a mapping f* of S into H(M)
such that the maximum number of arcs of type a on the curvesf*(x)(C) is less
than that on the curves f(x) (C).

In the above argument, *(x, 0)(P) may not be constant, but for each x,
it does lie in M. The map o of S into M. such that o(x) *(x, 0)(P) is
homotopic to 0, so it follows from the theorems of [9] that *(x, 0) is homotopic
in H(M, C) to a mapping ** such that ,**(x)(P) is constant for x in S.
Consequently f*(x) (P) may be presuined to be constant also.

This process is now repeated until f is homotopic in H to a mapping fl for
which nofl(X)(C) has arcs of type a andfi(x)(P) is constant. The technique
for constructing the annuli A (x) can now be applied to yield mappings fl and
’. of C X S into M and M2 respectively such that for each x, il C x is a
homeomorphism, and f(x)(C) lies in the annulus B(x) bounded by f(C, x)
and ’(C, x). It thus follows from Lemma 4.6 that there is a mapping , of
C X S I into M such that "IC X x X is a homeomorphism,
"),(C X x X t) B(x), (y, x, O) fl(x)(y) for each point y in C and
,(y, x, 1) y. The method used for obtaining b can now be repeated to yield

a mapping of S X I into H(M) such that for y e C, ,(x, t)(y)
(y, x, t), z(x, O) f(x) and xI,(x, 1) i. Thus f is homotopic to the

identity and r(H(M) 0.

4. Some lemmas

In this section, the notations introduced in the arguments of Section 3 will
be used without further explanation.
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LEMMA 4.1. If q is a point of int M1 and J is a simple closed curve in int M1
that contains q and bounds, together with C, an annulus, then the identity compo-
nent of Uj,q the space of homeomorphisms of J into int MI that leave q fixed and
are extendable to elements of H(M) is homotopically trivial.

Proof. It follows from Corollary 3 to Theorem 3.1 of [9] that H(M1, q) is
a fiber space with base space Hj,q and fiber H(M1, J). The identity compo-
nents of H(M, q) and H(M1, J) are homotopically trivial (Theorem 3 of
[11]). Consequently, the properties of the exact homotopy sequence of this
fibering imply that r4(r(Hj,) 0 for i >_ 2.
To see that r(Hj,q) 0, Let X be a mapping of S into Hj,q. Let C be a

simple closed curve in int M1 such that for each x, X(x)(J) and C’ bound an
annulus in M and let A be the annulus bounded by C and C’. It follows
from Theorem 3, Corollary 4 of [6] that there is a homeomorphism A of A X S
into M X S such that A(y, x) M1 X x, A(y, x) (X(x)(y), x) if y e J, and
A(C’, x) (C’, x). Thus there is constructed a map r of S X I into H,
the space of homeomorphisms of J into M1 that extend to all of M1, such that

* qr(x, O) X(x) and r(x, 1)(J) C’. The mapa of X I into M such that
(r (x, t) r(x, t)(q) demonstrates the fact that the map a of S into C’ such
that a(x) (x, 1)(q) is homotopic to 0 in M and thus in C’. The tech-
niques of [8] or [9] now show that it could be assumed of r that r(x, 1)(q) is
constant and thus that X is homotopic to 0 in H. It follows from the tech-
nique of Theorem 3.1 of [9] that H is a fiber space with base space int M1 and
fiber H,q. The properties of this exact sequence demonstrate that the in-
jection map of r(Hj,q) into r(H) is 1-1. Consequently X is homotopic to
0 in Hz,q
These techniques also prove the

COROLLARY. The identity component of Hz has the property that its homotopy
groups of dimension greater than 1 vanish and its fundamental group is infinite
cyclic.

LEMMA 4.2. Let X be the hyperspace of the decomposition G of M X S
described in 3 and let z be the mapping of X onto S talcing G. 4 x (the elements

of G in M1 X x) onto x. Then there is a map h of S into X such that for each x,
h(x) e int z-i(x). (Note that the elements of int z-(x) are degenerate and thus
are essentially points of M X x.)

Proof. Each set intz-(x) is connected and locally connected. Also,
--1z (x) is homeomorphie to M and z is completely regular in the sense of [3]
(see also [6]). The space X is complete. Thus U int z-l(x) is complete.
Also, the collection {int z-l(x) is lower semieontinuous. Michael’s selection
theorem [17] now implies the existence of h if lc 1. The proof now proceeds
by induction on lcassume the map h exists for lc n and assume lc n -t- 1.
The sphere Sn+ can be regarded as S I, S 0 and S X 1 being re-

duced to points. Thus, each point x of Sn+ can be expressed as (y, t), y S,
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e I. In the remainder of this proof, this notation for the points of t.n+l (the
image of z) will be used. Each set int z-l(y, t) is LCk for each/c. The in-
duction hypothesis yields for each in I a map ht of S X (this being regarded
as a point if 0 or 1) into U int z-l(y, t) such that ht(y, t) e z-l(y, t). It
follows from Michael’s selection theorems that there are, for each t, an open
set Ut containing S and a map ht* of Ut into U int z-l(y, t’) that extends
ht and is such that h*t(y, t’)eintz-(y, t’). Thus there are numbers
0 to < tl < < tm 1 and maps hi of Sn X [t_l, t] into X such that
hi(y, t) z-l(y, t).

