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Introduction
If a measure preserving flow is defined on a measure space X of finite meas-

ure, then the flow is incompressible, and it follows that almost all the points
of X are recurrent (Poincar4 recurrence theorem; see [5, p. 10]). W.H.
Gottschalk and G. A. Hedlund [3], [4, chapter 8], and C. W. Williams [10]
have exploited similar ideas in topological dynamics, and J. D. Baum [1] has
also done this in a more general setting. A. Khintchine [8] has shown that if
m is a proability measure defined on X, then

lim
1 fs

r

r-s-, T S m(A n At) dt > m(A)

for a measure preserving flow, where A is any measurable set. (See also E.
Hopf [7, p. 40].) If the measure is a Borel measure not vanishing on open
sets and the flow is continuous, it follows that the flow is regionally almost
periodic (under Gottschalk and Hedlund’s definition [4]). The purpose of
this paper is to "topologize" notions related to the measure preserving property
and investigate their relationship to almost periodicity properties.

In the first section it is shown that in many phase spaces it is sufficient for
some almost periodicity properties to establish the corresponding property
with respect to a replete semigroup in the transformation group, but that this is
not true for regional almost periodicity. The following section investigates
boundedness, incompressibility, and dissipative properties.

1. S-almost periodicity
1.1 Notation. Let (X, T, ) or (X, T) denote a transformation group.

We assume that T is generative, and we let S denote a replete semigroup in T
(see [4] for definitions). We assume that X is a Hausdorff space. Whenever
we assume that X is a uniform space, we assume that it has the uniform topol-
ogy and write small Greek letters for elements of the uniformity.

1.2 DEFINITION. A subset B of T is called S-syndetic if there exists a com-
pact subset K of T for which BK S. This definition differs from that of
Gottschalk and Hedlund [4, p. 63]. All S-almost periodicity properties which
we will study are now defined as in [4, 3.13] where "S-syndetic" replaces
"admissible."

1.3 Remark. The following statements are pairwise equivalent"
(1) The transformation group (X, T) is S-almost periodic.
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(2-3-4-5) To each index a of X there exists a compact subset K of T such
that to each s e S there corresponds a ]ce K such that, for each x X

1.4 IHmTANCE THEOREM. Let P be a closed syndetic subgroup of T.
(X, T) is S-almost periodic, then (X, P) is P n S-almost periodic.

1.5 Remark. The following remarks, leadin to Theorem 1.10, can be re-
placed by using Baum’s equicontinuity condition (John D. Baum, An equi-
continuity condition in topological dynamics, Proc. Amer. Math. Soc., vol. 12
(1961), pp. 30-32).

1.6 IEMMA. If A is an S-syndetic set, then so is A r, S.

Proof. There exists a compact set K such that, for each p e S, pK n A 0.
Further, there exists an element pl e S such that pl K K’ c S. Now, to
each p e S, we have

pK’ n (A n S) (pK’ S) (pK’ aA
pKaA
ppiKaA .

Therefore A S is an S-syndetic set.

1.7 LEMMA. If A is an S-syndetic set and B is an S-1 syndetic set, then AB
is a syndetic set in T.

Proof. There exist compact sets K’ and Kt’ with AK’ S and BK S’.
Using [4, 6.04], we infer

T SS-= AK’BK’ (AB)K’K.
1.8 THEOREM. If X is a compact uniform space, then the following state-

ments are pairwise equivalent:
(1) (X, T) is S-almost periodic.
(2) (X, T) is discretely S-almost periodic.
(3) The set of transitions {r s S} is totally bounded subset of T in the

space-index uniformity.
(4) The set of transitions {r s e S} is uniformly equicontinuous.

Proof. (1) is equivalent to (2) by an argument much like [4, 4.35]. (2) is
equivalent to (3) by application of Remark 1.3, (4). (3) is equivalent to
(4) by [4, 11.12].

1.9 THEOREM. If X is uniform and compact, then (X, T) is S-almost peri-
odic if and only if it is S-l-almost periodic.

Proof. It suffices to show that the set of transitions {’ s e S} is a totally
bounded subset of T in the space-index uniformity if and only if {’ s S-11
is such a set. But this follows from [4, 11.18(1)].
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1.10 THEOREM. Let X be a compact space.
and only if it is almost periodic.

(X, T) is S-almost periodic if

Proof. It is obvious that almost periodicity implies S-almost periodicity.
Suppose now that (X, T) is S-almost periodic. Then S u S-1 is a uniformly
equicontinuous subset of T. Let an index a of X be given. There exists an
index such that t c for all in S u S-I. Choose an S-syndetic set A
and an S-l-syndetic set B such that x(A u B) x for all points x in X. Now
let a e A and b e B. We have xab (x)b xa. Since AB is a syndetic sub-
set of T, (X, T) is almost periodic.

1.11 Remark. Statements 1.14 through 1.31 are a proof that S-almost
periodicity at a point implies almost periodicity there, provided that the phase
group is generative and the phase space is a compact, metric space, or a locally
compact, separable, metric space. The idea of the proof is to show that if a
counter-example exists, then one also can be found in a subspace restriction of
a transformation group like Bebutov’s dynamical system [9, pp. 420-424], and
then to show by ad hoc methods that this cannot be.

1.12 Convention. We will make free use of the notion of homomorphism
and isomorphism of transformation groups, and any results of [2].

1.13 DEFINITION. Let (X, T) be a transformation group. If x is a point
which is S-almost periodic for some replete semigroup in T and is not almost
periodic, we say that x is a partly almost periodic point. We also say that
(X, T) is point partly almost periodic.

1.14 Remark. If (X, T) possesses a partly almost periodic point, there
exists a transformation group (X, T’) possessing a partly almost periodic point,
where T’ has no proper compact subgroups.

1.15 Remark. It follows from remark 1.14 and [4, 3.36 and 6.14] that if
there exists a transformation group (X, T) possessing a partly almost periodic
point, then there exists a discrete n-parameter flow (for some n) with the same
property.

1.17 LEMMA. Let X, T) be a point partly almost periodic discrete n-parame-
ter flow for which X is a locally compact, separable, metric space. Then there
exists a point partly almost periodic fix-point free continuous n-parameter flow
(Y, R’) where Y is a locally compact, separable, metric space.

Proof. Let fl, f be the generators of the discrete n-parameter flow.
Let I denote the real line, and let Z X X I X X I, where there are n
factors of I. Let H denote the set of points of I X X I having integral
coordinates. If h (hi, h) is in H, we associate to it the element g,
of T which has coordinates (hi, h,) with respect to the generators fl,

fn To each point x in X, form the equivalence relation in Z which iden-
tifies (x, t) to (xgh, h) for each h in H. Let R denote the equivalence
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relation just defined, and let Y Z/R. The space Y is clearly locally com-
pact and Hausdorff, and, since the projection is open, completely separable,
and hence metric. We now define an n-parameter flow on Y. If

(.tl, tn) is an element of R, and (x, r) is an element of Z, define

(x, ).t (x, + t)

This flow clearly respects the relation, and hence it is a continuous n-parameter
flow on Y. It is obviously totally fixed-point free. The subgroup of lattice
points in R leaves fixed a subspace homeomorphic to X on which its action
is topolo,ically equivalent to that of 7’. Then by [4, 3.36], (Y, Rn) is a point
partly almost periodic flow.

1.18 Remark. Lemma 1.17 remains valid if we assume that X is a compact
metric space.

1.19 Examples and notation. Let F denote the set of continuous
valued functions defined on Euclidean n-space, En. IfM is a positive number,
let

S(i) {P (Pl P,) S, P <- M, i 1, nl
and

E(M, -) {P (PI., ,P,) "0

_
P < M, i 1,...,hi.

Consider the function on F X F to R

d(fi g) Sups>0 (min [1/M, max() If(p)

This function is a metric for F and induces the topology of uniform conver.
gence on compact sets. We define an action of R on F,. Let

f. (x,, Xn) e F,,

and lett (h, "",t). We define

(f). ( ,..., x) f(x + t, ..., + t).