In order to get h_l and hi to agree on S ti_, a trick is used that will be
useful later on. It may be assumed that hi_ is actually defined on
S X (t_2, ti_l), where ti_l < ti_l < ti. Let J be a simple closed curve with
an orientation and give each bdry z-l(y, t) the orientation induced by that on
C X (y, t) as a subset ofM X Sn+. Let p be a point of J. The argument for
Lemma 4.1 demonstrates that the space Hy.t of homeomorphisms of J into
int z-(y, t), ti_l <_ <_ t_l, taking p into hi_l(y, t) and taking J into a curve
oriented in the same way as bdry z-l(y, t), containing hi(y, t) and bounding,
together with bdry z-l(y, t), an annulus, is homotopically trivial. This space
is LC for each/c, as an argument exactly like that for Theorems 5.1 and 5.2
of [7] proves, and it is topologically complete. Finally, U H,.t is topologically
complete and the collection {Hy.t} is equi-LC and lower semicontinuous.
Michael’s selection theorems now yield a homeomorphism h of

J X t. X [ti_l, tti--1] into z-[S [t_x, t_l]]
such that h(J X y X t) z-l(y, t) h* (p, y, t) h_(h, t) andh*(JXyXt)
contains hi(y, t). These curves can be used to construct a map h’i of
S’ X [t_l, ti--1] into X such that h’i(y, ti_) hi(y, t_l) This map hi then
effects a fitting together of hi_ and hi and the process can be repeated to yield
the required h.

COROLLARY. There is a homeomorphism v of C X S into X such that
r(C X x) int z-l(x), has the same orientation as bdry z-l(x) and, with
bdry z-l(x), bounds an, annulus, and v(P, x) h(x). Asnoted in the statement
of the lemma, v( C X x) lies, essentially, in M X x and meets no non-degenerate
element of Gx X x.

Proof. This follows from the arguments in the proof of Lemma 4.2.

LEMA 4.3. The space X if homeomorphic to M X S.
Proof. Since the only non-degenerate elements of X are in U bdry z-(x),

v, defined in the above corollary, may be considered as a map into M1 X S.
There is also a homeomorphism v’ of C S into M1 X Sk such that v’( C X x)
lies in M1 x, is separated from C x by v( C X x) and bounds, together with
v(C X x), an annulus. Finally, there is a curve C’ in M1 C such that C u C’
bounds an annulus, A, and A X S does not meet v(C X S). As in the argu-
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merit for Lemma 4.1, there are homeomorphisms h’ and h" (A of that Lemma)
ofA X Sinto M1 X S such that h’(C X x) C’ X x, h’(C’ X x)
h"(C X x) (C X x) and h’(C’ X z) ’(C’ X x). From this construc-
tion, it is easily seen that there is a homeomorphism h. of cl (M1 A X Sk

into M1 X S such that h.(C’ X x) 7(C X x). Now, back in X, the proof
of Lemma 4.1 yields a homeomorphism h of A X Sk into X such that
h(C X x) bdryz-(x) and hl(C’ X x) n(C X x). The fitting together
of h and h2 yields a homeomorphism of M1 X S onto X.

LEMMA 4.4. There is a homeomorphism * of C X S into MIX S such that
for each x, * C X x) A x X x, the set defined in 3.

Proof. Suppose that there is a map of S into M1 X S such that
tt(x) e A’(x) X x. Let H(x) denote the space of homeomorphisms of C into
A’(x) X x such that (P) u(x), (C) separates C X x from C’ X x and
/(C) has, in the obvious sense, the same direction as C. The arguments in
the proof of Lemma 4.1 or in the proof of Theorem 4.1 of [9] demonstrate that
H(x) is homotopically trivial. The proofs of Theorems 5.1 and 5.2 of [7]
demonstrate that it is LC. The set A’(x) x is topologically complete, so

H(x) is topologically complete. Also, H*(x), the space of homeomorphisms
of C into A(x) x with the properties of those in H(x) is topologically com-
plete. Let H* and H denote U H*(x) and U H(x) respectively.
The space H*, as a closed subset of the space of all homeomorphisms of C

into M1 X S, is seen to be topologically complete. The subspace H* of H*
consisting of mappings such that for some x,

(C) r (C x x) (A’(x) C) x z,

is closed in H* and is thus complete. The union of the sets (A’(z) n C) x
is closed in Mt N S. It is therefore the intersection of a countable sequence
U1, U., of open sets. Let H* be the subset ofH consisting of these maps
such that for some x, ( C) n(C X x) U. This is open onH. Thus

the sets H*1 have as their intersection the complete subspace H* consisting of
these mappings/ such that for some x,

(C) n (C X x) (A’(x) n C) X x.