We will also write ft for the function ft. We will call the transformation group
(F, R) thus obtained the n-dimensional Bebutov system. We will not al-
ways attempt to distinguish explicitly in the notation between elements of
and R. We will use the fact [9, p. 420] that for f and g, elements of Fn, and
e > O, d(f, g)

_
e if and only if max If(x) g(x) - e for xl

_
1/e.

1.20 LEMMA. Let (X, R’) be a continuous n-parameter flow where X is a
ccmpact metric space having at most one fixed point. Then (X, R’) is isomorphic
t some subspace restriction of the n-dimensional Bebutov system.

Proof. Let (I)(p) be a continuous E-valued function defined on the space
RX such that, if p q are points of X there exists e such that

.(pt) (qt). The existence of such a function follows from the application
of [9, pp. 445-452] to the coordinate continuous one-parameter subgroup re-



498 WILLIAM REDDY

strictions of (X, R’). Now to each p in X, we define a continuous function
on all of E. If e E., let

It is easy to see that the mapping p --. is a one-to-one continuous mapping
of X into F., which respects the actions of R. Since X is compact, this is
sufficient.

1.21 COnOLLARV. Let (X, R’) be a continuous n-parameter flow where X is
o locally compact, completely separable, metric space. If X has no fixed points
under the flow, then (X, R’) is isomorphic to a subspace restriction of the
n-dimensional Bebutov system.

Proof. Let Y denote the one point compactification of X, Y X t p.
Let R fix p and let its action on the rest of Y be induced by its action on X.
Then (X, R) is isomorphic with a subspace restriction of (Y, R) which is in
turn, by Lemma 1.20, isomorphic with a subspace restriction of (F., R).
This suffices.

1.22 Remark. Let (X, T) be transformation group for which X is a locally
compact, separable, metric space, or a compact metric space. If (X, T) is
point partly almost periodic, then there exists a positive integer n such that
(F,, R) is point partly almost periodic. To see this use, in turn, 1.15, 1.17
or 1.18, and 1.20 or 1.21.

1.23 DEFINITION. Let f and g be points of F., let e be a positive number
and let J1 and J2 be n-dimensional intervals. We say that f J is e-contained
in g/J. if there exists inE such that J + J. and If(x) g (x - t) < e
for all x in J. We say that f[ J is contained in g J. if there exists an ele-
ment in E such that J -t- J and f(x t) g(x) for all x in J1 - t.
We say that f lJ is congruent to g lJ if there exists in E, such that
J + J and f(x t) g(x) for all x in J -t- t.

1.24 Remark. Let (X, T) be a transformation group, let S and S be re-
plete semigroups in T such that S SK for some compact subset K of T.
Then the following statements are equivalent:

(1) The point x is S-lmost periodic.
(2) The point x is S’-almost periodic.

1.25 Remark. Let (X, R") be a continuous n-parameter flow. Suppose
it is point partly almost periodic. Then by proper choice of geaerators, and
by use of remark 1.24, it is possible to find a point x of X which is S-almost
periodic, but not almost periodic, where S R P, for some positive
.nteger m, where P denotes the positive real numbers.

1.26 Notation. For the n-dimensional Bebutov system, we let Q represent
a semigroup of the form R X P, where P denotes the positive real num-
bers, and 0 m n.
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1.27 LEMMA. A point f of Bebutov’s n-dimensional system is an almost peri-
odic point if and only if, to each positive number M there exists a positive number
N such that fIE(M) is (1/M)-contained in f l[Y + E(N, -}-)] for all y in R’.

Proof. Suppose f is an almost periodic point in Bebutov’s n-dimensional
system. Then, to each positive number M it is possible to find a set A, syn-
detic in R", such that in A implies d(f, f.) < 1/M. That is, in A implies

f(x -+- t) -f(x)] < 1/M
for x in E(M). Since A is syndetic, there exists a positive number N1 such
that y + E(N1, +) meets A for each y in R. Choose N so large that there
exists a point y’ in y - E(N, - such that y,t in y’ + E(NI, - implies that

y" + E(M) c y + E(N, -).

But for some point y’t in y’ + E(Nx, +), we have y" in A. It follows that

f [Y + E(N, zr)] (1/M)-contains f E(M).

Suppose, on the other hand, that the condition is valid. Then, given M > 0,
to each y in R" there exists a positive number N such that

f [Y - E(N, -)] (1/M)-contains f E(M).

That is, there exists a poiut in y - E(N, - such that

E(M) - c y - E(N, +) and If(x + t) f(x) < 1/M forxinE(M).

That is, d(fi fi) < 1/M. Let A denote the set of points for which this in-
equality holds. Then A E(N, -t- R, whence A is syndetic and f is an
almost periodic point.

1.28 Remark. A point f of Bebutov’s n-dimensional system is Q-almost
periodic if and only if to each positive number M there exists a positive num-
ber N such that to each y in Q, f [y + E(N, - )](1/M)-contains f E(M).

1.29 Remark. A point f of Bebutov’s n-dimensional system is partly al-
most periodic if and only if it is possible to choose parameters in R such that
there exists a replete semigroup Q for which

(1) The criterion of remark 1.28 is valid, and
(2) There exists positive number M such that to each M ) M1 and

each N > 0 there exists an element y(M, N) of R" Q such that

f [y(M, N) - E(N, -}-)] does not (1/M)-contain f E(M).

1.30 LEMMA. Bebutov’s n-dimensional system contains no partly almost
periodic points.

Proof. Suppose f were such a point, and adopt the notation of 1.29. Then
there exist positive numbers M and N such that y in Q implies

fl [y + E(N, -)](1/2i)-containsfl E(M),
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and there exists an element y(M, N) R’* Q such that

f Z -b E(N, -k) does not (1/M)-containfl E(M).
Suppose is in Q . Then f -b E(N, -b )] is congruent to

/i Iz + + +)1

which (1/2M)-contains f E(M), since A -b is in Q. That is, there exists
X e R such that

(1) XWE(M) cZ+E(N,+)and
(2) Ift(X -b x) f(x) < 1/2M for x in E(M).

Since f [’ -b E(N, -b)] does not (1/M)-contain fIE(M), we know in
particular

(3) there exists in E(M) such that f(X W ) f() > 1/M.

Choose M’ such that -b E(N, W) c E(M’). Then there exists
r X - e E(M’) such that [f(r) f(r)] > 1/2M. It follows that
d(fi f,) >_ min 11/2M, 1/M’}, for all Q . Since each Q-syndetic set
meets Q f, it follows that f is not Q-almost periodic contrary to assumption.

1.31 THEOREM. If (X, T) is a transformation group for which X is a com-
pact metric space, or a locally compact, separable metric space, then X contains
no partly almost periodic points.

Proof. Use 1.22 and 1.30.

1.32 Remart. We now construct an example of a transformation group
with compact phase space possessing a point which is regionally S-almost
periodic and not regionally almost periodic.

1.33 Notation and definitions. Let X denote the set of functions from
Z X Z to {0, 1}, where Z denotes the set of integers. We will denote the two
constant functions by 0 and 1.

If f and g are elements of X let

d(f, g) 1/(1 -b M) where m max {M fig(M) gig(M)}.

The function d is a metric which makes X into a compact metric space. We
define an action of Z Z on X to obtain a transformation group (X, Z X Z,
r) by

If, (i, J)]" (P, a) f(P -b i, q + j).

Let P denote the set of positive integers, let N denote the set of negative in-
tegers and let A be a P X P-syndetic subset of P P in Z X Z. We write
A lal,a,a3,...}.
We define a sequence of elements of X as follows:
(1) Let Z1 c Z c Z3 c Z be a sequence of squares in
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gin(b) 1

Now let Y C1 13 0(gin).
under the action of Z X Z.

Z Z centered at (0, 0) such that

(a) (gin a,,) n Z, t
() Uz.=zz.
(2) (a) Let o(i, j) 0 if and only if i and j are both even non-negative

integers.
() If m 1, 2, 3, let b denote a point of Z X Z and define

g,(b) go(b) if b eZra
gin(b) go(b + am) if beZm- am

otherwise.