The set H’ of elements of H* such that for some x, (C) c A’(x) X x is

open inH The subset ofH consisting of the elements such that for some
x, (P) g(x) is closed in H This set is H and is topologically complete.

It is evident that the collection {H(x)} is equi-LC for each n and lower
semicontinuous. Michael’s selection theorems now yield the required homeo-
morphism.
That the map u does, in fact, exist, follows now from the arguments in the

proof of Lemma 4.2.

LEMMA 4.5. There is a "mapping * of M1 X S X I into M X S such that
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q* M1 X Sk X is a homeomorphism, q*(y, x, t) MI X x for each y, x, t,
q* y x, O) q* C x) for each y in C and q* y x, 1) y x) for each y in M1.

Proof. As in the proof of Lemma 4.1 (although expressed differently this
time) there is a homeomorphism A’ (corresponding to the A of that proof) of
C I X Sk into M1 S such that

A’(y, t, x) eM1 X x, A’(y, 1, x) (y, x), and A’(y, 1/2, x) eO*(C X x).

The required isotopy can now be constructed by letting

*(y, x, t) (y, x)

if(y,x) is not in .4’(C X I X S) and

q)*(y, x, t) (y’, x)

if (y, x) A’(y0, s, x) and (y’, x) A’(y0, (t + 1)s/2, x).

LEMMA 4.6. The symbols B, , and fl having the meaning of the last paragraph
of 3, there is a mapping " of C X S X I into M such that , C X x X is a
homeomorphism, "(C X x X t) c B(x), (y, x, O) f(x)(y) for each y in C,
and "( y, x, 1) y.

Proof. It follows from Corollary 4 to Theorem 3 of [6] that there is a homeo-
morphism r of C X I X S into M X Sk such that

r(Ctx) B(x) x, FI(y, 0, x) (fi(x)(y), x)

and r(y, 1, x) ’(C X x) X x.

Also, there is a homeomorphism F. of C X I X Sk into M X Sk such that

F2(C X X x) B(x) x, r(y, 0, x) r(y, 1, x)

and r(y, 1, x) eC X x.

The projection of M X S onto M now yields a map /of C S X I into M
satisfying the conditions required of except that it is only certain so far that
/(y, x, 1) e C. However, the map * of I S into M such that ,*(t, x)
/(P, x, t) demonstrates, since fl(x)(p) is constant, that the map of S into
C such that (x) /(P, x, 1) is homotropic to 0 in M and hence in C. The
techniques of [8] and [9] now show that ,’ could have been constructed so that
/(y, x, 1) y. This completes the proof of the lemma.

5. The remaining compact 2-manifolds

The arguments in Sections 3 and 4 demonstrate that the identity component
of the space of homeomorphisms of a 2-handled surface into itself is homotop-
ically trivial. The results of Section 2 combined with the methods of [8]
or [11] demonstrate that if M has 2-handles and a hole, H0(M, M) is homotop-
ically trivial. It is now easy to extend these results by induction to obtain
the next two theorems.



572 MARY-ELIZABETH HAMSTROM

THEOREM 5.1. If M is a compact orientable 2-manifold with two or more
handles, Ho(M) is homotopically trivial.

THEOREM 5.2. If M is a compact orientable 2-manifold with boundary and
two or more handles, Ho(M, M’) is honotopically trivial.

Proof. If M has two handles, these theorems are proved. Suppose M has
n handles, n > 2, and no boundary. Let C be a simple closed curve in M
and M1, M2 the closures of the components of M C, M1 having one handle,
M. having (n 1) handles. The arguments in Sections 2 and 3 carry over
without change. The set T,. is here a compact 2-manifold with (n 1)
handles not a torus, but the fact that, in Section 2, r(T=) is abelian, was not
used. Theorem 5.2 follows as was indicated above for the 2-handled case.

It was proved in [12] that ifM is a Moebius strip, H0(M, ell) is homotopically
trivial and if M is a Klein bottle and p e M, H0(M, p) is homotopically trivial.
This last fact and the techniques of [8] and [11] yield the fact that if M is a
Klein bottle with holes H0(M, eli’) is homotopically trivial. The techniques
in the present paper now carry over without change to prove.

THEOREM 5.3. IfM is a non-orientable surface, with or without boundary and
with three or more cross caps, then Ho( M, M’) is homotopically trivial.
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