Then Y is a compact metric space invariant
Ift (i,j) is a point of Z Z, we define

1.34 LEMMA. The following statements are valid:
(1) liming, gin go.
(2) liml,l-,, gin(t) 1 if m O.
(3) lim, g.a go.
(4) If t is a sequence of elements of Z X Z such that tl -- and

h lim_,, got exists, then d(go, h) >_ 1/3.
(5) Let g be a subsequence of g Let t . a be a sequence of elements in

Z X Z such that t ---. . If lim_, g t h exists, then d(g0, h) _> 1/3.
(6) If t is a bounded sequence of elements of Z X Z and g is a subsequence

of gm and if lim.., g t h exists, then h (J O(gm).

Proof. (1), (2), and (3) follow immediately from the definitions. We
prove (4). Let t (x, y). Then there exists a subsequence (which we
renumber and call ti) such that one of the following statements is valid"

(i) x--* +,
(ii) x --*
(iii) y --* -[-,
(iv) y--*--.

No matter which possible combination occurs, one of the following state-
ments is valid"

(a) h(x, 0) 1 for all x,
(t) h(0, y) lforally, or
() there exists x < 0 and y such that h(x, y) O, and (x, y) Z(2).

In all these cases d(g,, h) >_ 1/3.
The proof of (5) is similar to that of (4), and (6) is obvious.

1.35 Remark. In the compact metric space Y,

N(go, l/M) (J {g, a1, gn gn an}, if M >_ 3.
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1.36 Remark. Let (Y, Z Z, r) be the subspace restriction of (X,
Z X Z, r). The point go is regionally P P-almost periodic but not re-
gionally almost periodic.

2. Boundedness, incompressibility, evanescence
2.1 Notation. Let (X, T) be a transformation group where T is generative.

Let {S, K1, Ks, K3, P denote a countable collection of subsets of T.
Let P* {S-1, K1, K., Ks, .-.}.

2.2 DEFINITION. A subset B of T is called P-admissible provided that there
exists a positive integer N such that p >_ N and e S imply B n tK,

2.3 DEFINITION. We now define P-recursion properties as in [4, Definition
3.13, p. 21] where "P-admissible" replaces "admissible."

2.4 Remark. The group T is generative and hence is the countable union
of compact subsets.

2.5 LEMMA. Let P be a replete semigroup in T. Let

be a countable collection of compact subsets of T whose union is T. A subset
B of T is P-syndetic if and only if there exists a positive integer N such that
n >_ NandtePimplyBntC .

Proof. Suppose that B is a P-syndetic set. Then there exists a compact
set K such that BK P. There exists a positive integer N with K c Cn,
whence we infer that if n >_ N, then BK, P, let e P. Then there exist
elements b in B and c in C, such that bc or b tc-1 e tC,, whence
b e B n tC ). On the other hand, suppose there exists a positive integer
N such that for each in P, B n tC 0. Then there exist elements b in B
and c in C with bc t, whence BC, P, tha: is, B is P-syndetic.

2.6 Remark. Let S be a replete semigroup in T, and let C1, C, C3,
be a collection of compact sets as in Lemma 2.5. If P S, C,, C, C, },
then the P-admissible sets are just the S-syndetic sets.

2.7 Remark.
collection

Let S be a replete semigroup in T. There exists a countable

of replete semigroups lying inside P such that if Q is a replete semigroup lying
inside S, Q P,. for some positive integer N. We can partially order the set
{P} by containment so that each set P contains some set P with j > i.

2.8 Remark. Let S be a replete semigroup in T. Let P1, P, be a
collection of replete semigroups as in Remark 2.6. A set E is S-extensive
(meets each replete semigroup contained in S), if and only if there exists a
positive integer N such that E n P,, t for all n

_
N.
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2.9 Remark. Let S be a replete semigroup in T and let P1, P., P,
be a collection of replete semigroups as in Remark 2.6. If e denotes the iden-
tity element of T, and P [{ e}, P1, P, P, ], then the P-admissible sets
are just the S-extensive sets.

2.10 DEFINITION. Let M and N denote subsets of X. We say that N has a
countable (M, P) representation if there exists a sequence tn n 1, 2, 3,
of elements of S such that N [J:-_ Mtn K.

2.11 DEFINITION. /k set M is said to be P-reducible if there exists a set N
having a countable (M, P) representation with Int (M N) not empty.
If every subset of X is not P-reducible, we say that (X, T) is P-irreducible.

2.12 THEOREM. The transformation group (X, T) is regionally P-recursive
if and only if it is P-irreducible.

Proof. Suppose that (X, T) is not regionally P-recursive. Then there
exists a nonempty open set U such that if B is any P-admissible set, there exists
an element b in B with Un Ub . ThereforeB {tT: Un Ut 0}
is not P-admissible, and, hence, to each positive integer n there exists an ele-
ment t of S for which t,, K n B . Then V [J:. Ut Kn has a countable
(U, S) representation and Int (U V) U , and (X, T) is not P-ir-
reducible.
On the other hand, if (X, T) is not P-irreducible, then there exist sets M

and N with Int (M N) such that there exists a sequence t n 1,
2, 3, of elements of S for which N [J:.l Mt K. Then

U= Int (M N)
is a nonempty open set for which U [J:. Ut, Kn] . Therefore, if
B {t e T U Ut 0}, to each positive integer n there exists an element
t of S such that t K does not meet B, whence B is not P-admissible, and
(X, T) is not regionally P-recursive.

2.13 DEFINWXO. A set M is said to be strictly P-irreducible provided that
if N has a countable (M, P) representation, then N M.

2.14 THEOREM. The transformation group (X, T) is pointwise P-recursive

if and only if each open set is strictly P*-irreducible.

Proof. If U is an open set which is not strictly P*-irreducible there exists
a sequence of elements {t} of S- such that the set V U
is not empty. Choose a point x in V. Then for each positive integer n we
havex Ut-K, orxtK Uis empty. Now let B {b T xb U}.
Since B meets no K, B is not P-admissible whence x is not S-almost
periodic.
On the other hand, if x is not an S-recursive point, there exists a neighbor-

hood U of x such that B {b T :xb e U} is not P-admissible. Then, to
each positive integer n there exists an element t of S for which B n t K is
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empty. Therefore x U [J--1 Ut-IK,,, whence U is a nonempty open set
which is not strictly P*-irreducible.

2.15 DEFINITION. A point x of X is called S-periodic, if there exists a
P-admissible set B for which xB x.

2.16 THEOREM. The transformation group (X, T) is pointwise P-periodic
if and only if each subset ofX is strictly P-irreducible.

Proof. Suppose that not every subset of X is strictly P-irreducible. Then
there exists a set M and a sequence of elements {tn} of S such that

M [J Mt, K,

is not empty. Let x be a point of this set, andletB {b e T:xb b}.
The set B meets no t Ks and hence, is not P-admissible whence it follows that
x is not a P-periodic point.
On the other hand, suppose that there exists a point x which is not P-peri-

odic; that is, suppose that the set B defined above is not P-admissible. Then
there exist elements t of S such that x [J:.. xt,, K,,, and the set {x} is not
strictly P-irreducible.

2.17 DEFINITION. If P is chosen as in 2.6 so that the P-admissible sets are
just the S-syndetic sets, we replace the term "P-irreducible" by "S-bounded"
and the term "P-recursive" by "S-almost periodic." This definition is con-
sistent with Definition 1.2.

2.18 DFINITON. If P is chosen as in 2.9 so that P-admissible sets are
just the S-extensive sets, we replace the term "P-irreducible" by "S-incom-
pressible" and the term "P-recursive" by "S-recurrent." This definition is
consistent with J. D. Baum’s [1] usage.

2.19 THEOREM. The following statements are pairwise equivalent:
(1) X, T) is pointwise periodic.
(2) Each subset of X is strictly T-bounded.
(3) IfM is a subset o] X, and S is a replete semigroup on T, then MS c M

implies MS M.

Proof. Use Theorem 2.16 and [3, Theorem 8].

2.20 DEFINITION. A subset M of X is called strictly S-incompressible, where
S is a replete semigroup in T if MS M implies that MS M.

2.21 THEOREM. Let (X, T) be a transformation group. If each open set of
X is strictly S--bounded, then each closed set of X is strictly sS-incompressible,
and each open set is s-S--incompressible, for each element s of S.

Proof. By Theorem 2.14 and [1, Theorems 12 and 13], we can reduce this
theorem to the assertion that if T is S-almost periodic, then it is S-recurrent,
which is obviously true.
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2.22 Re In order to establish another theorem like Theorem 2.21,
we will prove Theorem 2.24, which is very like the theorems proven in Baum’s
paper [1].

2.23 DEFINITION. The subset M of X is called S-incompressible where S
is a replete semigroup in T, if MS c M implies that Int (M MS) 0.

2.24 THEOREM. The following statements are pairwise equivalent:
(1) (X, T) is regionally S-recurrent.
(2) If U is an open subset of X, there exists an S-extensive set B such that

b e B implies that U r Ub .
(3) If M is an open set of X, then M is sS-incompressible for each element s

orS.
Proof. (1) and (2) are equivalent by definition. To show that (3) may be

added to the list, we need only employ techniques like those used in Baum’s
paper [1]. For completeness, we include the details.
Suppose that (X, T) is not S-regionally recurrent. Then by [1, Lemma 3]

we know there exists an element s of S such that for some nonempty open set
UinX, Ut] UsS i. The setM Uu UsSisobviouslyopen.ndnot
sS-incompressible.
On the other hand, suppose that (3) is not true. Then there exists n open

set M and an element s of S such that U Int (M MsS) is a nonempty
open set of X, and it is clear that U t UsS 0, whence, by [1, Lemma 3], it
follows that (X, T) is not S-regionally recurrent.

2.25 Remark. It is an easy consequence of (2) above that if (X, T) is
S-regionally almost periodic, it is S-regionally recurrent.

2.26 THEOaEM. Let (X, T) be a transformation group. If (X, T) is S-
bounded, then every open set in X is sS-incompressible for each s in A.

Proof. By Theorem 2.12 and Theorem 2.24, this theorem can be reduced
to the statement that if (X, T) is S-regionally almost periodic, it is S-regionally
recurrent.

2.27 Remark. In the following sections we will assume that X is a compact
metric space whose metric is d. It is the purpose of this section to consider
property analogous to the dissipative property for measure preserving flows.
Notice that if (X, f) is a dissipative measure preserving transformation group,
and F is a "dissipative" set, then lim m[f(F)] 0, und hence, if that limit
is positive for each set F of positive measure, then the flow must be incompres-
sible. We use this remark to suggest a version suitable to metric spaces.

2.28 DEFINITION. If B is a subset of X, the girth of B, written g(B), is
defined by

g(B) sup {r there exists a point x with N(x; r) BI.
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2.29 DEFINITION. Let T be a topological group, and let f be a real-valued
function defined on T. A real number z is called an extensive (resp. syndetic)
S-limit of f, where S is a replete semigroup in T, provided that to each positive
number e there exists an S-extensive (resp. S-syndetic) set E such that if
q e E, then If(q) z < 0. We also define two symbols:

Lira sup exts f(t) sup {z z is an extensive S-limit of f},
and

lim sup syns f(t) sup {z z is a syndetic S-limit of f}.

If no ambiguity is to be feared, we will omit the subscript naming the semi-
group.

2.30 COROLLARY. If T I X R", then, with respect to a replete semiqroup
S, we have for each real-valued function f,

lira sup syn f(t) _< lim sup ext f(t).

2.31 DEFINITION. Let5 (X, T) be a transformation group. A subset M
of X is called extensively (resp. syndetically) S-evanescent, where S is a replete
semigroup in T, if

lim sup ext g(Mt) 0 (resp. lira sup syn g(Mt) 0).

We say the flow (X, T) is extensively (resp. syndetically) S-evanescent if there
exists a nonempty open subset of X which is extensively (resp. syndetically)
S-evanescent.

2.32 THEOREM. If (X, T) is not extensively S-evanescent, then it is S-re-
gionally recurrent.

Proof. Let M be any non-empty open subset of X. Then

lira sup ext g(Mt) 2e > O.

It follows that there exists an S-extensive set E such that E implies that
g(Mt) < 0. Since X is compact, there exists a finite collection
{M1, ..’, Mr,} of pairwise disjoint images of M under elements of E such
that if q is any element of E, then Mq meets one of these sets. For j 1,

N, let
Bj {t E Mtn Mt r }.

Consider the set F [Jl B t. We show that F is S-extensive. Let any
element s of S be given. It is clear that there exists an element s’ of S such
that for each K 1, N, we have

sS (II t)s’S.

Since E is S-extensive there exists an element

q E a (IIL, t)s’s.
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Since E tJ B, there exists some integer K between one and N with q e B.
It follows that qt[ e F. Also,

Therefore, F meets each sS, and so is S-extensive. Finally, if q is any element
of F, there exists an integer k for which q e B t-. Then q bt where
Mb Mt , whence Mq M 0, and (X, T) is S-regionally recurrent.

2.33. THEOREM. If (X, T) is not syndetically S-evanescent, then it is S-
regionally almos$ periodic.

Proofi Let M be a nonempty open subset of X. Just as in the proof of
Theorem 28, we find an S-syndetic set E and a finite set of integers J such
that

(1) E [JB.and
(2) If eBb, then Mt Mt. .
Since E is S-syndetic, there exists a set K such that sK meets E for each

element s of S. Now let F [J t-B. We show that F is S-syndetic.
First notice that there exists a set K for which K, [J t-K. Let an
element s of S be given and choose s’ sK E. There exists an element/ of J
such that s’ B whence

s’t’[ t-[B B-[ r stK F r sK,

and F is S-syndetic. Proceeding as in the previous theorem, we infer the
S-regional almost periodicity of (X, T).

2.34 Remark. We now obtain a very weak converse to the two previous
theorems.

2.35 DEFINITION. Let (X, T) be u transformation group, and let S be a
replete semigroup in T. We say that (X, T) is S-compactly evanescent if
there exists an open subset M of X such that for each positive integer n,

lira sup ext g(MtK) 0.

2.36 TEOaEM. If (X, T) is S-pointwise almost periodic, then it is not
S-compactly evanescent.

Proof. Suppose that (S, T) is S-compactly evanescent. Let M be the
set whose existence is guaranteed by the definition. There exists a point x
of X and a positive number r such that N(; r) M. Let B = C1 N(x; r/2).
It follows that lira sup ext g(BtK,) 0, for n 1, 2, 3, Theu there exists
an element t of S such tha g(BK t) < r/2, when B Bt K 0. Since
this latter set is open in B, we see M Int (B Bt K) is not empty.
Therefore we can find a point x and a positive number r such that

B C1N(x;r) MB-BtK.
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It is now easy to show by induction that there exists a collection of closed
subsets of X, namely B1, B, Be, and a collection of distinct elements
tl, t, t3, of S, such that

(1) B B_I BtKand
(2) InB. 0.

Therefore B Bt K B+x 0, whence, by Theorem 2.14
(X, T) is not S-pointwise almost periodic.

2.37 Example. It is the purpose of this example to show that the converses
of Theorems 2.31 and 2.33 are not valid. Let X denote the space of bise-
quences of zeros and ones with the usual metric, d, and let a be the left shift
transformation. It is known [4, Chapter 12] that a generates over the integers
a transformation group which is regionally recurrent and regionally almost
periodic, hence regionally positively recurrent and regionally positively almost
periodic. We now show that is positively evanescent. Let 5 denote the
bisequence in which only zeros appear, and let M n(5, 1/2). If p is a point
ofM, it is of the form p (...p(--2)000p(2) ...). For eachpM, de-
fine a point p* M by p*(j) p(j) if j 0, and p*(0) 1. For any posi-
tive integer n,

d(p*an, pa.n) (n + 1)-1
whence g(Man)

__
(n -- 1)-1, and

lim sup syn g(Ma) lim sup ext g(Man)

lim, g(Ma’) O.

Therefore the transformation group generated by a is positively evanescent.
Acknowledgement. The author is grateful to the referee for helpful remarks,

in particular for pointing out that the notions of 2.1-2.14 are valid in a more
general setting than the author originally thought likely.

Added in proof. The author has found that there is considerable overlap
between this paper and the 1967 Yale dissertation of Ethan Coven, who has
(among other things) a completely different proof of 1.31.
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